11/2019

Question Booklet
Alpha Code

Question Booklet Serial Number

Total No. of Questions: 100	Time: 75 Minutes
-----------------------------	------------------

Maximum: 100 Marks

INSTRUCTIONS TO CANDIDATES

- 1. The question paper will be given in the form of a Question Booklet. There will be four versions of question booklets with question booklet alpha code viz. A, B, C & D.
- 2. The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the question booklet.
- 3. The Question Booklet Alpha Code allotted to you will be noted in your seating position in the Examination Hall
- 4. If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- 5. The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- 6. The question booklet will be sealed at the middle of the right margin. Candidate should not open the question booklet, until the indication is given to start answering.
- 7. Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. Blank sheets of paper is attached to the question booklet. These may be used for rough work.
- 9. Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- 10. Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball-Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

11/2019

Maximum: 100 Marks Time: 1 hour and 15 minutes 1. Which is the largest News Agency in the World? (A) **Associated Press** (B) Telam (C) Tanjug (D) Press Trust of India 2. The Cyclone affected India, Sri Lanka and Maldives in November 2017: (A) BOB06 (B) Vardah (C) Ockhi (D) Hudhud 3. In the Census of 2011 the Male literacy rate in India (A) 65.46 74.04 (B) (C) 81.02 (D) 82.14 4. The famous Hajjur Inscription was issued by the Ay king Karunandadakkan in the year (B) AD 1000 AD 999 (C) AD 974 (D) None of these The Prime Minister Narendra Modi launched the Programme on 2nd Oct., 2014 to make 5. clean India: (A) Nirmal Bharat Programme Swachh Bharat Abhiyan (B) Make in India (D) Saansad Adarsh Grama Yojana 6. The first Greek Tennis player to win an ATP World Tour Title of Stockholm Open (A) Ernest Gulbis (B) Rafael Nadal (C) Stefanos Tsitsipas (D) Rojer Federer 7. "Mandan Muthappa" is a character created by Thoppil Bhasi (B) Vaikkom Muhammed Bhasheer (A) Thakazhi Sivasankara Pillai (C) (D) MT Vasudevan Nair 8. The Cabinet Mission came to India to discuss transfer of power to India on (A) 24th March, 1946 22nd March, 1942 (B) 9th August, 1942 (D) 12th August, 1945 (C) 9. The winner of Dadasaheb Phalke Award 2018 Kasinathuni Viswanath Manoj Kumar (A) (B) Shashi Kapoor Vinod Khanna (C) (D) 10. Who was the founder of All Travancore Muslim Mahajan Sabha? (A) Vakkom Maulavi (B) P.K. Khadeeja (C) Mujeeb Rahman Kinalur (D) None of these A 3 11/2019

[P.T.O.]

11.	The book '	"Poikayil Yohannan" was written b	У	
	(A)	V.V. Shanthakumar	(B)	Komaran
	(C)	M.R. Renukumar	(D)	M.K. Sanu
12.	The winner Pusthakam	· ·	Awa	rd 2017 for his novel "Daivathinte
	(A)	Prabha Varma	(B)	K.P. Ramanunni
	(C)	K.R. Meera	(D)	R. Narayana Panicker
13.	Who was t	he first woman Secretary General c	of Rajy	ya Sabha ?
	(A)	Snehalatha Srivathava	(B)	Kiran Bedi
	(C)	Ramadevi	(D)	Kamala Beniwal
14.	Internation conflict	nal Day for preventing the exploit	tation	of Environment in War and Armed
	(A)	November 11	(B)	November 6
	(C)	November 5	(D)	November 1
15.	The Enviro	onment Protection Act was passed i	n the	year
	(A)	1988	(B)	1968
	(C)	1989	(D)	1986
16.	The place	where 27 th Fusion Energy Conferen	ice (Fl	EC 2018) held at
	(A)	Gujarat	(B)	Delhi
	(C)	Maharashtra	(D)	Kerala
17.	Who lead	the Revolt of 1857 at Lucknow?		
	(A)	Begam Hasrat Mahal	(B)	Kunwar Singh
	(C)	Rani Lakshmi Bai	(D)	Khan Bahadur Khan
18.	The incide	nt prompted Gandhi to call off the	Non-c	ooperation Movement :
	(A)	Wagon Tragedy	(B)	Jallianwalla Bagh
	(C)	Chauri Chaura Incident	(D)	Khilafat Movement
19.	The most i	mportant coastal port town of Kera	la dur	ing the Sangam Period:
	(A)	Nelkinda	(B)	Quilon
	(C)	Kozhikkode	(D)	Muziris
20.	The social	reformer who organised Kallumala	Agita	ntion in Kerala
	(A)	K. Kelappan	(B)	Ayyankali
	(C)	Mannath Padmanabhan	(D)	Vaikunda Swamikal

4

A

11/2019

21.	The emiss		l two β-particles ir	succession produces an	of
	(A)	Isotope	(B)	Isobar	
	(C)	Isotone	(D)	Isomer	
22.	The order	of the C ₂ v point group	is		
	(A)	3	(B)	4	
	(C)	1	(D)	2	
23.	Among Co	O, NO, HC l and CO $_2$, the contraction of the co	hat which will not	yield a microwave spectrum	is
	(A)	CO	(B)	NO	
	(C)	HC <i>l</i>	(D)	CO ₂	
24.	The numb	er of normal modes of	vibration of $\mathrm{C_6H_6}$ 1	nolecule is	
	(A)	30	(B)	36	
	(C)	31	(D)	35	
25.	The π don	or ligand in Ziese's salt	t is		
	(A)	Chlorine	(B)	Ethylene	
	(C)	Acetylene	(D)	Carbonyl	
26.	The numb	er of signals exhibited l	by the protons of T	MS in its NMR spectrum is	
	(A)	2	(B)	1	
	(C)	3	(D)	4	
27.	The hybrid	dization of Nitrogen ato	om in NH ₃		
	(A)	sp^3	(B)	sp^2d	
	(C)	sp^3d	(D)	sp	
Δ			5		11/2019

28.	Radioactiv	re disintegration follows	order	kinetics.
	(A)	First order	(B)	Second order
	(C)	Zero order	(D)	Third order
29.	The emiss called	ion of radiant energy after a time	e lag a	after its absorption by a substance is
	(A)	Fluorescence	(B)	Phosphorescence
	(C)	Vibrational relaxation	(D)	Inter system crossing
30.	The ionic of	character of LiCl, NaCl, KCl, RbC	and C	CsCl follows the order
	(A)	LiCl > NaCl > KCl > RbCl > CsCl	Cl	
	(B)	LiCl < NaCl < KCl < RbCl < CsC	Cl	
	(C)	LiCl = NaCl < KCl = RbCl < CsC	1	
	(D)	NaCl > LiCl > KCl > RbCl > CsC	Cl	
31.	Which am	ong the following is the optical pro	perty o	of colloid?
	(A)	Brownian movement	(B)	Electrophoresis
	(C)	Tyndal Effect	(D)	Electro osmosis
32.	How many	isoprene units are present in a mo	noterp	enois?
	(A)	3	(B)	4
	(C)	2	(D)	1
33.	The oxidat	cion number of Cr in Cr ₂ O ₇ ²⁻ is		
	(A)	+7	(B)	+6
	(C)	+5	(D)	+4
34.	The reager	nt used in Benzoin condensation		
	(A)	OH-	(B)	EtO-
	(C)	CN-	(D)	CH ₃ COO ⁻
35.	Which ind	icator is used in Iodometric titration	n ?	
	(A)	Eriochrome Black T	(B)	Starch solution
	(C)	N-Phenyl anthranilic acid	(D)	Methyl Orange

6

11/2019

A

36.	The ligand	denticity of EDTA is			
	(A)	6	(B)	5	
	(C)	4	(D)	3	
37.	The number	er of particles per unit cell of BCC	is		
	(A)	4	(B)	2	
	(C)	1	(D)	6	
38.	The total r	number of crystal systems present i	S		
	(A)	8	(B)	32	
	(C)	7	(D)	31	
39.	The princi	ple of liquid-gas chromatography i	S		
	(A)	Adsorption	(B)	Absorption	
	(C)	Partition	(D)	None of them	
40.	Which me	tal ion is present in Vitamin B-12 '	?		
	(A)	Cobalt	(B)	Nickel	
	(C)	Iron	(D)	Copper	
41.	How many	oxygen molecules are carried by	a singl	e Haemoglobin molecule?	
	(A)	4	(B)	3	
	(C)	2	(D)	1	
42.	How many	significant figures are there in the	quant	ity 0.0063g ?	
	(A)	3	(B)	4	
	(C)	2	(D)	1	
43.	How many	peaks are observed in the IR spec	trum o	of CO ₂ molecule ?	
	(A)	3	(B)	4	
	(C)	2	(D)	1	
A		7			11/2019 [P.T.O.]

44.	Asbestos i	s an example of	_ silicate.	
	(A)	Cyclic	(B)	Chain
	(C)	Sheet	(D)	Three dimensional
45.	Rutile is an	n ore of		
	(A)	Titanium	(B)	Iron
	(C)	Aluminium	(D)	Zinc
46.	The highes	st oxidation state shown b	y the transition	element is
	(A)	+7	(B)	+8
	(C)	+6	(D)	+5
47.	The intens	e violet colour of KMnO ₂	is due to	transition.
	(A)	Charge transfer	(B)	d-d transition
	(C)	f-f transition	(D)	Lanthanide contraction
48.	What is the	e CFSE for an octahedral	high spin d ⁴ sys	tem?
	(A)	-12Dq	(B)	-6Dq
	(C)	-24Dq	(D)	-18Dq
49.	Which one	e of the following metal ca	arbonyls does no	ot obey the EAN rule ?
	(A)	Ni(CO) ₄	(B)	Fe(CO) ₅
	(C)	Cr(CO) ₆	(D)	V(CO) ₆
50.	The co-ord	lination number of iron in	haemoglobin	
	(A)	4	(B)	5
	(C)	6	(D)	7
51.	What design	gnation is given to a suble	evel having n=4,	<i>l</i> =1 ?
	(A)	4p	(B)	4s
	(C)	4d	(D)	4f
11/2	019		8	

A

52.	Be shows	a diagonal relationship with			
	(A)	Al	(B)	Mg	
	(C)	Si	(D)	Na	
53.	The state of	of hybridisation of Be in BeF ₂			
	(A)	sp ³	(B)	$\mathrm{sp}^2\mathrm{d}$	
		sp ³ d	(D)	sp	
54.	But-1-ene	can be converted to butane by	reaction w	ith	
	(A)	Pd/H ₂	(B)	Zn/HCl	
	(C)	Sn-HC <i>l</i>	(D)	Zn-Hg	
55.	Which of t	the following compounds show	geometric	al isomerism?	
	(A)	Cyclopropane	(B)	Cyclobutane	
	(C)	1,2-dimethylcyclopropane	(D)	None of these	
56.	Which of t	the following compounds is aro	omatic ?		
	(A)	Cyclobutadiene	(B)	Cyclooctatetraene	
	(C)	Cyclopropene	(D)	Cyclopentadienyl anion	
57.	The mono	mer of natural rubber is			
	(A)	2-methyl-1,3-butadiene	(B)	1,3-butadiene	
	(C)	1,3-pentadiene	(D)	2-methyl-l,3-pentadiene	
58.	Which alk	aloid is present in Hemlock see	ed?		
	(A)	Coniine	(B)	Quinine	
	(C)	Piperine	(D)	Morphine	
59.	Sea water	will boil at a temperature			
	(A)	Higher than pure water	(B)	Lower than pure water	
	(C)	Same as that of pure water	(D)	Cannot be predicted	
A			9		11/2019 [P.T.O.]

60.	Producer gas is a mixture					
	(A)	CO+H ₂	(B)	CO+H ₂ O		
	(C)	CO+N ₂	(D)	CO+O ₂		
61.	For a spon	taneous process the free energy cha	inge sl	nould be		
	(A)	Positive	(B)	Negative		
	(C)	Either positive or negative	(D)	Zero		
62.	A system v	which can exchange neither energy	nor m	atter with surroundings is called		
	(A)	Open system	(B)	Closed system		
	(C)	Isolated system	(D)	Independent system		
63.	Vibrationa	l spectra will be obtained by the ab	sorptic	on of:		
	(A)	Microwave radiation	(B)	IR radiation		
	(C)	Ultraviolet radiation	(D)	Visible radiation		
64.	Which point group does CO ₂ molecule belongs to?					
	(A)	$D_{lpha h}$	(B)	$egin{array}{c} C_{3 m V} \ C_{lpha m V} \end{array}$		
	(C)	C_{2h}	(D)	$C_{\alpha V}$		
65.	Which one	e of the following is a Zn containing	g enzy	me ?		
	(A)	Cytochrome P-450	(B)	Tyrosinase		
	(C)	Alcohol dehydrogenase	(D)	Cytochrome oxidase		
66.	The alkalo	id used as an antimalarial drug:				
	(A)	Atropine	(B)	Cocaine		
	(C)	Quinine	(D)	Coniine		
67.	The heat o	f neutralisation when a strong acid	is neu	tralised by a strong base:		
	(A)	–57 kJ/mole	(B)	57 Cals/mole		
	(C)	−57 J/mole	(D)	−57 k.Cals/mole		
68.	Which def	ect causes a decrease in density?				
	(A)	Schottky	(B)	Frenkel		
	(C)	Metal excess	(D)	F-centre		

69.	The radius	ratio of octahedral void is			
	(A)	0.414	(B)	0.225	
	(C)	0.0414	(D)	0.0225	
70.	The pH of	a 0.001 M HCl solution is:			
	(A)	2	(B)	3	
	(C)	4	(D)	1	
71.	How many	signals would be expected in	the NMR s	spectrum of $(CH_3)_3CCl$?	
	(A)	One signal	(B)	Two signal	
	(C)	Three signal	(D)	Nine signal	
72.	The mono	mer of Orlon :			
	(A)	Formaldehyde and phenol			
	(B)	Ethylene glycol			
	(C)	Vinyl cyanide			
	(D)	Adipicacid and hexamethyler	ne diamine		
73.	Which of	the following is a Nitro dye?			
	(A)	Methyl orange	(B)	Aniline yellow	
	(C)	Martius yellow	(D)	Methyl blue	
74.	Which one	e is the strongest base among th	ne followin	g ?	
	(A)	CH ₃ NH ₂	(B)	$(CH_3)_2NH_2$	
	(C)]	NH ₃	(D)	$(CH_3)_3NH_2$	
75.	Aspirin is				
	(A)	Acetyl salicylic acid	(B)	Ethoxy benzoic acid	
	(C)	Methoxy benzoic acid	(D)	Acetyl oxalic acid	
76.	Which aci	d is used for cleaning glass was	res in the la	aboratory ?	
	(A)	Sulphuric acid	(B)	Hydrochloric acid	
	(C)	Nitric acid	(D)	Chromic acid	
A			11		11/2019 [P.T.O.]

11/2	019		12		A
	(C)	Ostwald	(D)	Lewis concept	
	(A)	Arrhenius concept	(B)	Bronsted-Lowry concept	
84.	BF ₃ is an a	acid according to			
	(C)	LiA/H ₄	(D)	V_2O_5	
	(A)	Finely divided iron	(B)	Nickel powder	
83.	In contact	process for the manufactur	re of sulphuric	acid, the catalyst is:	
	(C)	Geometrical isomers	(D)	Epimers	
	(A)	Chain isomers	(B)	Optical isomers	
82.		d and fumaric acid are the		0.41.11	
	· /		· /		
	(C)	Enantiomers	(D)	Conformations	
01.	(A)	Epimers	(B)	Anomers	
81.	The isome	rs that are interconverted t	hrough rotation	around a single bond are called:	
	(C)	Tranquilizers	(D)	Analgesics	
	(A)	Antiseptics	(B)	Antipyretics	
80.	Barbituric	acid and its derivatives are	e well known		
	(C)	Sodalime	(D)	LiA/H ₄	
	(A)	Zn and HCl	(B)	H ₂ with Ni	
79.		OH group in carboxylic acid	•	•	
					
	(C)	Vitamin-D	(D)	Vitamin-K	
	(A)	Vitamin-A	(B)	Vitamin-B	
78.	Rickets is	caused by the deficiency o	f:		
	(C)	D-fructose	(D)	Sucrose	
	(A)	α-D-glucose	(B)	β-D-glucose	
77.	Cellulose	is a linear polymer of:			

85.	How many coulombs of electricity are required to produce 20.0g of calcium from molten ${\rm CaC}l_2$?					
	(A)	57900 C	(B)	96500 C		
	(C)	10800 C	(D)	48250 C		
86.	The cell constant of a cell is equal to:					
	(A)	a/I	(B)	I/a		
	(C)	a–I	(D)	I–a		
87.	The reductive respective	and Cu ^{2+/} Cu are -2.37 V and +0.34 V				
	(A)	–2.03 V	(B)	2.71 V		
	(C)	1.36 V	(D)	2.3 V		
88.	At equilib	rium state :				
	(A)	ΔG is positive	(B)	ΔH is negative		
	(C)	ΔG is zero	(D)	ΔH is positive		
89.	The heat a	re is				
	(A)	ΔΕ	(B)	ΔΗ		
	(C)	ΔG	(D)	$\Delta \mathrm{S}$		
90.	How many unpaired electrons are present in Cu ⁺ ion ?					
	(A)		(B)	1		
	(C)	0	(D)	3		
91.	According to Hund's rule, the number of unpaired electrons in nitrogen atom will be					
	(A)	2	(B)	1		
	(C)	5	(D)	3		
92.	Which type of isomerism is shown by $[Co(NH_3)_5NO_2]Cl$?					
	(A)	Ionisation	(B)	Linkage		
	(C)	Co-ordination	(D)	Geometrical		

93.	Which one is a homopolymer?				
	(A)	PVC	(B)	Nylon 6	
	(C)	Nylon 6,6	(D)	Terylene	
94.	Three letters ABC can be arranged in			number of ways.	
	(A)	6	(B)	4	
	(C)	8	(D)	12	
95.	The inter nuclear distance remains constant during electronic excitation. This assumption is:				
	(A)	Morse	(B)	Huckel rule	
	(C)	Born Oppenheimer	(D)	Frank Condon	
96. A bond stretching frequency around 1700cm ⁻¹ is due to					
	(A)	C=N	(B)	C–Cl	
	(C)	C=O	(D)	C=C	
97.	Which of	the following is an auxo			
	(A)	-NH ₂	(B)	- N=N-	
	(C)	-C=C-	(D)	$-NO_2$	
98.	For phenol-water system, the critical solution temperature is				
	(A)	·	(B)	68.1 °C	
	(C)	76.2 °C	(D)	39.5 °C	
99.	re of protein.				
	(A)	Primary	(B)	Secondary	
	(C)	Tertiary	(D)	Quaternary	
100.	Bhopal Tragedy is due to:				
	(A)	Ethyl isocyanate	(B)	Phenyl isocyanate	
	(C)	Propyl isocyanate	(D)	Methyl isocyanate	
11/2019			14	${f A}$	

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK