




This Test Booklet contains 20 pages.

Do not open this Test Booklet until you are asked to do so.

## Important Instructions:

- The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on Side-1 and Side-2 carefully with blue/black ballpoint pen only.
- The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total score. The maximum marks are 720.
- 3. Use Blue/Black Ballpoint Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away Test Booklet only with them.
- 6. The CODE for this Test Booklet is XX. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is not permissible on the Answer Sheet.
- 9. Each candidate must show on demand his/her Admit Card to the Invigilator.
- No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- -11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 12. Use of Electronic/Manual Calculator is prohibited.
- 13. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- The candidates will write the correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

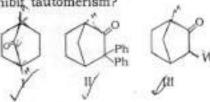
| Name of the Candidate (in Capitals) : MEHUL AUT)                            |
|-----------------------------------------------------------------------------|
| Roll Number (in Figures): 872.00254                                         |
| (in Words): Eight Geore Secrety Two harh & Two hundredfifty                 |
| Centre of Examination (in Capitals): KV No 2, 118K, D. dun                  |
| Candidate's Signature : Invigilator's Signature : Invigilator's Signature : |
| Facsimile Signature Stamp of Centre Superintendent :                        |

- A given nitrogen-containing aromatic compound A reacts with Sn/HCl, followed by HNO<sub>2</sub> to give an unstable compound B. B, on treatment with phenol, forms a beautiful coloured compound C with the molecular formula C<sub>12</sub>H<sub>10</sub>N<sub>2</sub>O. The structure of compound A is
  - (1) CONH<sub>2</sub> (2) (2)
- Consider the reaction
   CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Br + NaCN → CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CN + NaBr

This reaction will be the fastest in

(1) water -

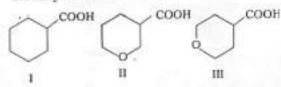
Polan.


ethanol .

methanol

N, N'-dimethylformamide (DMF) X

The correct structure of the product A formed in the reaction


4. Which among the given molecules ca exhibit tautomerism?



- (1) Both II and III
- (2) III only

Both I and III

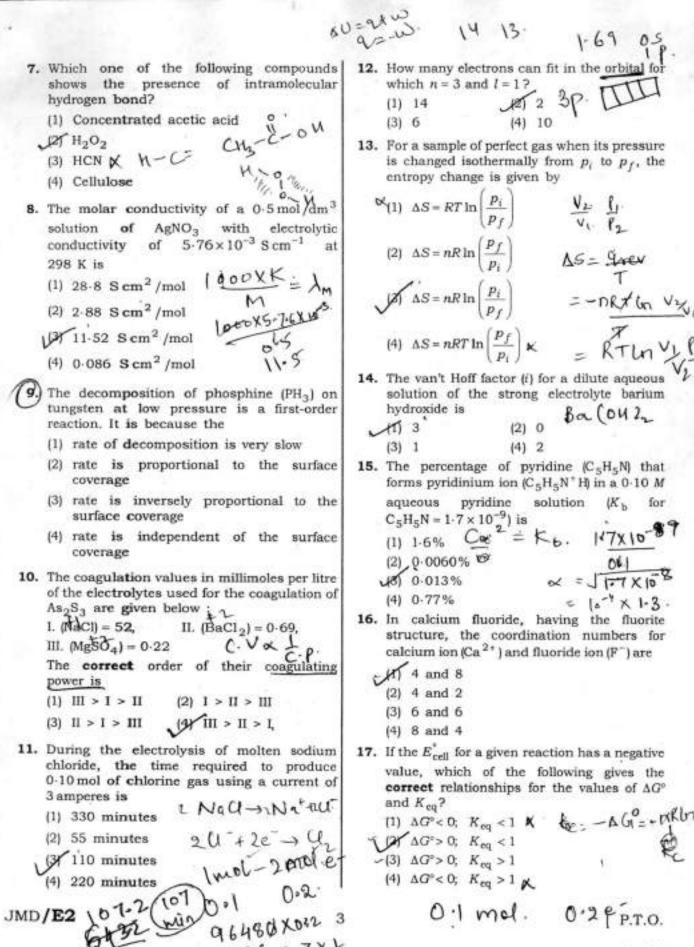
- (4) Both I and II
- The correct order of strengths of the carboxylic acids



is

- (1) 11 > 1 > 111
- (2) 1 > II > III

- (4) 111 > 11 > 1
- The compound that will react most read with gaseous bromine has the formula
  - (1) C<sub>2</sub>H<sub>4</sub>


C= C

(2) C<sub>3</sub>H<sub>6</sub>

131 C2H2

CEC

(4) C4H10 K C-C-



19296 = 3xb

(1) AG° < 0; Keq < 1 K & - AG° = - MKbnke \ \ \ ΔG° > 0; Keq < 1 ~(3) ΔG°> 0; K<sub>eq</sub> > 1 (4) ΔG° < 0; K<sub>eq</sub> > 1 κ 0.1 mol. 0.2 F.T.O.

| 18. Which one of the following is ideal solution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| UT AGmix = Or AGT CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| (2) ΔH <sub>mix</sub> = 0 Δ Δ δ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| (3) $\Delta U_{\text{mix}} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| (4) $\Delta P = P_{\text{obs}} - P_{\text{calculated by Raoult's law}} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 19. The solubility of AgCl (s) with solubility product 1.6 × 10 <sup>-10</sup> in 0.1 M NaCl solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| would be Aga > 5 + cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 4 125 1.26 × 10-5 M Na C - Na + C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| (3) 1-6×10-9 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| (4) $1.6 \times 10^{-11} M$ = $\sqrt{(x \log^{-10} x \log x \log x)}$<br>= $4 \times \log^{-6} x \log^{-1} x \log^{-10} $ |    |
| 1) 30, 20  (3) 60, 40  (4) 20, 30 -1 x = -80  (5) 21. The number of electrons delivered at the cathode during electrolysis by a current of 1 ampere in 60 seconds is (charge on electron = 1.60 × 10 <sup>-19</sup> C)  (3) 6 × 10 <sup>20</sup> (4) 3.75 × 10 <sup>20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *  |
| 22. Boric acid is an acid because its molecule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  |
| (1) combines with proton from water<br>molecule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -  |
| (2) contains replaceable H+ ion K & - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| gives up a proton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| (4) accepts OH from water releasing protor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ī  |
| 23. AlF <sub>3</sub> is soluble in HF only in presence of KF<br>It is due to the formation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |

- . Zinc can be coated on iron to produce galvanized iron but the reverse is not possible. It is because
  - (1) zinc has higher negative electrode potential than iron
  - (2) zinc is lighter than iron
  - (3) zinc has lower melting point than iron
  - M zinc has lower negative electrode potential than iron
- The suspension of slaked lime in water is known as
  - (1) aqueous solution of slaked lime
  - Egylout autro limewater.
    - (at + Mu (3) quicklime
    - (4) milk of lime
- 6. The hybridizations of atomic orbitals of nitrogen in NO2, NO3 and NH4 respectively
  - sp<sup>2</sup>, sp and sp<sup>3</sup>√
  - (2) sp, sp<sup>3</sup> and sp<sup>2</sup>√

yal sp2, sp3 and sp sp, sp<sup>2</sup> and sp<sup>3</sup>

27. Which of the following fluoro-compounds is most likely to behave as a Lewis base?

- (1) SiF4
- (2) BF3
- 18) PF3
- (4) CF4

28. Which of the following pairs of ions is isoelectronic and isostructural?

(2) CO3-, NO3

- (3) ClO<sub>3</sub>, CO<sub>3</sub><sup>2-</sup> (4) SO<sub>3</sub><sup>2-</sup>, NO<sub>3</sub>
- In context with beryllium, which one of the following statements is incorrect?
  - (1) Its hydride is electron-deficient and polymeric.
  - (2) It is rendered passive by nitric acid.
  - (3) It forms Be<sub>2</sub>C.
  - (4) Its salts rarely hydrolyze.

(2) K<sub>3</sub>[AlF<sub>3</sub>H<sub>3</sub>]

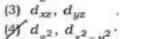
(4) AlH<sub>3</sub>

30. Hot concentrated sulphuric acid is a moderately strong oxidizing agent. Which of the following reactions does not show

oxidizing behaviour?

CaF<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub> → CaSO<sub>4</sub> + 2HF

(2) Cu + 2H<sub>2</sub>SO<sub>4</sub> → CuSO<sub>4</sub> + SO<sub>2</sub> + 2H<sub>2</sub>O

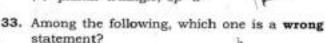

(3) 3S + 2H<sub>2</sub>SO<sub>4</sub> → 3SO<sub>2</sub> + 2H<sub>2</sub>O ←

- (4) C + 2H<sub>2</sub>SO<sub>4</sub> → CO<sub>2</sub> + 2SO<sub>2</sub> + 2H<sub>2</sub>O<sub>2</sub>
- 31. Which of the following pairs of d-orbitals will have electron density along the axes?

(1) d<sub>xy</sub>, d<sub>x<sup>2</sup>-y<sup>2</sup>.</sub>

(2) d\_2, dxz

(3) d<sub>xz</sub>, d<sub>yz</sub>

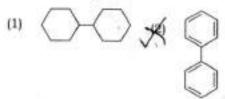





32. The correct geometry and hybridization for

M square planar, sp3d2

- (3) trigonal bipyramidal, sp<sup>3</sup>d
- (4) planar triangle, sp<sup>3</sup>d<sup>3</sup>




- I<sub>3</sub> has bent geometry.
- (2) PH<sub>5</sub> and BiCl<sub>5</sub> do not exist.
- (3) pπ-dπ bonds are present in SO<sub>2</sub>? (9) SeF4 and CH4 have same shape.
- The correct increasing order of trans-effect of the following species is
  - CN > Br > C<sub>6</sub>H<sub>5</sub> > NH<sub>3</sub>
  - (2) NH<sub>3</sub> > CN<sup>-</sup> > Br<sup>-</sup> > C<sub>6</sub>H<sub>5</sub>
  - (3) CN > C6H5 > Br > NH2
  - (4) Br > CN > NH3 > C6H5
- 35) Which one of the following statements related to lanthanons is incorrect?
  - (1) Ce (+4) solutions are widely used as oxidizing agent in volumetric analysis.
  - (2) Europium shows +2 oxidation state.
  - (3) The basicity decreases as the ionic radius decreases from Pr to Lu.
  - (4) All the lanthanons are much more reactive than aluminium.

- (36.) Jahn-Teller effect is not observed in high spin complexes of
  - (1) d9
- (2) d7
- (3) d8
- 37. Which of the following can be used as the halide component for Friedel-Crafts reaction?

Isopropyl chloride

- (2) Chlorobenzene X
- (3) Bromobenzene/
- (4) Chloroethene
- In which of the following molecules, all atoms are coplanar?



- 39. Which one of the following structures represents nylon 6,6 polymer?

JMD/E2

[ P.T.O.

40. In pyrrole

the electron density is maximum on

- (1) 2 and 5
- (2) 2 and 3
- (3) 3 and 4

- 41. Which of the following compounds shall not produce propene by reaction with HBr followed by elimination or direct only elimination reaction?
  - (1) H<sub>3</sub>C—C—CH<sub>2</sub>Br v
  - (2) H<sub>2</sub>C CH<sub>2</sub> (
  - (3) H<sub>3</sub>C—C—CH<sub>2</sub>OH
  - (4) H<sub>2</sub>C=C=0
  - 42. Which one of the following nitro-compounds does not react with nitrous acid?

- (2) H<sub>3</sub>C C NO<sub>2</sub>
- (3) H<sub>3</sub>C CH NO<sub>3</sub>

- The central dogma of molecular genetics states that the genetic information flows from
  - DNA → RNA → Carbohydrates
  - (2) Amino acids → Proteins → DNA
  - (3) DNA → Carbohydrates → Proteins

The correct corresponding order of names of four aldoses with configuration given below

respectively, is

- D-erythrose, D-threose, L-erythrose, L-threose
- (2) L-erythrose, L-threose, L-erythrose, D-threose
- (3) D-threose, D-crythrose, L-threose, L-crythrose
- (4) L-erythrose, L-threose, D-erythrose D-threose
- (45) In the given reaction

$$\bigcirc + \bigcirc \xrightarrow{HF} P$$

the product P is

| 46. A foreign DNA and plasmid cut by the same<br>restriction endonuclease can be joined to<br>form a recombinant plasmid using | hydrothermal vent ecosystem are                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i) ligase                                                                                                                     | (1) coral reefs (                                                                                                                                         |
| (2) Eco RI                                                                                                                     | √(2) green algae €                                                                                                                                        |
| MOR. 10.00000000                                                                                                               | (3) chemosynthetic bacteria                                                                                                                               |
| (3) Taq polymerase                                                                                                             | (4) blue-green algaev                                                                                                                                     |
| (4) polymerase III                                                                                                             | <u></u>                                                                                                                                                   |
| 47. Which of the following is not a component of<br>downstream processing?                                                     | (52.) Which of the following is correct for r-selected species?                                                                                           |
| Expression                                                                                                                     | (1) Small number of progeny with large size                                                                                                               |
| (2) Separation                                                                                                                 | (2) Large number of progeny with small size                                                                                                               |
| 220 72277220707070                                                                                                             | (3) Large number of progeny with large size                                                                                                               |
|                                                                                                                                | (4) Small number of progeny with small size                                                                                                               |
| (4) Preservation                                                                                                               |                                                                                                                                                           |
| Which of the following restriction enzymes produces blunt ends?                                                                | 53. If '+' sign is assigned to beneficial interaction,<br>'-' sign to detrimental and '0' sign to neutral<br>interaction, then the population interaction |
| (1) Hind III -                                                                                                                 | represented by '+' '-' refers to                                                                                                                          |
| (2) Sal I                                                                                                                      | (X) parasitism + -                                                                                                                                        |
| (3) Eco RV ★                                                                                                                   | (2) mutualism farasit                                                                                                                                     |
| (4) Xho I                                                                                                                      | (3) amensalism                                                                                                                                            |
| D.W.                                                                                                                           | (4) commensalism                                                                                                                                          |
| 49. Which kind of therapy was given in 1990 to a<br>four-year-old girl with adenosine deaminase                                | 9.505 CSQC24 SSSSSSSSS                                                                                                                                    |
| (ADA) deficiency?                                                                                                              | 54. Which of the following is correctly matched?                                                                                                          |
| (1) Radiation therapy                                                                                                          | (1) Stratification—Population                                                                                                                             |
| (2) Gene therapy                                                                                                               | (2) Aerenchyma—Opuntia                                                                                                                                    |
| (3) Chemotherapy                                                                                                               | (3) Age pyramid—Biome                                                                                                                                     |
| (4) Immunotherapy                                                                                                              | (4) Parthenium hysterophorus—Threat to biodiversity                                                                                                       |
| 50. How many hot spots of biodiversity in the<br>world have been identified till date by<br>Norman Myers?                      | 55. Red List contains data or information on                                                                                                              |
| UK 43                                                                                                                          | (1) marine vertebrates only                                                                                                                               |
| (2) 17                                                                                                                         | (2) all economically important plant <sup>6</sup>                                                                                                         |
| (3) 25                                                                                                                         | (3) plants whose products are in<br>international trade \(^\)                                                                                             |

JMD/E2

(4) 34

(4) threatened species

[ P.T.O.

- 56. Which one of the following is wrong for fungi?
  - (1) They are both unicellular and multicellular.
  - (2) They are eukaryotic.
  - (3) All fungi possess a purely cellulosic cell wall.
    - (4) They are heterotrophic.
- 57. Methanogens belong to
  - (1) Slime moulds
  - (2) Eubacteria
  - (3) Archaebacteria
  - (4) Dinoflagellates
- 58. Select the wrong statement.
  - Diatoms are microscopic and float passively in water.
  - The walls of diatoms are casily destructible.
    - (3) 'Diatomaceous earth' is formed by the cell walls of diatoms.
    - (4) Diatoms are chief producers in the oceans.
- The label of a herbarium sheet does not carry information on
  - height of the plant
  - (2) date of collection
  - (3) name of collector-
  - (4) local names -
- Conifers are adapted to tolerate extreme environmental conditions because of
  - (1) presence of vessels
  - (2) broad hardy leaves
  - (3) superficial stomata
  - W thick cuticle
- 61. Which one of the following statements is wrong?
  - (1) Laminaria and Sargassum are used as food.
  - (2) Algae increase the level of dissolved oxygen in the immediate environment.
  - Algin is obtained from red algae, and carrageenan from brown algae.
    - (4) Agar-agar is obtained from Gelidium and Gracilaria.

- 62. The term 'polyadelphous' is related to
  - (1) calyx
  - (2) gynoecium
  - , 437 androecium
    - (4) corolla
- How many plants among Indigofera, Sesbania, Salvia, Alloca, Albe, mustard; groundnut, radish, gram and turnip have stamens with different lengths in their flowers?
  - (1) Six

Moneadelphous

Cale

- (2) Three
- (3) Four
- (4) Five
- 64. Radial symmetry is found in the flowers of
  - (1) Cassia K

Achi

- Brassica
  - (3) Trifolium (X-
  - (4) Pişum 😿
- 65. Free-central placentation is found in
  - (1) Citrus
  - 2 Dianthus
    - (3) Argemone
    - (4) Brassica
- 66. Cortex is the region found between
  - (1) endodermis and vascular bundle
  - (2) epidermis and stele
  - (3) pericycle and endodermis
  - (4) endodermis and pith
- 67. The balloon-shaped structures called tyloses
  - are linked to the ascent of sap through xylem vessels
  - (2) originate in the lumen of vessels
  - (3) characterize the sapwood
  - are extensions of xylem parenchyma cells into vessels

| 68. A non-proteinaceous enzyme is  (1) deoxyribonuclease  (2) lysozyme  (3) ribozyme  (4) ligase                                                                        | 74. A few drops of sap were collected by cutting across a plant stem by a suitable method. The sap was tested chemically. Which one of the following test results indicates that it is phloem sap?  (1) Absence of sugar (1) Acidic (3) Alkaline |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 69. Select the mismatch.  (1) Methanogens—Prokaryotes  (2) Gas vacuoles—Green bacteria  (3) Large central vacuoles—Animal cells  (4) Protists—Eukaryotes                | (4) Low refractive index \$\mathbb{K}\$ 75. You are given a tissue with its potential for differentiation in an artificial culture. Which of the following pairs of hormones would you add to the medium to secure shoots as well as roots?      |
| <ul> <li>70. Select the wrong statement.</li> <li>(1) Mycoplasma is a wall-less microorganism.</li> <li>(2) Bacterial cell wall is made up of peptidoglycan.</li> </ul> | (1) Gibberellin and abscisic acid (2) IAA and gibberellin (3) Auxin and cytokinin (4) Auxin and abscisic acid  76. Phytochrome is a                                                                                                              |
| Pili and fimbriae are mainly involved in motility of bacterial cells.  (4) Cyanobacteria lack flagellated cells.  71. A cell organelle containing hydrolytic            | (1) chromoprotein (2) flavoprotein (3) glycoprotein (4) lipoprotein                                                                                                                                                                              |
| (1) mesosome                                                                                                                                                            | (1) Mns (2) Zn (3) Fe (4) Ca                                                                                                                                                                                                                     |

(4) Ca

The process which makes major difference between C3 and C4 plants is

respiration

(2) glycolysis

(3) Calvin cycle (

(4) photorespiration

79. Which one of the following statements is not correct?

- (1) Water hyacinth, growing in the standingwater, drains oxygen from water that leads to the death of fishes.
- (2) Offspring produced by the asexual reproduction are called clone.
- (3) Microscopic, motile asexual reproductive structures are called zoospores.

In potato, banana and ginger, the plantlets arise from the internodes present in the modified stem.

JMD/E2

(3) microsome

72. During cell growth, DNA synthesis takes

73. Which of the following biomolecules is common to respiration-mediated breakdown

of fats, carbohydrates and proteins?

(2) Glucose-6-phosphate

(3) Fructose 1,6-bisphosphate ⊀

(4) ribosome

(1) M phase

(2 S phase

(3) G<sub>1</sub> phase

(4) G<sub>2</sub> phase

Acetyl CoA

(4) Pyruvic acid '

place in

- 80. Which one of the following generates new genetic combinations leading to variation?

  (1) Nucellar polyembryony

  (2) Vegetative reproduction
  - (3) Parthenogenesis
    (4) Sexual reproduction
- 81. Match Column—I with Column—II and select the correct option using the codes given below:

### Column-I

#### Column-II

- a. Pistils fused together
- (i) Gametogenesis
- Formation of gametes
- (ii) Pistillate
- Hyphae of higher Ascomycetes
- (iii) Syncarpous
- d. Unisexual female flower
- iv) Dikaryotic

#### Codes :

- a b c d
  (iii) (i) (iv) (ii)
  (2) (iv) (iii) (i) (ii)
  (3) (ii) (i) (iv) (iii)
  (4) (i) (ii) (iv) (iii)
- 82. In majority of angiosperms
  - a small central cell is present in the embryo sac ⋈
  - (2) egg has a filiform apparatus
  - (3) there are numerous antipodal cells (
  - (4) reduction division occurs in the megaspore mother cells
- Pollination in water hyacinth and water lily is brought about by the agency of
  - (1) bats
  - (2) water
    - (3) insects or wind
    - (4) birds
- 84. The ovule of an angiosperm is technically equivalent to
  - (1) megaspore
  - (2) megasporangium
    - (3) megasporophyll
    - (4) megaspore mother cell

- 85. Taylor conducted the experiments to prove semiconservative mode of chromosome replication on
  - (1) E. coli
  - (2) Vinca rosea
  - VII Vicia faba
    - (4) Drosophila melanogaster
- 86. The mechanism that causes a gene to move from one linkage group to another is called
  - (1) crossing-over K
  - (2) inversion <
  - (3) duplication
  - (\*) translocation
- 87. The equivalent of a structural gene is
  - (1) recono
  - (2) muton ≤
  - cistron
  - (4) operon
- 88. A true breeding plant is
  - always homozygous recessive in its genetic constitution
  - (2) one that is able to breed on its own
  - (3) produced due to cross-pollination among unrelated plants
  - near homozygous and produces offspring
- 89. Which of the following rRNAs acts as structural RNA as well as ribozyme in bacteria?
  - (1) 5.8 S rRNA
  - (2) 5 S rRNA
  - (3) 18 S rRNA
  - 14 23 S TRNA
- Stirred-tank bioreactors have been designed for
  - (1) ensuring anaerobic conditions in the culture vessel
  - (2) purification of product
  - (3) addition of preservatives to the product
  - availability of oxygen throughout the process

- 91. A molecule that can act as a genetic material must fulfill the traits given below, except
  - (1) it should provide the scope for slow, changes that are required for evolution
  - (2) it should be able to express itself in the form of 'Mendelian characters'
  - (3) it should be able to generate its replicat
  - 4 it should be unstable structurally and chemically
- 92. DNA-dependent RNA polymerase catalyzes transcription on one strand of the DNA which is called the
  - (1) antistrand
  - (2) template strand
  - (3) coding strand
  - (4) alpha strand
- 93. Interspecific hybridization is the mating of
  - (1) more closely related individuals within same breed for 4-6 generations
  - (2) animals within same breed without having common ancestors
  - (8) two different related species
  - (4) superior males and females of different breeds
- 94.) Which of the following is correct regarding AIDS causative agent HIV?

anti

- (1) HIV does not escape but attacks the acquired immune response. T- cymphodyles
- (2) HIV is enveloped virus containing one molecule of single-stranded RNA and one molecule of reverse transcriptase.
- (3) HIV is enveloped virus that contains two identical molecules of single-stranded RNA and two molecules of reverse transcriptase.
- (4) HIV is unenveloped retrovirus.

Among the following edible fishes, which one is a marine fish having rich source of omega-3 fatty acids?

- Mackerel
- (2) Mystus
- (3) Mangur
- (4) Mrigala

96. Match Column-I with Column-II and select the correct option using the codes given below :

> Column-I Column-II

- a. Citric acid
- (i) Trichoderma
- b. Cyclosporin A
- (ii) Clostridium
- c. Statins
- (iii) Aspergillus
- d. Butyric acid -
- (iv) Monascus

#### Codes :

- (iii)K (1) (iii) (iv)
- (iii) (iii) (iv)
- (iii) (ii) (iv)
- (iv) (ii) (iii)
- Biochemical Oxygen Demand (BOD) may not be a good index for pollution for water bodies (1) sugar industry - Molawer - Hij receiving effluents from

  - (2) domestic sewage
  - (3) dairy industry -
  - (4) petroleum industry >
- 98. The principle of competitive exclusion was stated by
  - (1) Verhulst and Pearl
  - (2) C. Darwin
  - [3] G. F. Gause
  - (4) MacArthur
- Which of the following National Parks is home to the famous musk deer or hangul?
  - (1) Dachigam National Park, Jammu & Kashmir
  - (2) Keibul Lamjao National Park, Manipur
  - (3) Bandhavgarh National Park, Madhya
  - (4) Eaglenest Wildlife Sanctuary, Arunachal
- 100. A lake which is rich in organic waste may result in
  - M) mortality of fish due to lack of oxygen
  - (2) increased population of aquatic organisms due to minerals &
  - (3) drying of the lake due to algal bloom
  - (4) increased population of fish due to lots of nutrients OX
- 101. The highest DDT concentration in aquatic food chain shall occur in
  - (1) cel
  - (2) phytoplankton
  - seagull .
  - (4) crab

JMD/E2

11

P.T.O.

102. Which of the following sets of diseases is 108. Oxidative phosphorylation is formation of ATP by energy released from caused by bacteria? (1) Herpes and influenzak electrons removed during substrate (2) Cholera and tetanusv oxidation (3) Typhoid and smallpox v (2) formation of ATP by transfer o (4) Tetanus and mumps K phosphate group from a substrate 103. Match Column-I with Column-II for to ADP housefly classification and select the correct (3) oxidation of phosphate group in ATP option using the codes given below : (4) addition of phosphate group to ATP Column-I Column-II 109. Which of the following is the least likely to be involved in stabilizing the three-dimensiona a. Family (i) Diptera folding of most proteins? (ii) Arthropoda b. Order (1) Ester bonds c. Class (iii) Muscidae (2) Hydrogen bonds✓ d. Phylum (iv) Insecta (3) Electrostatic interaction Codes : 14 Hydrophobic interaction d a 110. Which of the following describes the giver (iv) (iii) (i) (iii) (1) graph correctly? (ii) = (iii) (i) (iv) (3)(iii) (iii) (iv) (i) (4) (iv) (iiii) (ii) 104. Choose the correct statement. B (1) All Pisces have gills covered by an operculum. K (2) All mammals are viviparous. Y Potential Energy (3) All cyclostomes do not possess jaws and paired fins. Substrate (4) All reptiles have a three-chambered heart. 105. Study the four statements (A-D) given below and select the two correct ones out of them : A. Definition of biological species was given Product by Ernst Mayr, v Reaction -> B. Photoperiod does not affect reproduction in plants.X (1) Exothermic reaction with energy A in C. Binomial nomenclature system was absence of enzyme and B in presence of given by R. H. Whittake D. In unicellular organisms, reproduction is Endothermic reaction with energy A in synonymous with growth. presence of enzyme and B in absence of The two correct statements are enzyme (2) B and C Exothermic reaction with energy A in (1) A and B (3) C and D A and D presence of enzyme and B in absence of enzyme In male cockroaches, sperms are stored in Endothermic reaction with energy A in which part of the reproductive system? absence of enzyme and B in presence of (1) Vas deferens (2) Seminal vesicles 111. When cell has stalled DNA replication fork, . (3) Mushroom glands which checkpoint should be predominantly (4) Testes v. activated? 107. Smooth muscles are (1) Both G2/M and M voluntary, spindle-shaped, uninucleate ? Dr G1/S (2) involuntary, fusiform, non-striated (3) voluntary, multinucleate, cylindrical (3) G<sub>2</sub>/M DNA Replication (4) involuntary, cylindrical, striated (4) M JMD/E2 12

| 112. | Match the stages of meiosis in Column-I to                    |  |  |  |
|------|---------------------------------------------------------------|--|--|--|
|      | their characteristic features in Column-II                    |  |  |  |
|      | and select the correct option using the codes<br>given below: |  |  |  |

#### Column-I

#### Column-II

- a. Pachytene
- Pairing of homologous chromosomes
- Metaphase I
- Terminalization of (iii) chiasmata
- c. Diakinesis
- (iii) Crossing-over takes place
- d. Zygotene
- (iv) Chromosomes align at equatorial plate

#### Codes :

L-280 d

- (i) × (iv) (iii) n (2) (iii) (iv) (iii) (i) (iii) (i) (iv)
  - (4) (ii) (iv) (iii)
- 113. Which stimulate the hormones do production pancreatic of juice and bicarbonate?
  - (1) Insulin and glucagon
  - (2) Angiotensin and epinephrine
  - (3) Gastrin and insulin
  - (A) Cholecystokinin and secretin
- 114. The partial pressure of oxygen in the alveoli of the lungs is
  - (1) less than that of carbon dioxide
  - (2) equal to that in the blood
  - (3) more than that in the blood
  - (9) less than that in the blood

# Choose the correct statement.

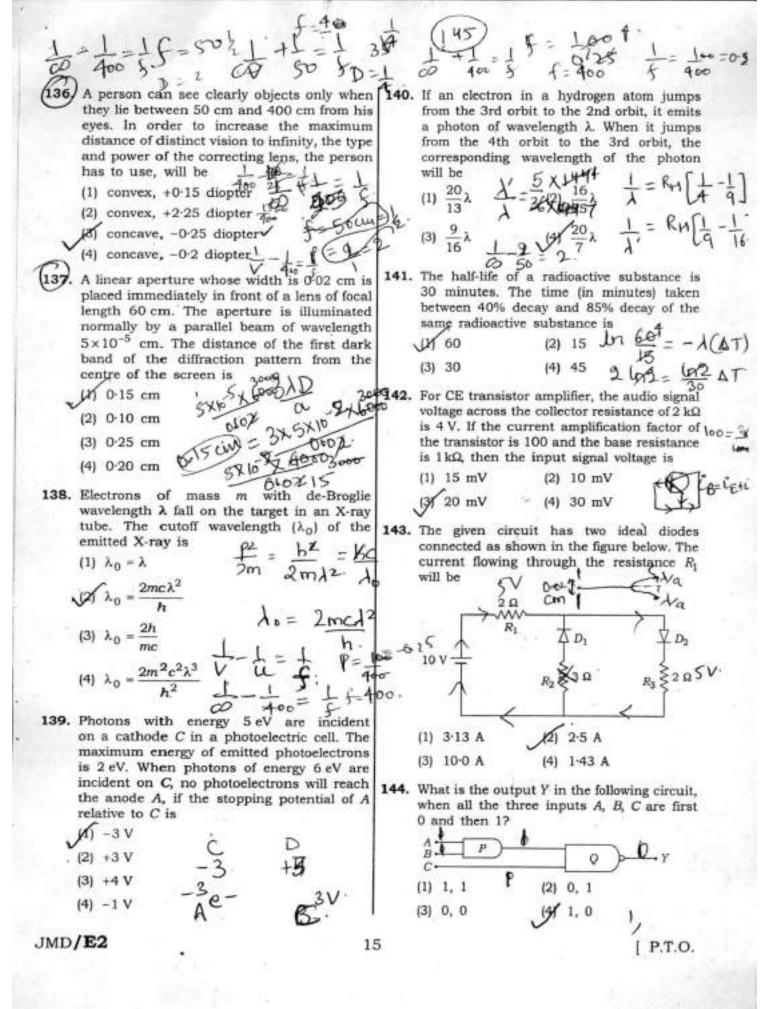
- (1) Receptors do not produce potentials.
- (2) Nociceptors respond to changes in pressure.
- (3) Meissner's corpuscles thermoreceptors.
- .(4) Photoreceptors in the human eye are depolarized during darkness and become hyperpolarized in response to the light stimulus.
- 116. Graves' disease is caused due to
  - hypersecretion of adrenal gland K
  - (2) hyposecretion of thyroid gland

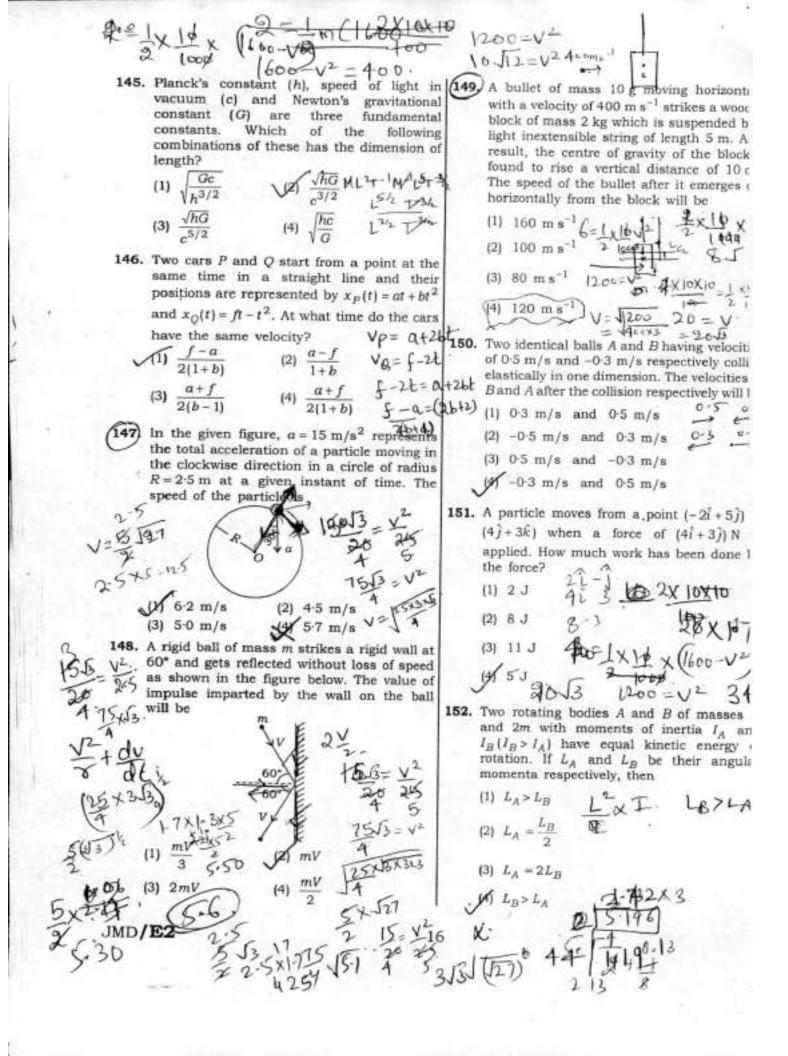
  - (4) hyposecretion of adrenal gland

- 117. Name the ion responsible for unmasking of active sites for myosin for cross-bridge activity during muscle contraction.
  - (1) Potassium
- (2) Calcium

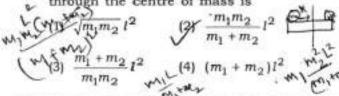
Magnesium

- (4) Sodium
- 118. Name the blood cells, whose reduction in number can cause clotting disorder, leading to excessive loss of blood from the body.
  - [1] Thrombocytes-
  - (2) Erythrocytes
  - (3) Leucocytes
  - (4) Neutrophils
- 119. Name a peptide hormone which acts mainly on hepatocytes, adipocytes and enhances cellular glucose uptake and utilization.
  - (1) Gastrin
- (2) Insulin F

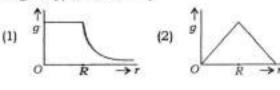

Glucagon

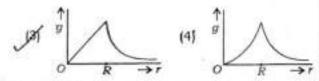

- (4) Secretin
- 120. Osteoporosis, an age-related disease skeletal system, may occur due to
  - (1) accumulation of uric acid leading to inflammation of joints
  - (2) immune disorder affecting neuromuscular junction leading to fatigue
  - (3) high concentration of Ca++ and Na+
  - decreased level of estrogen
- 121. Serum differs from blood in
  - . (1) lacking antibodies
  - (2) lacking globulins
  - (3) lacking albumins
  - (4) lacking clotting factors
- 122. Lungs do not collapse between breaths and some air always remains in the lungs which can never be expelled because
  - (1) pressure in the lungs is higher than the atmospheric pressure
  - (2) there is a negative pressure in the lungs
  - (3) there is a negative intrapleural pressure pulling at the lung walls
  - (4) there is a positive intrapleural pressure &
- The posterior pituitary gland is not a 'true' endocrine gland because
  - (1) it secretes enzymes
  - (2) it is provided with a duct
  - (3) it only stores and releases hormones
    - (4) it is under the regulation of hypothalamus

JMD/E2


P.T.O.

| reabsorption of sodium is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | progesterone are produced by                                                                                                                                                                                                                                               |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (1) descending limb of Henle's loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1) pituitary                                                                                                                                                                                                                                                              |  |  |  |
| (2) distal convoluted tubule DCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (2) ovary                                                                                                                                                                                                                                                                  |  |  |  |
| <ul> <li>(3) proximal convoluted tubule</li> <li>(4) Bowman's capsule v</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , 18) placenta                                                                                                                                                                                                                                                             |  |  |  |
| 125. Which of the following is hormone-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14) fellesias tuba                                                                                                                                                                                                                                                         |  |  |  |
| releasing IUD? (1) Cu7 (2) LNG-20 (3) Multiload 375 (4) Lippes loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 131. If a colour-blind man marries a woman whis homozygous for normal colour vision, the probability of their son being colour-blind is                                                                                                                                    |  |  |  |
| 126. Which of the following is incorrect regarding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3) 0.5 (4) 0.75                                                                                                                                                                                                                                                           |  |  |  |
| vasectomy?  (1) Irreversible sterility (2) No sperm occurs in seminal fluid (2) No sperm occurs in epididymis (4) Vasa deferentia is cut and tied (4) Vasa deferentia is cut and tied (5) 127. Embryo with more than 16 blastomeres formed due to in vitro fertilization is transferred into (1) cervix (2) uterus                                                                                                                                                                                                                   | 132. Genetic drift operates in (1) slow reproductive population (2) small isolated population (3) large isolated population (4) non-reproductive population  133. In Hardy-Weinberg equation, the frequence of heterozygous individual is represented by                   |  |  |  |
| (3) fallopian tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1) q <sup>2</sup> (2) p <sup>2</sup> ) Do                                                                                                                                                                                                                                 |  |  |  |
| <ul> <li>(4) fimbriae</li> <li>128. Which of the following depicts the correct pathway of transport of sperms?</li> <li>(1) Efferent ductules → Rete testis → Vas deferens → Epididymis</li> <li>(2) Rete testis → Efferent ductules → Epididymis → Vas deferens</li> <li>(3) Rete testis → Epididymis → Efferent ductules → Vas deferens</li> <li>(4) Rete testis → Vas deferens → Efferent ductules → Epididymis</li> <li>129. Match Column—I with Column—II and select the correct option using the codes given below:</li> </ul> | The chronological order of human evolution from early to the recent is   (X) Australopithecus → Homo habilis Ramapithecus → Homo erectus  (2) Australopithecus → Ramapithecus Homo habilis → Homo erectus  (3) Ramapithecus → Australopithecus Homo habilis → Homo erectus |  |  |  |
| a. Mons pubis (i) Embryo formation b. Antrum (ii) Sperm c. Trophectoderm (iii) Female external genitalia                                                                                                                                                                                                                                                                                                                                                                                                                             | 135. Which of the following is the correscuence of events in the origin of life?  I. Formation of protobionts  II. Synthesis of organic monomers                                                                                                                           |  |  |  |
| d. Nebenkern (iv) Graafian follicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | III. Synthesis of organic polymers /                                                                                                                                                                                                                                       |  |  |  |
| Codes :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IV. Formation of DNA-based genetic system                                                                                                                                                                                                                                  |  |  |  |
| a b c d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1) II, III, IV, I                                                                                                                                                                                                                                                         |  |  |  |
| (1) (i) (iv) (iii) (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2) I, II, III, IV                                                                                                                                                                                                                                                         |  |  |  |
| (2) (iii) - (iv) (ii) · (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3) I, III, II, IV                                                                                                                                                                                                                                                         |  |  |  |
| (ii) (iv) (i) (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (M II, III, I, IV                                                                                                                                                                                                                                                          |  |  |  |
| (4) (iii) (i) (iv) (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                                                                                                                                                                                          |  |  |  |




- 153. A solid sphere of mass m and radius R is rotating about its diameter. A solid cylinder of the same mass and same radius is also rotating about its geometrical axis with an angular speed twice that of the sphere. The ratio of their kinetic energies of rotation
  - (2) 2:3
  - (3+ 1:5
  - (4) 1:4
- 154. A light rod of length l has two masses m<sub>1</sub> and m2 attached to its two ends. The moment of inertia of the system about an axis perpendicular to the rod and passing through the centre of mass is



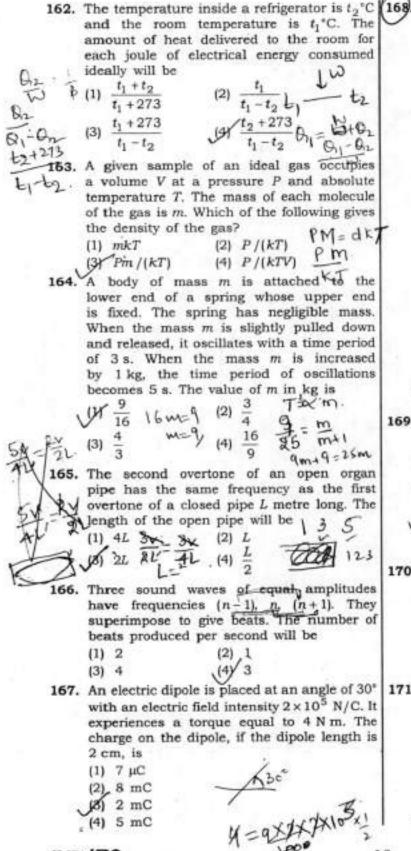
155. Starting from the centre of the earth having radius R, the variation of g (acceleration due to gravity) is shown by





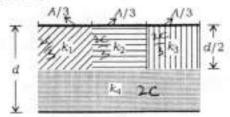
- 156. A satellite of mass m is orbiting the earth (of radius R) at a height h from its surface. The total energy of the satellite in terms of  $g_0$ , the value of acceleration due to gravity at the earth's surface, is
  - GIMM ngok
  - $(8) \frac{mg_0R^2}{2(R+h)} = \frac{10}{10} = k \left[ \frac{6!}{2} \frac{4!}{2} \right]$

JMD/E2 
$$\frac{2T-x}{10} = \frac{1}{15} \left[ \frac{15}{25} + \frac{1}{15} \right]$$
 17
$$6T-3n = x$$


$$4x = 6$$

$$x = 372$$

- 157. A rectangular film of liquid is extended from  $(4 \text{ cm} \times 2 \text{ cm})$  to  $(5 \text{ cm} \times 4 \text{ cm})$ . If the work done is 3×10-4 J, the value of the surface tension of the liquid is
  - (1) 8·0 N m<sup>-1</sup> (2) 0·250 N m<sup>-1</sup> (3) 0·125 N m<sup>-1</sup> (4) 0·2 N m<sup>-1</sup> (3)
- 158. Three liquids of densities  $\rho_1$ ,  $\rho_2$  and  $\rho_3$  (with  $\rho_1 > \rho_2 > \rho_3$ ), having the same value of surface tension T, rise to the same height in three identical capillaries. The angles of contact  $\theta_1$ ,  $\theta_2$  and  $\theta_3$  obey
  - (1)  $\pi > \theta_1 > \theta_2 > \theta_3 > \frac{\pi}{2}$
  - $\{2\}$   $\frac{\pi}{2} > \theta_1 > \theta_2 > \theta_3 \ge 0$
- $\psi(3) 0 \le \theta_1 < \theta_2 < \theta_3 < \frac{\pi}{2}$ (4)  $\frac{\pi}{2}$   $< \theta_1 < \theta_2 < \theta_3 < \pi$
- Two identical bodies are made of a material for which the heat capacity increases with temperature. One of these is at 100 °C, while the other one is at 0 °C. If the two bodies are brought into contact, then, assuming no heat loss, the final common temperature is
  - mc(-100) = mc ( (I) 0 °C (2) 50 °C more than 50 °C
  - (4) less than 50 °C but greater than 0 °C
- 160. A body cools from a temperature 3T to 2T in 10 minutes. The room temperature is T. Assume that Newton's law of cooling is applicable. The temperature of the body at the end of next 10 minutes will be


- 161. One mole of an ideal monatomic gas undergoes a process described by the equation PV3 = constant. The heat capacity of the gas during this process is

$$C = Cv + -\frac{R}{N-1}$$
 | P.T.O.  
=  $\frac{3R}{2} - \frac{R}{2} - R$ 



JMD/E2

A parallel-plate capacitor of area A, plat separation d and capacitance C is filled wit four dielectric materials having dielectric constants k<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub> and k<sub>4</sub> as shown in th figure below. If a single dielectric material i to be used to have the same capacitance C i this capacitor, then its dielectric constant is given by



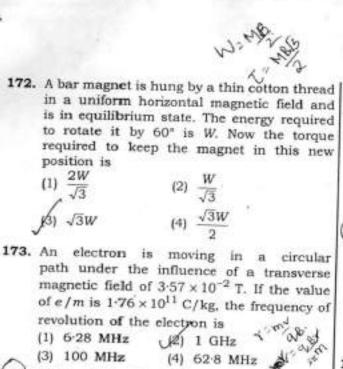
(1) 
$$\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \frac{3}{2k_4}$$
  $C' = \frac{2}{3}(k_1 + k_2)$ 

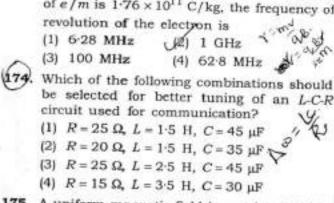
(2) 
$$k = k_1 + k_2 + k_3 + 3k_4$$

(3) 
$$k = \frac{2}{3}(k_1 + k_2 + k_3) + 2k_4$$
  $\frac{1}{k_1} = \frac{1}{k_1} + \frac{1}{k_2}$ 

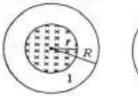
$$19\sqrt{\frac{2}{k}} = \frac{3}{k_1 + k_2 + k_3} + \frac{1}{k_4}$$
  $\frac{3}{2}$   $\frac{1}{k_1 + k_2 + k_3} + \frac{1}{k_4}$ 

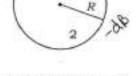
169. The potential difference (V<sub>A</sub> - V<sub>B</sub>) betwee the points A and B in the given figure is


$$V_A \rightarrow \frac{2\Omega}{A} \rightarrow \frac{1}{I^2} \times \frac{V_I}{B} \rightarrow \frac{V_I}{B} \times \frac{V_A - 4 - 3 - 2}{A} = \frac{V_A - 4 - 3 - 2}{A} =$$


170. A filament bulb (500 W, 100 V) is to be use in a 230 V main supply. When a resistance is connected in series, it works perfectly an the bulb consumes 500 W. The value of R is

171. A long wire carrying a steady current is Derinto a circular loop of one turn. The magnet field at the centre of the loop is B. It is the bent into a circular coil of n turns. The magnetic field at the centre of this coil n turns will be 2 TUY = 0.8.


(1) 
$$2n^2B$$

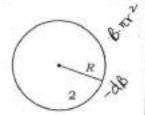

nB 2 PX



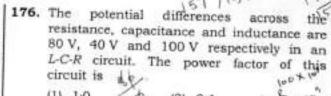


175. A uniform magnetic field is restricted within a region of radius r. The magnetic field changes with time at a rate  $\frac{dB}{dt}$ . Loop 1 of radius R > r encloses the region r and loop 2 of radius R is outside the region of magnetic field as shown in the figure below. Then the e.m.f. generated is






 $\sqrt{1}$   $-\frac{d\vec{B}}{dt}\pi r^2$  in loop 1 and zero in loop 2 (2) zero in loop 1 and zero in loop 2


(3)  $-\frac{d\vec{B}}{dt}\pi r^2$  in loop 1 and  $\frac{1}{\sqrt{2}}$ 

 $-\frac{d\vec{B}}{\hbar}\pi r^2$  in loop 2

(4)  $-\frac{d\vec{B}}{dt}\pi R^2$  in loop 1 and zero in loop 2



 $\frac{1}{f} = \frac{1}{R} \cdot f = K \cdot 19 \quad \frac{I_{max} \left( \sqrt{n+1} \right)^2}{\sqrt{n+1} \left( \sqrt{n-1} \right) \left( \sqrt{n-1} \right) \left( \sqrt{n-1} \right)^2} \quad \frac{I_{max} \left( \sqrt{n+1} \right)^2}{\sqrt{n-1} \left( \sqrt{n-1} \right)^2} \quad \frac{I_{max} \left( \sqrt{n+1} \right)^2}{\sqrt{n-1} \left( \sqrt{n-1} \right)^2} \quad \frac{I_{max} \left( \sqrt{n-1} \right)^2}{\sqrt{n-1} \left( \sqrt{n-1} \right)^2$ 



(1) 1.0 (3) 0-5

A 100 Ω Yesistance and a capacitor of 100 Ω W reactance are connected in series across a 220 V source. When the capacitor is 50% charged, the peak value of the displacement current is (2) 2·2 A 2 00 00

11√2 A

(3) II A

(4) 4·4 A

178. Two identical glass ( $\mu_g = 3/2$ ) equiconvex lenses of focal length f each are kept in contact. The space between the two lenses is filled with water ( $\mu_w = 4/3$ ). The focal length of the combination is

(X 3f/4

179. An air bubble in a glass slab with refractive index 1.5 (near normal incidence) is 5 cm deep when viewed from one surface and 3 cm deep when viewed from the opposite face. The thickness (in cm) of the slab is

(1) 16

(3) 10

180. The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference pattern, the ratio

 $\frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \frac{I_{1} - M}{I_{2}} \cdot \frac{I_{2}}{I_{N}}$ 

JMD/E2

| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| No. of the last of |  |  |  |
| Maria de la companya della companya  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| The late of the late of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Day of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |