7538948

This Test Booklet contains 20 pages.

Do not open this Test Booklet until you are asked to do so.

Important Instructions:

- The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on Side-1 and Side-2 carefully with blue/black ballpoint pen only.
- The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total score. The maximum marks are 720.
- 3. Use Blue/Black Ballpoint Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away Test Booklet only with them.
- 6. The CODE for this Test Booklet is ZZ. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is not permissible on the Answer Sheet.
- 9. Each candidate must show on demand his/her Admit Card to the Invigilator.
- No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 12. Use of Electronic/Manual Calculator is prohibited.
- 13. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- The candidates will write the correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

Name of the Candidate (in Capitals) : ARHILASHA RHATT
Roll Number (in Figures): 872 ON 68
(in Words) : Fight core seventy two taken sinty eight.
Centre of Examination (in Capitalis): KENDRIVA VIDYALAYA, HATHIRAR FALA, PCHEADON
Centre of Examination (in Capitals): KENDRIVA VIDYALAYA, HATHIRAR FALA, PCHEADON Candidate's Signature:
Pacsimile Signature Stamp of Centre Superintendent :
E4

	A CONTRACTOR OF THE PARTY OF TH
No.	

1. A (solid) sphere of mass m and radius R is rotating about its diameter. A solid cylinder of the same mass and same radius is also rotating about its geometrical axis with an angular speed twice that of the sphere. The ratio of their kinetic energies of rotation (E_{sphere} / E_{cylinder}) will be

(A) 1:5 (2) 1:4 (3) 3:1 (4) 2:3

 \bigcirc A light rod of length l has two masses m_1 and m2 attached to its two ends. The moment of inertia of the system about an axis perpendicular to the rod and passing through the centre of mass is

(1)
$$\frac{m_1 + m_2}{m_1 m_2} l^2$$

(2)
$$(m_1 + m_2)l^2$$

(3)
$$\sqrt{m_1 m_2} l^2$$

(3)
$$\sqrt{m_1m_2} l^2$$
 (4) $\frac{m_1m_2}{m_1 + m_2} l^2$

3. Starting from the centre of the earth having radius R, the variation of g (acceleration due to gravity) is shown by

A satellite of mass m is orbiting the earth (of radius R) at a height h from its surface. The total energy of the satellite in terms of go, the value of acceleration due to gravity at the earth's surface, is The kent fe

$$\sqrt{1 - \frac{mg_0 R^2}{2(R+h)}} \qquad -\frac{1}{2(R+h)} = \frac{1}{2(R+h)}$$

$$\frac{2mg_0R^2}{R+h}$$
 ℓ ℓ ℓ ℓ

$$\frac{R+h}{2mg_0R^2} \qquad T\hat{\epsilon} = \frac{\hat{f}}{2}$$

$$(3) -\frac{2mg_0R^2}{R+h}$$

$$= mg_0R^2$$

(4)
$$\frac{mg_0R^2}{2(R+h)}$$

5. A rectangular film of liquid is extended from (4 cm × 2 cm) to (5 cm × 4 cm). If the work done is 3×10-4 J, the value of the surface tension of the liquid is

6. Three liquids of densities p1, p2 and p3 (with $\rho_1 > \rho_2 > \rho_3$), having the same value or surface tension T, rise to the same height in three identical capillaries. The angles of

contact
$$\theta_1$$
, θ_2 and θ_3 obey $h \ge ruso$
(1) $0 \le \theta_1 < \theta_2 < \theta_3 < \frac{\pi}{2}$

passing $J = M_2(L)^2 + (2) \frac{\pi}{2} < \theta_1 < \theta_2 < \theta_3 < \pi$ GO = M

(3)
$$\pi > \theta_1 > \theta_2 > \theta_3 > \frac{\pi}{2}$$

(4) $\frac{\pi}{2} > \theta_1 > \theta_2 > \theta_3 \ge 0$ (6) 0 > (0.50) > (0.50)

7. Two identical bodies are made of a materia for which the heat capacity increases with temperature. One of these is at 100 °C, while the other one is at 0 °C. If the two bodies an brought into contact, then, assuming ne heat loss, the final common temperature is

(1) more than 50 °C

(2) less than 50 °C but greater than 0 °C

8. A body cools from a temperature 3T to 2 in 10 minutes. The room temperature is 7 Assume that Newton's law of cooling i applicable. The temperature of the body a the end of next 10 minutes will be

(3)
$$\frac{7}{3}T_{PV}N_{=}\cos^{3}(2)\frac{4}{3}T^{C} = CV + \frac{R}{1-4}$$

9. One mole of an ideal monatomic ga undergoes a process described by th equation PV^3 = constant. The heat capacit

of the gas during this process is
$$(1) \frac{5}{2}R \frac{2\ell-\ell}{2}(2) 2R \qquad \Im = \frac{GN}{\ell}$$

JMD/B4 Tr=+kel 2 -a: # + - ec Tr=-ke = gmen 2 Re

20. A bar magnet is hung by a thin cotton thread in a uniform horizontal magnetic field and is in equilibrium state. The energy required to rotate it by 60° is W. Now the torque required to keep the magnet in this new position is

(1) \J3W

(2)
$$\frac{\sqrt{3}W}{2}$$
 +

(4)
$$\frac{W}{\sqrt{3}}$$

21. An electron is moving in a circular path under the influence of a transverse magnetic field of 3.57×10^{-2} T. If the value of e/m is 1.76×10^{11} C/kg, the frequency of revolution of the electron is

(f) 100 MHz

(2) 62·8 MHz

(3) 6·28 MHz

(4) 1 GHz

22. Which of the following combinations should be selected for better tuning of an L-C-R circuit used for communication?

R = 25 Ω, L = 2·5 H, C = 45 μF

(2) R = 15 Ω, L = 3·5 H, C = 30 μF

(3) R = 25 Ω, L = 1.5 H, C = 45 μF

(4) R = 20 Ω, L = 1.5 H, C = 35 μF

23. A uniform magnetic field is restricted within a region of radius r. The magnetic field changes with time at a rate $\frac{d\vec{B}}{dt}$. Loop 1 of radius R > r encloses the region r and loop 2

of radius R is outside the region of magnetic field as shown in the figure below. Then the e.m.f. generated is

 $\frac{C}{m}$ $\frac{d\vec{B}}{dt}\pi r^2$ in loop 1 and

 $f = 1.76 \text{Mps}^{11} \times 3.5 \text{X}^{2} - \frac{d\vec{B}}{dt} \pi r^{2} \text{ in loop } 2$

(2) $-\frac{dB}{dt}\pi R^2$ in loop 1 and zero in loop 2

(3) $-\frac{d\vec{B}}{dt}\pi r^2$ in loop 1 and zero in loop 2

ger zero in loop 1 and zero in loop 2

C= MBSim 00 = MBG

24. The potential differences acros resistance capacitance and inductance are 80 V, 40 V and 100 V respectively in an L-C-R circuit. The power factor of this circuit is

(1) 0.5

(3) 1.0

A 100 Ω resistance and a capacitor of 100 Ω reactance are connected in series across a 220 V source. When the capacitor is 50% charged, the peak value of the displacement VI-IRRB current is

(1) 11 A

(2) 4-4 A - 2×10 ×1×12

(3) 11√2 A

(4) 2·2 A

= 2×10 V 26 Two identical glass (μ_g = 3/2) equiconvex lenses of focal length f each are kept in contact. The space between the two lenses is filled with water ($\mu_w = 4/3$). The focal length of the combination is = > > 1 Kit kits

f

(2) 4 // 3

(3) 3//4

(4) f/3

27. An air bubble in a glass slab with refractive index 1.5 (near normal incidence) is 5 cm deep when viewed from one surface and 3 cm deep when viewed from the opposite face. The thickness (in cm) of the slab is

(1) 10

(2) 12

(3) 16

(4) 8

28. The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference pattern, the ratio

 $\frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} \supset \frac{2}{3}$ will be

- 38. Planck's constant (h), speed of light in vacuum (c) and Newton's gravitational fundamental (G) are three constant following of the Which constants. combinations of these has the dimension of length?
- (2) √<u>hc</u> / M
- (4) $\frac{\sqrt{hG}}{\pi^{3/2}}$

Two cars P and Q start from a point at the same time in a straight line and their positions are represented by $x_p(t) = at + bt^2$ and $x_O(t) = ft - t^2$. At what time do the cars have the same velocity?

- a+f

40. In the given figure, $a = 15 \text{ m/s}^2$ represents the total acceleration of a particle moving in the clockwise direction in a circle of radius R = 2.5 m at a given instant of time. The speed of the particle is ML2T + 12T

- (1) 5·0 m/s
- (2) 5·7 m/s
- (3) 6·2 m/s
- (4) 4-5 m/s
- A rigid ball of mass m strikes a rigid wall at 60° and gets reflected without loss of speed as shown in the figure below. The value of impulse imparted by the wall on the ball レーわり will be

- with a velocity of 400 m s⁻¹ strikes a wooden block of mass 2 kg which is suspended by a light inextensible string of length 5 m. As a result, the centre of gravity of the block is found to rise a vertical distance of 10 cm. The speed of the bullet after it emerges out horizontally from the block will be
 - (1) 80 m s⁻¹ (2) 120 ms (3) 160 ms (4) 100 m s⁻¹
- 43. Two dentical balls A and B having velocities of 0.5 m/s and -0.3 m/s respectively collide elastically in one dimension. The velocities of B and A after the collision respectively will be

Band A and -0.3 m/s A DA (2) -0-3 m/s and 0-5 m/s(2) (3) 0·3 m/s and 0·5 m/s (4) -0·5 m/s and 0·3 m/s(?) (3) 0-3 m/s and 0-5 m/s

 A particle moves from a point (-2i+5) to $(4\hat{j}+3\hat{k})$ when a force of $(4\hat{i}+3\hat{j})$ N is applied. How much work has been done by the force? 12 -11 +3 2 -21 -5) 11 11 J = 21 . (A = V)

- (4) 8 V = -27-17-12-11+26-14
- 45. Two rotating bodies A and B of masses m and 2m with moments of inertia I_A and $I_B(I_B > I_A)$ have equal kinetic energy of rotation. If L_A and L_B be their angular momenta respectively, then

(1)
$$L_A = 2L_B$$

 $(2)^2 L_B > L_A \chi$

- $(4) L_A = \frac{L_B}{2}$

JMD/E4 L= Jmk =
$$\frac{12}{2}$$
 $\frac{1}{12}$ $\frac{1}$

58. Which one of the following generates neg	
continuous leading to variation?	conducted the experiments to prove
(1) Parthenogenesis	semiconservative mode of chromosom
(2) Sexual reproduction	replication on
(3) Nucellar polyembryony	JY Vicia faba
(4) Vegetative reproduction	(2) Drosophila melanogaster
59. Match Column 7	(3) E. coli .
59. Match Column—I with Column—II and select the correct option using the codes given below:	(4) Vinca rosea
given below :	64) The mechanism share
Column—I	The same successful that contend a
a. Pistile formal	from one linkage group to another is called (1) duplication -
together (i) Gametogenesis	
b. Formation of fiif Pistillate	12) translocation -
gametes	(3) crossing-over -
c. Hyphae of higher (Ni) Syncarpous	(4) inversion ~
Ascomycetes -	65. The equivalent of a structural gene is
d. Unisexual female (iv) Dikaryotic	cistron a structural gene is
flower	(2) operon
Codes :	484
a b c d	
(1) (6) (b) (c) (d)	(4) muton
(2) (1) (2) (11)	66 A true breeding plant is
190 Gill (1) (III)	(1) produced due to cross-pollination among
(4) Ged (11)	unrelated plants
(a) (b)	(2) near homozygous and produces of
60. In majority of angiosperms	of its own kind
(1) there are numerous antipodal cells	(3) always homozygous (recessive) in its
reduction division occurs in a	Borietic constitution
megaspore mother cells	(4) one that is able to breed on its own
(3) a small central cell is present in the	67. Which of the fall-
70 000	67. Which of the following rRNAs acts as structural RNA as well as ribozyme in
(4) egg has a filiform apparatus	(bacteria?)
61. Pollination in water hyacinth and water lily is	(1) 18 S TRNA 27 NO 8/1 - 12) 180
or docut by the agency of	12/ 23 S rRNA
(2) hind	(3) 5.8 S rRNA
(2) birds	(4) 5 S rRNA
(3) bats	4
(4) water	Stirred-tank bioreactors have been designed
62. The ovule of an angiosperm is technically	
	addition of preservatives to the product
(1) megasporophylt«	availability of oxygen throughout the
(2) megaspore mother cell	
(3) megaspore	(3) ensuring anaerobic conditions in the
megasporangium	canale vesseres
IMP/PA MTL3T-2 LT-1	(4) purification of product ♥
JMD/E4 M-1137-2 LT-1 (M1274) 3/2 8	1
() 72	-5 1 2
M717-3 n. 3, -3 -3	MZI TZ M
M-LT-2	11 L 1 - M

79. Which one of the following is wrong for fungi? (All fungi possess a purely cellulosic cell wall. (2) They are heterotrophic. unicellular and both (3) They are multicellular. (4) They are eukaryotic. 80. Methanogens belong to A) Archaebacteria (2) Dinoflagellates (3) Slime moulds (4) Eubacteria Select the wrong statement. (1) Diatomaceous earth' is, formed by the cell walls of diatoms. (2) Diatoms are chief producers in the oceans. (3) Diatoms are microscopic and float passively in water. The walls of diatoms destructible. The label of a herbarium sheet does not carry information on (1) name of collector / (2) local names V (2) height of the plant (4) date of collection Conifers are adapted to tolerate extreme environmental conditions because of (1) superficial stomata (2) thick cuticle (3) presence of vessels (4) broad hardy leavers 84. Which one of the following statements is 6 9 BK wrong? (A) Algin is obtained from red algae, and carrageenan from brown algae (2) Agar-agar is obtained from Gelidium and Gracilaria. (3) Laminaria and Sargassum are used as

(4) Algae increase the level of dissolved

oxygen in the imprediate environment.

- 85. The term 'polyadelphous' is related to

 (2) corolla

 (3) calyx
- 86 How many plants among Indigofera, Sesbania, Salvia, Allium, Alba, mustard, groundnut, radish, gram and turnip have stamens with different lengths in their flowers?
 - (1) Four

(4) gynoecium

- (2) Five
- (3) Six
- (4) Three
- 87. Radial symmetry is found in the flowers of
 - (1) Trifolium
 - (2) Pisum
 - (3) Cassia/
 - Brassica v
- 88. Free-central placentation is found in
 - (1) Argemone
 - (2) Brassica
 - (3) Citrus
 - (A) Dianthus
- 89. Cortex is the region found between
 - (1) pericycle and endodermis
 - (2) endodermis and piths
 - (3) endodermis and vascular bundle
 - 99) epidermis and stele ~
 - The balloon-shaped structures called tyloses
 - (1) characterize the sapwood
 - are extensions of xylem parenchyma cells into vessels
 - (3) are linked to the ascent of sap through xylem vessels
 - (4) originate in the lumen of vessels

food.

Wa.	
103. The part of nephron involved in active	109. Several hormones like hCG, hPL, estrogen,
reabsorption of sodium is	progesterone are produced by
(1) proximal convoluted tubule	y placenta XX XX
(2) Bowman's capsule	(2) fallopian tube
(3) descending limb of Henle's loop	(3) pituitary
distal convoluted tubule	
104. Which of the following is hormone-	(4) ovary X TXXC XY,
releasing IUD?	110. If a colour-blind man marries a woman who
(1) Multiload 375	is homozygous for normal colour vision, the
(2) Lippes loop	probability of their son being colour-blind is
(3) Cu7	(1) 0.5 (2)/0.75
(a) LNG-20	m 1 16 0
105. Which of the following is incorrect regarding vasectomy?	(3) 1 (4) 0
1) No sperm occurs in epididymis	111. Genetic drift operates in
(2) Vasa deferentia is cut and tied	(1) large isolated population
(3) Irreversible sterility	(2) non-reproductive population
(4) No sperm occurs in seminal fluid√	(3) slow reproductive population
106. Embryo with more than 16 blastomeres	
formed due to in vitro fertilization is	(A) small isolated population
transferred into (1) fallopian tube	112. In Hardy-Weinberg equation, the frequency
(2) fimbriae	of heterozygous individual is represented by
(3) cervix	UY 2pg (2) pg p2 +2pq+q2=1
~ A) uterus	
(107). Which of the following depicts the correct	(3) q ² (4) p ²
pathway of transport of sperms?	The second secon
 Rete testis → Epididymis → Efferent 	113. The chronological order of human evolution from early to the recent is
ductules → Vas deferens	
(2) Rete testis → Vas deferens → Efferent ductules → Epididymis	Ramapithecus → Australopithecus → Homo habilis → Homo erectus
(3) Efferent ductules → Rete testis → Vas	
deferens → Epididymis	(2) Ramapithecus → Homo Răbilis → Australopithecus → Homo erectus
Rete testis -> Efferent ductules ->	
Epididymis → Vas deferens	(3) Australopithecus, - Homo nabus -
108. Match Column-I with Column-II and	
select the correct option using the codes	(4) Australopithecus → Ramapithecus → Homo habilis → Homo erectus
given below :	Homo habitis - Homo erectus
Column—II Column—II	(14.) Which of the following is the correct
a. Mons pubis (ii) Embryo formation	sequence of events in the origin of life?
b. Antrum (ii) Sperm	I. Formation of protobion(s)
c. Trophectoderm (iii) Female external	II. Synthesis of organic monomers(1)
d. Nebenkern (iv) Graafian follicle	III. Synthesis of organic polymers(2)
	IV. Formation of DNA based genetic systems
Codes :	(4)
a b c d (iii) (iv) (i) (ii)	(1) 1, 111, 11, 1V
	H, III, 1, IV
(2) (iii) (i) (iv) (ii) (3) (i) (iv) (iii) (ii)	II, III, IV, I
(4) (iii) (iv) (ii) (i)	(4) I, II, III, IV
(1) first (1) (2)	T. 381 800 0

 A molecule that can act as a genetic material must fulfill the traits given below, except 	select the correct option using the codes
(1) it should be able to generate its replica	given below :
(2) it should be unstable structurally and chemically	B. Citric acid (i) Trichoderma
	b. Cyclosporin A fin Clostridium
(3) it should provide the scope for slow changes that are required for evolution	c. Stating (iii) Aspergillus d. Butyric acid (iv) Monascus
(4) it should be able to express itself in the form of 'Mendelian characters'	Codes:
116. DNA-dependent RNA polymerase catalyzes	(i) (ii) (i) (iv) (ii)
transcription on one strand of the DNA which is called the	(2) (i) (iv) (ii) (iii)
(1) coding strand	(3) (iii) (iv) (i (iii) (4) (iii) (i) (ii) (iv)
	121. Biochemical Oxygen Demand (BOD) may not
(2) alpha strand	be a good index for pollution for water bodies
(3) antistrand	receiving effluents from T = 37
(4) template strand	(1) dairy industry 2[-10 -2
117. Interspecific hybridization is the mating of	(3) sugar industry
two different related species	(4) domestic sewage / 2
(2) superior males and females of different breeds	122. The principle of competitive exclusion was
(3) more closely related individuals within	(2) MacArthur $(21-10)$ $= 37$
same breed for 4-6 generations. (4) animals within same breed without	(3) Vernulst and Pearl $T_0 = 3(27 - T_0)$
having common ancestors	Which of the following National Parks is
Which of the following is correct regarding AIDS causative agent HIV?	home to the famous musk deer or hangul? (1) Bandhavgarh National Park, Madhya
(X) HIV is enveloped virus that contains two	Pradesh To+370=67
RNA and two molecules of reverse	(2) Eaglenest Wildlife Sanctuary, Arunachal
transcriptase	(8) Dachigam National Park, Jammu & 3
(2) HIV is unenveloped retrovirus.	Kashmir (4) Keibul Lamjao National Park, Manipur
(3) HIV does not escape but attacks the acquired immune response.	124. A lake which is rich in organic asto may
	(1) drying of the lake due to algal bloom
(4) HIV is enveloped virus containing one molecule of single-stranded RNA and one molecule of reverse transcriptase?	(2) increased population of fish due to lots of
^	mortality of fish due to lack of oxygen
Among the following edible fishes, which one is a marine fish having rich source of	(4) increased population of aquatic organisms due to minerals
omega-3 fatty acids?	125 The highest DDT concentration in aquatic
(1) Mangur 9 = 9	food chain shall occur in
(2) Mrigala	(1) seaguil- (2), crabo (2), crabo
(3) Mackerel 2/ 5/1 3/1	18) cel
(4) Mystus	(4) phytoplankton TC = - & Re2M
	2/0-11
MD/E4 31=9 (1-24)=(R18	P.T.O.
	TE make 2
TH = - MR/2 (R-24) go	TE = - mgRe 2 > (Re + W)
2(Re+h) (P)00	ZILETHY

126. Which of the following sets of diseases is 132) Oxidative phosphorylation is (1) oxidation of phosphate group-in ATP caused by bacteria? (2) addition of phosphate group to ATP (1) Typhoid and smallpox (3) formation of ATP by energy released from (2) Tetanus and mumps electrons removed during (substrate (3) Herpes and influenza (A) Cholera and tetanus oxidation (4) formation of ATP by transfer of 127. Match Column-I with Column-II for phosphate group from a substrate housefly classification and select the correct to ADP option using the codes given below : Which of the following is the least likely to be 133/ Column-II Column-I involved in stabilizing the three-dimensional Diptera Family. folding of most proteins? Arthropoda . Ordez (1) Electrostatic interaction Class Muscidae (2) Hydrophobic interaction Insecta d. Phylum-(3) Ester bonds Codes : (4) Hydrogen bonds / 134. Which of the following describes the giver (1) (iii) (ii) (iv) (i) graph correctly? (i) (iii) (2)(iv) (3) (iv) (ii) (i) (iii) (i) (iv) (iii) 128. Choose the correct statement. B (X) All cyclostomes do not possess jaws and paired fins (2) (All) reptiles have a three-chambered heart. (3) All Pisces have gills covered by an Substrate operculum. (4) All mammals are viviparous. 129. Study the four statements (A-D) given below and select the two correct ones out of them : Product Definition of biological species was given by Ernst Mayr.√ Reaction -> Photoperiod does not affect reproduction Exothermic reaction with energy A it in plants. presence of enzyme and B in absence o C. Binomial nomenclature system was enzymo given by R. H. Whittaker Endothermic reaction with energy A is In unicellular organisms, reproduction is absence of enzyme and B in presence o synonymous with growth. enzyme O The two correct statements are (3) Exothermic reaction with energy A is (1) C and D (2) A and D absence of enzyme and B in presence c (4) B and C (3) A and B enzyme@ In male cockroaches, sperms are tored in (4) Endothermic reaction with energy A is which part of the reproductive system? presence, of enzyme and B in absence c(1) Mushroom glands enzyme (2) Testes When cell has stalled DNA replication fork (3) Vas deferens which checkpoint should be predominantly (A) Seminal vesicles activated? 131. Smooth muscles are G₂/M (1) voluntary, multinucleate, cylindrical (2) M (2) involuntary, cylindrical, striated (3) Both G2/M and M (3) voluntary, spindle-shaped, uninucleate 4) involuntary, fusiform, non-striated JMD/E4

Due ph-TDS	Aste commaion offer -
0	A5 80 C

Da = PM	-103 Aste commande of the
136. Which one of the following is incorrect for ideal solution?	142. Zinc can be coated on iron to produce galvanized iron but the reverse is not possible. It is because
(1) $\Delta U_{\text{mix}} = 0$	(1) zinc has lower melting point than iron
(2) ΔP = P _{obs} - P _{calculated} by Raoult's law = 0 k	(2) zinc has lower negative electrode
$\Delta G_{\text{mix}} = 0 = -\sqrt{e}$	potential than iron
(4) $\Delta H_{\text{mix}} = 0$	(3) zinc has higher negative electrode
137 The solubility of AgCl (s) with solubility	potential than iron
product 1-6×10 ⁻¹⁰ in 0-1 M NaCl solution	(4) zinc is lighter than iron
would be Part Agt +CI -	143. The suspension of slaked lime in water is
ksh = 0 t	(1) quicklimecal (aloh)2
(2) $1.6 \times 10^{-11} M$	
(3) zero	(3) milk of lime
3 = 125	(3) aqueous solution of slaked lime-
(4) 1.26×10-0 M = W.6×10-0	(4) limewater as Com
Suppose the elements X and Y combine to form two compounds XY ₂ and X ₃ Y ₂ . When 0.1 mole of XY ₂ weighs 10 g and 0.05 mole of X ₃ Y ₂ weighs 9 g, the atomic weights of X and Y are	(1) and and and an
(1) 60, 40 (2) 20, 30	$(2) sp, sp^2 and sp^3 (2) = \frac{1}{2} = \frac{1}{2}$
(3) 30, 20 (4) 40, 30	(3) sp^2 , sp and sp^3
139. The number of electrons delivered at the cathode during electrolysis by a current of 1 ampere in 60 seconds is (charge on electron = 1.60 × 10 ⁻¹⁹ C)	(4) sp , sp^3 and sp^2 $NO_{\chi} \neq \underbrace{S+1}_2 = \underbrace{6}_3 = \underbrace{3}_3$ Which of the following fluoro-compounds is \underbrace{S}_{p_2} most likely to behave as a Lewis base?
(1) 6×10 ²⁰ (2) 3·75×10 ²⁰	(1) PF ₃ (2) CF ₄ (3)
	(3) SiF ₄ (4) BF ₃
(3) 7.48×10^{23} (4) 6×10^{23}	(146) Which of the following pairs of ions is
140. Boric acid is an acid because its molecule	isoelectronic and isostructural?
(1) gives up a proton	(1) Clo3, Co2 (2) SO3 103 a PM
(2) accepts OH from water releasing proton	(4) CIO3, SO3 (4) CO3-, NO3 RT
(3) combines with proton from water	= PM
molecule	147. In context with beryllium, which one of the NAAA
(4) contains replaceable H ⁺ ion	following statements is incorrect?
141. AlF3 is soluble in HF only in presence of KF.	(1) It forms Be ₂ C.
It is due to the formation of	(2) Its salts rarely hydrolyze.
(1) K3[AIF6] (2) AIH3 M = MA	(3) Its hydride is electron-deficient and polymeric.
(3) K[AIF ₃ H] (4) K ₃ [AIF ₃ H ₃]	(4) It is rendered passive by nitric acid.
	2.5828001
O MC	5 P.T.O.
A 9 An 7 = 0 = = 1x60	= 10001. = 37. Mo 19
LICKION	10844 = 1200 P

148. Hot concentrated sulphuric acid is a 154. Jahn-Teller effect is not observed in high moderately strong oxidizing agent. Which of the following reactions does not show oxidizing behaviour?

(1) $3S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$

(2) $C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O_4$ (2) $CaF_2 + H_2SO_4 \rightarrow CaSO_4^2 + 2H_7^2$

- (4) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$
- 149. Which of the following pairs of d-orbitals will have electron density along the axes?

(1) dxz, dyz

- J2) d 2, d 2 _ 12
- (3) dxy; dx2-u2
- (4) d_2, dx
- 150. The correct geometry and hybridization for XeF4 are
 - trigonal bipyramidal, sp³d

- (2) planar triangle, sp³d³
- (3) square planar, sp3d2

- (4) octahedral, sp³d²
- -6 151. Among the following, which one is a wrong ESP3 1 statement?
 - pπ-dπ bonds are present in SO₂.
 - (2) SeF4 and CH4 have same shape.
 - (3) I₃ has bent geometry.
 - (4) PH5 and BiCl5 do not exist.
 - 152. The correct increasing order of trans-effect of the following species is

- CN⁻ > C₆H₅ > Br⁻ > NH₃
- (2) Br > CN > NH₃ > C₆H₅
- (3) CN > Br > C6H5 > NH3
- (4) NH₃ > CN⁻ > Br⁻ > C₆H₅⁻
- 153. Which one of the following statements related to lanthanons is incorrect?
 - (1) The basicity decreases as the ionic radius decreases from Pr to Lu.
 - (2) All the lanthanons are much more reactive than aluminium.
 - (3) Ce (+4) solutions are widely used as oxidizing agent in volumetric analysis.
 - (4) Europium shows +2 oxidation state.

- spin complexes of
 - (1) d8
- (3) d9
- 155. Which of the following can be used as the halide component for Friedel-Crafts reaction?

(1) Bromobenzene

(2) Chloroethene

(3) Isopropyl chloride

(4) Chlorobenzene

56. In which of the following molecules, all atoms are coplanar?

157. Which one of the following structures represents nylon 6,6 polymer?

can-kholy iny

158. In pyrrole

the electron density is maximum on

- W 3 and 4
- (2) 2 and 4
- (3) 2 and 5
- (4) 2 and 3
- Which of the following compounds shall not produce propene by reaction with HBr followed by elimination or direct only elimination reaction?
 - (1) H3C-C CH2OH CH2-CH-CH-CH

- (3) H₃C—C—CH₂B₁
- (4) $H_2C \xrightarrow{CH_2} + H_{RY} \longrightarrow CH_2 \xrightarrow{CH_2} CH$
- 160. Which one of the following nitro-compounds does not react with nitrous acid?

- (2) H₃C NO₂
- (3) H₃C CH₃
- (4) H₃C C NO

- 161. The central dogma of molecular genetics states that the genetic information flows from
 - (1) DNA → Carbohydrates → Proteins

- (3) DNA → RNA → Carbohydrates
- (4) Amino acids → Proteins → DNA
- 162. The correct corresponding order of names of four aldoses with configuration given below

respectively, is

- D-threose, D-erythrose, L-threose, L-erythrose
- L-erythrose, L-threose, D-erythrose, D-threose
- D-erythrose, D-threose, L-erythrose, L-threose
- L-erythrose, L-threose, L-erythrose,
 D-threose
- 163. In the given reaction

the product P is

- 164. A given nitrogen-containing aromatic compound A reacts with Sn/HCl, followed by HNO2 to give an unstable compound B. B, on treatment with phenol, forms a beautiful coloured compound C with the molecular formula C12H10N2O. The structure of compound A is
 - CONH₂

165. Consider the reaction

CH₃CH₂CH₂Br + NaCN → CH₃CH₂CH₂CN + NaBr

This reaction will be the fastest in

- (1) methanol $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{1}}$
- (2) N, N'-dimethylformamide (DMF)
- mon = (vn+vie)2 (3) water
- = n+1+2Sn $Inin \neq M-1)^2$ (4) ethanol = N+1-2/h
- 166. The correct structure of the product A formed in the reaction

167. Which among the given molecules can exhibit tautomerism?

- (1) Both I and III
- (2) Both I and II
- (3) Both II and III
- (4) III only
- 168. The correct order of strengths of the carboxylic acids

is

- (1) 11 > 111 > 1
- (2) III > II > I
- (3) II > I > III
- (4) I > II > III

