गणित
 प्रश्न-पत्र-I

 MATHEMATICS

 MATHEMATICS}

Paper-I
निधीरित समय : तीन घंटे
Time Allowed: Three Hours

प्रश्न-पत्र के लिए विशिष्ट अनुदेश

कृपया प्रश्नों के उत्तर देने से पूर्व निम्नलिखित प्रत्येक अनुदेश को धानपूर्वक पढ़ें :
इसमें आठ (8) प्रश्न हैं जो दो खण्डों में विभाजित हैं तथा हिन्दी और अंगेजी दोनों में छपे हैं। परीक्षार्थी को कुल पाँच प्रश्नों के उत्तर देने हैं।
प्रश्न संख्या 1 और 5 अनिवार्य हैं तथा बाकी में से प्रत्येक खण्ड से कम-से-कम एक प्रश्न चुनकर किन्हीं तीन प्रश्नों के उत्तर दीजिए।
प्रत्येक प्रश्न/भाग के अंक उसके सामने दिए गए हैं।
प्रश्नों के उत्तर उसी माध्यम में लिखे जाने चाहिए जिसका उल्लेख आपके प्रवेश-पत्र में किया गया है, और इस माध्यम का स्पष्ट उल्लेख प्रश्न-सह-उत्तर (क्यू.सी.ए.) पुस्तिका के मुख-पृष्ठ पर अंकित निर्दिण्ट स्थान पर किया जाना चाहिए। उल्लिखित माध्यम के अतिरिक्त अन्य किसी माध्यम में लिखे गए उत्तर पर कोई अंक नहीं मिलेंगे। यदि आवश्यक हो, तो उपयुक्त ऑकड़ों का चयन कीजिए, तथा उनको निर्दिष्ट कीजिए। जब तक उल्लिखित न हो, संकेत तथा शब्दावली प्रचलित मानक अर्थो में प्रयुक्त है। प्रशनों के उतरों की गणना क्रमानुसार की जाएगी। यदि काटा नहीं हो, तो प्रश्न के उत्तर की गणना की जाएगी चाहे वह उत्तर अंशत: दिया गया हो। प्रश्न-सह-उत्तर पुस्तिका में खाली छोड़ा हुआ पृष्ठ या उसके अंश को स्पष्ट रूप से काटा जाना चाहिए।

OUESTION PAPER SPECIFIC INSTRUCTIONS

Please read each of the following instructions carefully before attempting questions :
There are EIGHT questions divided in Two Sections and printed both in HINDI and in ENGLISH.
Candidate has to attempt FIVE questions in all.
Question Nos. 1 and 5 are compulsory and out of the remaining, THREE are to be attempted choosing at least ONE from each Section.
The number of marks carried by a question/part is indicated against it.
Answers must be written in the medium authorized in the Admission Certificate which must be stated clearly on the cover of this Question-cum-Answer (QCA) Booklet in the space provided. No marks will be given for answers written in a medium other than the authorized one.
Assume suitable data, if considered necessary, and indicate the same clearly.
Unless and otherwise indicated, symbols and notations carry their usual standard meaning.
Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page or portion of the page left blank in the Question-cum-Answer Booklet must be clearly struck off.

SECTION-A

Q. 1(a) दिए गए सदिश $\mathrm{V}_{1}=(1,1,2,4), \mathrm{V}_{2}=(2,-1,-5,2), \mathrm{V}_{3}=(1,-1,-4,0)$ तथा $\mathrm{V}_{4}=(2,1,1,6)$ रैखिकत : स्वतंत्र हैं। क्या यह सत्य है ? अपने उत्तर के पक्ष में तर्क दीजिये। The vectors $\mathrm{V}_{1}=(1,1,2,4), \mathrm{V}_{2}=(2,-1,-5,2), \mathrm{V}_{3}=(1,-1,-4,0)$ and $\mathrm{V}_{4}=(2,1,1,6)$ are linearly independent. Is it true ? Justify your answer.
Q. 1(b) निम्नलिखित आव्यूह को पंक्ति सोपानक रूपः में समानीत कीजिये और तत्पश्चात् इसकी कोटि निकालिए :

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 5 \\
1 & 5 & 5 & 7 \\
8 & 1 & 14 & 17
\end{array}\right]
$$

Reduce the following matrix to row echelon form and hence find its rank :

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 5 \\
1 & 5 & 5 & 7 \\
8 & 1 & 14 & 17
\end{array}\right]
$$

Q. 1(c) निम्नलिखित सीमा का मान निकालिए :

$$
\operatorname{Lt}_{x \rightarrow a}\left(2-\frac{x}{a}\right)^{\tan \left(\frac{\pi x}{2 a}\right)}
$$

Evaluate the following limit :

$$
\operatorname{Lt}_{x \rightarrow a}\left(2-\frac{x}{a}\right)^{\tan \left(\frac{\pi x}{2 a}\right)}
$$

Q. 1(d) निम्नलिखित समाकल का मान निकालिए :

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt[3]{\sin x}}{\sqrt[3]{\sin x}+\sqrt[3]{\cos x}} d x
$$

Evaluate the following integral :

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt[3]{\sin x}}{\sqrt[3]{\sin x}+\sqrt[3]{\cos x}} d x
$$

Q. 1(e) ' a ' के किस घनात्मक मान के लिए, समतल $\mathrm{ax}-2 \mathrm{y}+\mathrm{z}+12=0$, गोलक $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$ को स्पर्श करता है। स्पर्श बिन्दु को भी ज्ञात कीजिये। For what positive value of a, the plane $a x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$ and hence find the point of contact.
Q. 2(a) यदि आव्यूह $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ तब आव्यूह A^{30} को ज्ञात कीजिये।

If matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ then find A^{30}.
Q. 2(b) एक शंक्वाकार टेंट एक दत्त क्षमता का है। यदि उस टेंट में न्यूनतम कैनवास लगाना हो, तो उसकी ऊँचाई का उसके आधार की त्रिज्या पर अनुपात मालूम कीजिये।
A conical tent is of given capacity. For the least amount of Canvas required, for it, find the ratio of its height to the radius of its base.
Q. 2(c) निम्नलिबित आव्यूह के आइगन मानों एवं आइगन सदिशों को ज्ञात कीजिए :

$$
\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right] .
$$

Find the eigen values and eigen vectors of the matrix :

$$
\left[\begin{array}{lll}
1 & 1 & 3 \tag{12}\\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right] .
$$

Q. 2 (d) यदि शंकु $5 \mathrm{yz}-8 \mathrm{zx}-3 \mathrm{xy}=0$ की तीन परस्पर लम्बवत् जनक रेखाओं में से एक जनक रेखा $6 \mathrm{x}=3 \mathrm{y}=2 \mathrm{z}$ हो, तब अन्य दो जनक रेखाओं के समीकरण मालूम कीजिये।
If $6 x=3 y=2 z$ represents one of the three mutually perpendicular generators of the cone $5 y z-8 z x-3 x y=0$ then obtain the equations of the other two generators.
Q. 3(a) यदि $\mathrm{V}=\mathrm{R}^{3}$ तथा $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ जहाँ सभी $\mathrm{a}_{\mathrm{i}}, \mathrm{A}(\mathrm{V})$ के सदस्य हैं। यदि

$$
T\left(a_{1}, \dot{a}_{2}, a_{3}\right)=\left(2 a_{1}+5 a_{2}+a_{3},-3 a_{1}+a_{2}-a_{3},-a_{1}+2 a_{2}+3 a_{3}\right)
$$

के द्वोरा परिभाषित हैं। तब आधार

$$
V_{1}^{\prime}=(1,0,1) \quad V_{2}=(-1,2,1) \quad V_{3}=(3,-1,1)
$$

के. सापेक्ष आव्यूह T ज्ञात कीजिये।

Let $V=\mathbb{R}^{3}$ and $T \in A(V)$, for all $a_{i} \in A(V)$, be defined by

$$
T\left(a_{1}, a_{2}, a_{3}\right)=\left(2 a_{1}+5 a_{2}+a_{3},-3 a_{1}+a_{2}-a_{3},-a_{1}+2 a_{2}+3 a_{3}\right)
$$

What is the matrix T relative to the basis

$$
\mathrm{V}_{1}=(1,0,1) \quad \mathrm{V}_{2}=(-1,2,1) \quad \mathrm{V}_{3}=(3,-1,1) ?
$$

Q. 3(b) गोलक $x^{2}+y^{2}+z^{2}=1$ पर स्थित बिन्दु निकालिए जो बिन्दु $(2,1,3)$ से अधिकतम दूरी पर है। Which point of the sphere $x^{2}+y^{2}+z^{2}=1$ is at the maximum distance from the point $(2,1,3)$?
Q. 3(c) (i) उस समतल का समीकरण निकालिए जो बिन्दुओं $(2,3,1)$ एवं $(4,-5,3)$ से गुजरता है व x -अक्ष के समान्तर है।

Obtain the equation of the plane passing through the points $(2,3,1)$ and $(4,-5,3)$ parallel to x -axis.
(ii) सत्यापित कीजिये कि रेखाएँ :

$$
\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta} \text { तथा } \frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}
$$

समतलीय हैं। यदि हाँ, तो उस समतल का समीकरण ज्ञात कीजिए, जिसमें उपरोक्त दोनों रेखाएँ स्थित हैं।
Verify if the lines :

$$
\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta} \text { and } \frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}
$$

are coplanar. If yes, then find the equation of the plane in which they lie.
7
Q. 3(d) निम्न समाकलन का मूल्यांकन करें :

$$
\iint_{R}(x-y)^{2} \cos ^{2}(x+y) d x d y
$$

जहाँ R एक समचतुर्भुज है, जिसके शीर्ष क्रमवार $(\pi, 0)(2 \pi, \pi)(\pi, 2 \pi)(0, \pi)$ हैं।
Evaluate the integral

$$
\iint_{R}(x-y)^{2} \cos ^{2}(x+y) d x d y
$$

where R is the rhombus with successive vertices as $(\pi, 0)(2 \pi, \pi)(\pi, 2 \pi)(0, \pi)$.
Q. 4(a) निम्नलिखित का मान निकालिए :

$$
\iint_{R} \sqrt{\left|y-x^{2}\right|} d x d y
$$

जहाँ $\mathrm{R}=[-1,1 ; 0,2]$.
Evaluate $\iint_{R} \sqrt{\left|y-x^{2}\right|} d x d y$
where $R=[-1,1 ; 0,2]$.
Q. 4(b) R^{4} की उस उपसमष्टि की विमा ज्ञात कीजिये जो समुच्चय

$$
\{(1,0,0,0),(0,1,0,0),(1,2,0,1),(0,0,0,1)\}
$$

द्वारा विस्तारित है। तत्पश्चात् उसका आधार निकालिए।
Find the dimension of the subspace of \mathbb{R}^{4}, spanned by the set

$$
\{(1,0,0,0),(0,1,0,0),(1,2,0,1),(0,0,0,1)\}
$$

Hence find its basis.
Q. 4(c) यदि परवलयज $x^{2}+y^{2}=2 z$ पर दो लम्बवत् स्पर्शीय समतल एक सीधी रेखा में, जो समतल $\mathrm{x}=0$ में, पर काटते हैं। उस वक्र को प्राप्त कीजिए जिस पर वह सीधी रेखा स्पर्श करती है। Two perpendicular tangent planes to the paraboloid $x^{2}+y^{2}=2 z$ intersect in a straight line in the plane $x=0$. Obtain the curve to which this straight line touches.
Q. 4(d) दिए गए फलन

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{2}-x \sqrt{y}}{x^{2}+y}, & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array}\right.
$$

के लिए सांतत्य एवं अवकलनीयता का परीक्षण कीजिये।
For the function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2}-x \sqrt{y}}{x^{2}+y}, & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array}\right.
$$

Examine the continuity and differentiability.

खण्ड-ब

SECTION-B

Q. 5(a) निम्नलिखित अवकल समीकरण को हल कीजिये :

$$
x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1
$$

Solve the differential equation :

$$
\begin{equation*}
x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1 \tag{10}
\end{equation*}
$$

Q. 5(b) निम्नलिखित अवकल समीकरण का हल निकालिये

$$
\left(2 x y^{4} e^{y}+2 x y^{3}+y\right) d x+\left(x^{2} y^{4} e^{y}-x^{2} y^{2}-3 x\right) d y=0
$$

Solve the differential equation :

$$
\begin{equation*}
\left(2 x y^{4} e^{y}+2 x y^{3}+y\right) d x+\left(x^{2} y^{4} e^{y}-x^{2} y^{2}-3 x\right) d y=0 \tag{10}
\end{equation*}
$$

Q. 5(c) एक पिंड, जो सरल आवर्त गति (एस.एच.एम.) कर रहा है, उसका आयाम ' a ' व आवर्तकाल ' T ' है। जब माध्य स्थिति से उसकी दूरी $\frac{2}{3} \mathrm{a}$ हो, तब उसका वेग तिगुना कर दिया जाय, परंतु आवर्तकाल को न बदला जाए, तो उसका नया आयाम मालूम कीजिये।
A body moving under SHM has an amplitude ' a ' and time period ' T '. If the velocity is trebled, when the distance from mean position is ' $\frac{2}{3} a$ ', the period being unaltered, find the new amplitude.
Q. 5 (d) 8 kg भार की एक छड़, ऊर्ध्वाधर तल में एक सिरे पर लगे कब्जे पर चलायमान है। उसके दूसरे सिरे पर लम्बाई l की एक रस्सी के द्वारा कब्जे से b ऊँचाई पर, ऊर्ध्व दिशा में छड़ के आधे के बराबर भार बाँधा गया है। रस्सी में तनाव ज्ञात कीजिये।

A rod of 8 kg is movable in a vertical plane about a hinge at one end, another end is fastened a weight equal to half of the rod, this end is fastened by a string of length l to a point at a height b above the hinge vertically. Obtain the tension in the string.
Q. $5(\mathrm{e})$ निम्न दो सतहों $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-9=0$ तथा $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}-3$ के बीच बिन्दु $(2,-1,2)$ पर कोण ज्ञात कीजिये।

Find the angle between the surfaces $x^{2}+y^{2}+z^{2}-9=0$ and $z=x^{2}+y^{2}-3$ at ($2,-1,2$).
Q. 6(a) यदि $(x+y)^{a}$, निम्न अवकल समीकरण $\left(4 x^{2}+2 x y+6 y\right) d x+\left(2 x^{2}+9 y+3 x\right) d y=0$ का समाकलन गुणांक है तो ' a ' का मान मालूम कीजिये। तत्पश्चात् अवकल समीकरण का हल निकालिए।
Find the constant a so that $(x+y)^{a}$ is the Integrating factor of $\left(4 x^{2}+2 x y+6 y\right) d x+\left(2 x^{2}+9 y+3 x\right) d y=0$ and hence solve the differential equation.
Q. 6(b) दो बराबर भार की सीढ़ियां, जिसमें प्रत्येक का भार 4 kg है, बिंदु A पर एक दूसरे के साथ झुकाकर रखी गई हैं। उनके दूसरे सिरे एक खुरदुरे फर्श पर हैं, जिसका घर्षण गुणांक μ है। दोनों सीढ़ी के बीच 60° का कोण है। कितना भार उस शीर्ष बिंदु A पर रखा जाए कि वह सीढ़ियों के फिसल जाने का कारण बन जाय।

Two equal ladders of weight 4 kg each are placed so as to lean at A against each other with their ends resting on a rough floor, given the coefficient of friction is μ. The ladders at A make an angle 60° with each other. Find what weight on the top would cause them to slip.
Q. 6 (c) यदि दो पृष्ठ $\lambda x^{2}-\mu y z=(\lambda+2) x$ तथा $4 x^{2} y+z^{3}=4$ बिन्दु $(1,-1,2)$ पर लम्बवत् काटती हों, तो λ व μ का मान निकालिए।
Find the value of λ and μ so that the surfaces $\lambda x^{2}-\mu y z=(\lambda+2) x$ and $4 x^{2} y+z^{3}=4$ may intersect orthogonally at ($1,-1,2$).
Q. 6(d) एक पिंड, बल के केंद्र से अन्तर्गत, जो दूरी के विलोमानुपाती आकर्षित करता है; ' a ' दूरी से विरामअवस्था से चलना शुरू करता है। उसका केन्द्र पर आगमन का समय मालूम कीजिये।
A mass starts from rest at a distance ' a ' from the centre of force which attracts inversely as the distance. Find the time of arriving at the centre.
Q. 7(a) (i) निम्नलिखित का लाप्लास विलोम रूपांतर प्राप्त कीजिये :

$$
\left\{\ln \left(1+\frac{1}{s^{2}}\right)+\frac{s}{s^{2}+25} e^{-\pi s}\right\}
$$

(ii) लाप्लास रूपांतर का प्रयोग करके, निम्नलिखित

$$
y^{\prime \prime}+y=t, y(0)=1, y^{\prime}(0)=-2
$$

का हल निकालिए।
(i) Obtain Laplace Inverse transform of

$$
\left\{\ln \left(1+\frac{1}{s^{2}}\right)+\frac{s}{s^{2}+25} e^{-\pi s}\right\}
$$

(ii) Using Laplace transform, solve

$$
y^{\prime \prime}+y=t, y(0)=1, y^{\prime}(0)=-2
$$

Q. 7 (b) एक कण, एक ऐसी पहाड़ी के आधार पर एक बिन्दु से, प्रक्षेपित किया जाता है, जिसकी प्रवणता एक लम्ब वृत्ताकार शंकु की है जिसकी अक्षीय रेखा ऊर्ध्वाधर है। प्रक्षेप शंकु के शीर्षीबन्दु छूते हुए व पहाड़ी के आधार पर किसी दूसरे बिन्दु से जा टकराता है। यदि शंकु का अर्धशीर्ष कोण 30° व ऊँचाई h हो, तो प्रक्षेप का प्रारंभिक वेग u व उसका प्रक्षेप कोण निर्धारण कीजिये।
A particle is projected from the base of a hill whose slope is that of a right circular cone, whose axis is vertical. The projectile grazes the vertex and strikes the hill again at a point on the base. If the semivertical angle of the cone is $30^{\circ}, \mathrm{h}$ is height, determine the initial velocity u of the projection and its angle of projection.
Q. 7(c) एक सदिश क्षेत्र

$$
\overrightarrow{\mathrm{F}}=\left(\mathrm{x}^{2}+x y^{2}\right) \hat{\mathrm{i}}+\left(\mathrm{y}^{2}+\mathrm{x}^{2} y\right) \hat{\mathrm{j}}
$$

के दिया गया है। सत्यापित कीजिए कि यह क्षेत्र \vec{F} अघूर्णी है या नहीं। अतः अदिश विभव ज्ञात कीजिये। A vector field is given by

$$
\overrightarrow{\mathrm{F}}=\left(\mathrm{x}^{2}+x y^{2}\right) \hat{\mathrm{i}}+\left(y^{2}+x^{2} y\right) \hat{\mathrm{j}}
$$

Verify that the field $\overrightarrow{\mathrm{F}}$ is irrotational or not. Find the scalar potential.
Q. 7(d) अवकल समीकरण

$$
x=p y-p^{2}
$$

का हल निकालिए, जहाँ $\mathrm{p}=\frac{\mathrm{dy}}{\mathrm{dx}}$.
Solve the differential equation

$$
x=p y-p^{2} \text { where } p=\frac{d y}{d x} .
$$

Q. 8(a) उस अंतहीन शृंखला की लम्बाई ज्ञात कीजिये, जो एक ' a ' त्रिज्य वाली वृत्तीय घिरनी पर इस तरह से टंगी है, कि वह उस घिरनी के दो-तिहाई परिघि के स्पर्श में रहे।
Find the length of an endess chain which will hang over a circular pulley of radius ' a ' so as to be in contact with the two-thirds of the circumference of the pulley.
Q. 8(b) एक कण, एक बल के अधीन, एक नियत केन्द्र की ओर जो दूरी के समानुपाती है, पर चलता है। यदि. कण के मार्ग के दो एपसाइडल दूरियाँ a, b हैं $(a>b)$, तब मार्ग का समीकरण ज्ञात करो। A particle moves in a plane under a force, towards a fixed centre, proportional to the distance. If the path of the particle has two apsidal distances $\mathrm{a}, \mathrm{b}(\mathrm{a}>\mathrm{b})$, then find the equation of the path.
Q. 8(c) निम्नलिखित का मान निकालिए

$$
\int_{C} e^{-x}(\sin y d x+\cos y d y)
$$

जहाँ C एक आयत है, जिसके $(0,0),(\pi, 0),\left(\pi, \frac{\pi}{2}\right),\left(0, \frac{\pi}{2}\right)$ शीर्ष हैं।
Evaluate $\int_{c} e^{-x}(\sin y d x+\cos y d y)$, where C is the rectangle with vertices $(0,0),(\pi, 0)$, $\left(\pi, \frac{\pi}{2}\right),\left(0, \frac{\pi}{2}\right)$.
Q. 8 (d) निम्न अवकल समीकरण को हल करें :

$$
x^{4} \frac{d^{4} y}{d x^{4}}+6 x^{3} \frac{d^{3} y}{d x^{3}}+4 x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{2}+2 \cos \left(\log _{e} x\right)
$$

Solve :

$$
\begin{equation*}
x^{4} \frac{d^{4} y}{d x^{4}}+6 x^{3} \frac{d^{3} y}{d x^{3}}+4 x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{2}+2 \cos \left(\log _{c} x\right) \tag{13}
\end{equation*}
$$

