Maximum: 100 marks

Time: 1 hour and 15 minutes

 Three resistances each having a value of a Ohm are connected to 3 phase balanced supply with a line voltage of A volts is applied, phase from the supply is: 				
	(A)	$A^2/3a$	(B)	$3A^2/a$
	(C)	A^2/α	(D)	None of the above
2.	pure var adjusting What is t	the capacitor of $25 \mu F$ the component values, it he power factor of the circ	and a pure vari is made that the court now?	nbination of a pure resistance of 50Ω a able inductor of $1.5mH$. By properly urrent through the circuit is maximum.
	N 1	0.866		0.5
	(C)	Zero	(D)	1
3.		wer measurement using nd equal. This is because The load is purely resis		hod, both the Wattmeters are reading The load power factor is 0.5
	(C)	The phase sequence is l		The load is purely capacitive
	drawn fro	adjusted such that the lose E/R	(B)	um power from the source. The current $2E^2/R$ $E/2R$
5.	The mini	mum number of NAND g	ates required to imp	plement a NOR gate is :
	(A)		(B)	
	(C)		(D)	none of the above
6.	If A and I	B are boolean variables, t	he boolean expressi	on A+AB is:
	(A)	0	(B)	В
	(C)	1	(D)	A
7.	Which on	e among Aluminum, Con	stantantan Mercury	v, Carbon have highest resistivity:
		Aluminum		
	(C)	Mercury	(D)	Carbon
8.	For a tw		stance decreases	when the temperature increases, the
	(A)	made up of a metal	(B)	a semiconductor
	(C)	a dielectric	(D)	none of the above
A			3	

9.	Which on	e among the following has 2 fully	stable state	es?
	(A)	Astable multivibrator	(B)	Sweep generator
	(C)	Flipflop	(D)	None of the above
10.		o elect <mark>r</mark> ic generation system, pres nitigat <mark>e</mark> d using :	sure variat	ions due to rapid changes in velocity of
	(A)	Tailrace pipe	(B)	Penstock
	(C)	Surge tank	(D)	None of the above
11.	linear bil: of the ne	ateral elements the open circuit vertwork viewed from the open cir	oltage acros cuited term	ces with zero internal resistances and as 2 terminals is $25V$ and the resistance ainal is 6.25Ω . If an eqivalent circuit made, the current source rating is:
	(A)	25A	(B)	6.25A
	(C)	12.5A	(D)	4A
12.	line volta	ge of 400V is drawing a current f ure and magnitude is connected i	rom the sup	Ohm in each phase is connected to a pply. If another delta connected load of the line current drawn from the supply
	(A)	Double	(B)	Four times
	(C)	Less than half	(D)	One fourth
13.	In an syn	chronous generator, selective elin	nination of o	odd harmonics can be done by:
	(A)	Distribution of winding	(B)	Symmetrical winding
	(C)	Short coding of winding	(D)	None of these
14.	The surfa	ce integral of the normal compon	ent of Elect	ric Field Intensity over a closed surface
	is equal to	$\frac{1}{\epsilon_o}$ times the total charge inside	e it. This is	the statement of:
	(A)	Gauss's Theorem	(B)	Stoke's Theorem
	(C)	Maxwell's Theorem	(D)	Poisson's Theorem
15.		ylindrical type rotors with less ous generators driven by :	diameter	and large axial length are used for
	(A)	Water turbines	(B)	Radial turbines
	(C)	Steam turbines	(D)	None of the above
16.		mber of poles in a syncronous m in electrical degrees is:	achine is 6	, a slot angle of 10° mechanical, when
	(A)	60	(B)	20
	(C)	30	(D)	15

17.		mber of turns of an inductive coil is or ers being the same, the inductance of the		d and core length is quadrupled, other became:
	(A)	doubled	(B)	halved
	(C)	quadrupled	(D)	unchanged
18.		e among the following is TRUE regarder design?	rding t	he selection of working flux density in
	(A)	High flux density in the core results	into th	e reduction in Core loss
	(B)	High flux density in the core results	into ar	increase in Copper loss
	(C)	High flux density in the core results	into hi	gh all day efficiency
	(D)	High flux density in the core results	into sa	wing in cost of iron
19.		io of average charge voltage to average of its Watt Hour efficiency to Ampere		harge voltage in a lead acid cell is 4/3, ficiency is:
	(A)	0.75	(B)	4/3
	(C)	16/9	(D)	None of the above
20.		phase induction motor runs at 2% in Hertz is:	slip ar	nd its rotor frequency is 1Hz. Stator
	(A)	60	(B)	50
	(C)	40	(D)	20
21.		smooth, quite running of an induction the technique used is called:	n moto	r by reducing humming and to prevent
	(A)	Damping	(B)	Concentrating
	(C)	Skewing	(D)	None of the above
22.		x per pole of a shunt-wound DC gen the generated e.m.f. at constant speed		is halved and the number of poles is
	(A)	remains the same	(B)	doubled
	(C)	is halved	(D)	none of the above
23.	In dc ge load is:	nerators, the winding used in a ma	achine	delivering low voltage, high current
	(A)	progressive simplex wave winding	(B)	lap winding
	(C)	any type of wave winding	(D)	any of the above
24.	Which an	nong the following can support a synch	ronous	motor in Starting:
1	(A)	Damper winding	(B)	Frequency divider
	(C)	Interpole	(D)	All the above

25.	Two react	ion theory is used in the analysis of	Synchro	nous machine to take into account the
	(A)	Difference in the number of pole	es in st	tator and rotor of a Cylindrical pole
	(B)	Non uniformity of air gap between	stator a	nd rotor of a salient pole machine
	(C)	Non uniformity of air gap between	stator a	nd rotor of a cylindrical pole machine
	(D)	Difference in the number of poles in	n stator	and rotor of a salient pole machine
26.	In a trans	sforme <mark>r</mark> delivering a variable load, Ze	ro volta	ge regulation can occur at:
	(A)	0.45 lagging power factor load	(B)	unity power factor load
	(C)	0.8 lagging power factor load	(D)	0.7 leading power factor load
27.		ernating voltage supply of constant der harmonics can cause significant of		feeding a Transformer, the presence of in:
	(A)	Copper losses	(B)	Regulation
	(C)	Core losses	(D)	All of the above
28.	The Maxi	The state of the s	A trans	former with iron losses equal to 125 W
	(A)	90	(B)	72
	(C)	60	(D)	80
29.	Which an	ong the following logic families are f	astest in	n operation?
	(A)	ECL	(B)	TTL
	(C)	CMOS	(D)	DTL
30.	De Morga	n's Law says :		
	(A)	NOR Gate is NOTed AND Gate	(B)	NAND Gate is NOTed OR Gate
	(C)	Both (A) and (B) above	(D)	None of the above
31.	Which of	the following is/are the features of ar	Asynch	nronous counter?
	(A)	The same clock pulses are applied	to all the	e constituent Flip flops at a time
	(B)	Outputs of the flip flop are connect	ed to the	e inputs of the very next flip flop
	(C)	Propagation delay limits the speed	of opera	tion
	(D)	None of the above		
32.	Which on	e of the following is fully CORRECT	regardir	ng 8085 microprocessor?
	(A)	It does not support handshaking in	I/O ope	rations
	(B)	It has only 6 flags		
	(C)	It supports queue		
	(D)	It has hardware and software inter	rupts	

33.	Which am	ong the following is TRUE abo	out an 8086 mi	croprocessor?			
		(A) Its address and data bus are multiplexed					
	(B)	Its accumulator size is 32 bit					
	(C)	It supports the queue/pipelin					
	(D)	It does not have Master and		erations			
34.	The exces	s-3 code corresponding to deci					
	(A)	100010001010	(B)	010010110011			
	(C)	010010001001	(D)	None of the above			
35.	A Mod-31	synchronous Counter ideally	has —	- number of flipflops.			
	(A)	6	(B)	3			
	(C)	4	(D)	5			
36.	Which am	ong the following is/are TRUI	E regarding the	e OP AMP circuit?			
		Voltage follower employees po					
	(B)	Integrator amplifies noise					
	(C)	In Differentiator, gain is incr	reased with an	increase in frequency			
	(D)	Adder always have an attenu					
37.	When con	paring Active and Passive filt	ters, which of t	he following statements are Wrong?			
	(A)	1					
	(B)	Active filters have high inpu					
	(C)	Active filters have low outpu					
	(D)	All the above are correct					
38.	For unipo	lar operation. an 8 bit Digital	to Analog Con	verter has a resolution of :			
	(A)	128	(B)	256			
de	(C)	64	(D)	Given data insufficient			
39.		uit containing a transistor, b	ooth of its jun	ctions are forward biased. It operates			
		Cut off	(B)	Saturation			
	(C)	Active	(D)	Pinch off			
40.	Number	of valance electrons in German	nium is:				
	(A)	2	(B)	5			
	(C)	6	(D)	4			
41.	The Swit	because:		gy efficiency compared to Linear Power			
	(A)	it uses isolation transformer					
	(B)	it has devices with large spa		citance			
	(C)	it does not work in active re					
	(D)	it has high switching freque	ncy				

42.	Gain of a	n amplifier can be stabilized by:		
	(A)	Employing Positive feedback	(B)	Employing Negative feedback
	(C)	Proper dc bias	(D)	Proper dc isolation
43.	If only 5 size is:	bites are used for addressing the	memor	ry of a computer system, the memory
	(A)	.64	(B)	128
	(C)	32	(D)	256
44.	The ripple	e factor and efficiency of a half wave i	rectifie	r are respectively:
	(A)	1.21 and 81.2%	(B)	1.21 and 40.6%
	(C)	0.48 <mark>2</mark> and 81.2%	(D)	0.482 and 40.6%
45.	For a shorthe ABCE	rt transmission with series impedance constants of the line are :	e Z, all	the capacitances being negligibly small
	(A)	A = 1, B = Z, C = 0, D = 1	(B)	A = Z, B = 1, C = 1, D = 0
	(C)	A = 1, B = 0, C = Z, D = 1	(D)	A = Z, B = 1, C = 0, D = 1/Z
46.	The load f	low analysis algorithm having the lea	ast rate	of convergence is :
	(A)	Newton Raphson Method	(B)	Fast Decoupled Load-Flow Method
	(C)	Gauss Seidel Method	(D)	None of the above
47.	The Oppo	sition to the flow of current in a co	onducto	or can increase in alternating circuits
	(A)	Proximity effect	(B)	Skin effect
	(C)	Ferranti effect	(D)	(A) and (B) above
48.	What is m	eant by a flat line or Infinite line?		
	(A)	Line open circuited		
	(B)	Line with surge impedance equals the	ne char	acteristic impedance
	(C)	Line terminated with charesteric im		
	(D)	Line through which Power transmitt	ted is h	igh
49.	Which one units of a	among the following is a method for string insulator?	r equa	lizing the potential across the various
	(A)	Usage of smaller cross arm	(B)	Usage of step grading
	(C)	Dynamic sheilding	(D)	All of the above
50.	Under grou	and cables are less preferable in high	voltage	e transmission because of :
	(A)	poor insulation	(B)	high charging current
	(C)	safety	(D)	none of the above
030/	2016	. 8		A

51.	The metals normally used in a HRC fuse are:					
	(A)	Tin and lead	(B)	Tin and Silver		
	(C)	Aluminium and lead	(D)	Aluminium and Copper		
52.	The trans	ient stability of a power system can	be impro	oved by:		
	(A) Using rotor of lower Moment of Inertia for generator					
	(B)	Using parallel lines				
	(C)	Using low system voltage				
	(D)	None of the above				
53.	For econo	mic load dispatch :				
	(A)	Incremental efficiency of each mack	hine sho	uld be same		
	(B)	Incremental production cost of each	h machir	ne should be same		
	(C)	Incremental fuel cost of each mach	ine shou	ld be same		
	(D)	None of the above.	9.			
54.	In a powe	r system, the cost of generated electronic	rical ene	gry will be low if:		
	(A)	(A) both load factor and diversity factor are low				
	(B)	(B) both load factor and diversity factor are high				
	(C)	Load factor high. Diversity factor le	ow ·			
	(D)	Load factor low, Diversity factor hi	gh			
55.	An over exited synchronous machine has a lagging powerfactor. The machine is:					
	(A)	Motoring	(B)	Generating		
	(C)	Floating	(D)	Can be Generating or motoring		
56.	Which among the following is/are CORRECT about an RC phase shift oscillator?					
	(A)	The RC network provides a phase s	shift of 1	80°		
	(B)	3) It makes use of positive feedback				
	(C)	(C) Loop gain of the oscillator is almost one				
	(D)	All the above				
57.	In class B operation of power amplifiers, the collector current flows for :					
	(A)	Less than a quarter of a cycle	(B)	The whole cycle		
	(C)	Half the cycle	(D)	Less than half a cycle		
58.	For the characteristic equation $2S^4 + S^3 + 3S^2 + 5s + 10 = 0$, the number of roots in the left half S plane is:					
	(A)	2	(B)	1		
	(C)	3	(D)	4		

59.	The unit	y negative feedback	system with $GH(S)$ =	$\frac{(10s+1)}{(s^2+8as+4k)}$ oscillates at 2rad/s	onl
	when:				
	(A)	k = 1	(B)	k=2 and $a=1$	
	(C)	k=1 and $a=2$	(D)) a=2	
60.	The stea	dy state error of a	negative feedback sys	stem with forward path gain fund	ction
	$G(S) = \overline{(S)}$	$\frac{3}{+5}$ and feedback	path gain function I	$H(S) = \frac{5}{(S+1)}$ for a unit step input	it i
	given by				
	(A)	infinity	(B)	zero	
	(C)	0.25	(D)) 10%	
61.		of total power in th modulation index is		wave to the unmodulated carrier po	owe
	(A)	$1+2m^2$	(B)	$1+0.5m^2$	
	(C)	$1+m^2$	(D)	None of the above	
62.		nge across a load e		nd the current through the elemen	nt is
	(A)	Lagging	(B)	Leading	
	(C)	Unity	(D)	Data insufficient	
63.				onnected in parallel and the combina elivered by the source is :	tion
	. (A)	10 W	(B)	1 W	
	(C)	100 W	(D)	0 W	
64.	Referring	to a power plant, th	e term hot reserve refer	rs to:	
	(A)	Reserve generating	g capacity not in service,	, but in operation	
	(B)	Reserve generating	g capacity not in service,	, but available	
	(C)	Reserve generating	g capacity in service, but	t not in operation	
	(D)	All the above			
65.	Power sup	oply used for dielectr	ric heating will normally	y have a frequency in the range:	
	(A)	1 to 5 kHz	(B)	1 to 5 MHz	
	(C)	10 to 50 MHz	(D)	10 to 50 kHz	

As non Wa	luin'e I aur the m	net conomical size	of condi	uctor is that for which :
(A)				
	losses -			
(B)	The constant pa	rt of the annual c	harges is	s equal to the cost of energy losses per
(C)	The variable par	t of the energy cha	rges is e	equal to the cost of annual energy losses
(D)	The constant pa	art of the energy	charges	is equal to the cost of annual energy
(A)	6V		(B)	-6V
(C)	3V		(D)	-3V
		which can give a	2.5V, 30	Hz output wave from a supply of 5V,
(A)	Voltage Source	Converter	(B)	Cyclo converter
(C)	Flyback Convete	er	(D)	None of the above
In a powe	r electronic circui	t, a free wheeling o	liode is u	used across a dc load to :
(A)	Reduce output v	oltage ripple		
(B)	Prevent reversa	l of load voltage		
(C)	Control output o	current ripple		
(D)	All of the above			
(A)	A current source	of 0.5A and paral	lel resist	tance of 3Ω
(B)	A current source	e of 5A and paralle	l resistar	nce of 30 Ω
(C)	A current source	e of 2.5A and paral	lel resist	tance of 30 Ω
(D)	None of the abov	ve		
		avity of a lead a	acid bat	tery under fully carged condition is
(A)	1.21		· (B)	2
(C)	2.8		(D)	None of the above
Which on	e of the following	is equal to one am	pere of c	urrent?
(A)	Siemens/second		(B)	Watt/second
(C)	Joule/second		(D)	Coulomb/second
		11		030/2016 [P.T.O.]
	(A) (B) (C) (D) Output vermode with (A) (C) A power of 60Hz supp (A) (C) In a power (A) (B) (C) (D) Ten, 15V one is aid (A) (B) (C) (D) The valuapproxim (A) (C) Which one (A)	(A) The variable par losses (B) The constant par year (C) The variable par (D) The constant par losses Output voltage of a simple mode with an input voltage (A) 6V (C) 3V A power electronic circuit 60Hz supply is: (A) Voltage Source (C) Flyback Conveto (C) Flyback Conveto (D) All of the above (D) All of the above (D) All of the above (E) A current source (E) A current source (E) A current source (E) A current source (E) (E) None of the above (E)	(A) The variable part of the annual closses (B) The constant part of the annual cyear (C) The variable part of the energy chae (D) The constant part of the energy closses Output voltage of a simple ideal buck type mode with an input voltage of 12V and turn of the energy losses Output voltage of a simple ideal buck type mode with an input voltage of 12V and turn of the energy losses Output voltage of a simple ideal buck type mode with an input voltage of 12V and turn of the energy losses (A) 6V (C) 3V A power electronic circuit which can give a foot supply is: (A) Voltage Source Converter (C) Flyback Conveter In a power electronic circuit, a free wheeling of the energy losses and the energy losses are considered in the energy losses and the energy losses are considered in the energy losses and energy losses are considered in the energy losses and turn of the above Ten, 15V batteries each having an internal reform is aiding the others. Its Norton's equivale (A) A current source of 0.5A and paralle (C) A current source of 5A and paralle (C) A current source of 2.5A and paralle (C) A current source of 5.5A and paralle (C) A current source of 2.5A and paralle (C) A current source of 5.5A and paralle (C) and turn of the above (C) and turn of turn of turn of turn of turn of turn of	losses (B) The constant part of the annual charges is year (C) The variable part of the energy charges is exposed (D) The constant part of the energy charges losses Output voltage of a simple ideal buck type dc-dc commode with an input voltage of 12V and turn ON time (A) 6V (B) (C) 3V (D) A power electronic circuit which can give a 2.5V, 3C (E) (A) Voltage Source Converter (B) (C) Flyback Conveter (D) In a power electronic circuit, a free wheeling diode is to (A) Reduce output voltage ripple (B) Prevent reversal of load voltage (C) Control output current ripple (D) All of the above Ten, 15V batteries each having an internal resistance one is aiding the others. Its Norton's equivalent circuit (A) A current source of 0.5A and parallel resistance (C) A current source of 2.5A and parallel resistance (D) None of the above The value of specific gravity of a lead acid bat approximately: (A) 1.21 (B) (C) 2.8 (D) Which one of the following is equal to one ampere of conditions and content approximately: (A) Siemens/second (B) (C) Joule/second (D)

73.	An Amme	ter is found to have a cramp	ed scale. This is	because:
	(A)	it employees eddy current	damping	
	(B)	it has spring control		
	(C)	its deflecting torque has a	nonlinear variat	ion with respect to current
	(D)	of both (B) and (C)		
74.	Of the po		it employing Po	ower MOSFETs has a higher switching
#	(A)	MOSFET is a majority carr	rier device	
	(B)	MOSFET has high input in		
	(C)	MOSFET has insulated gat		
	(D)	MOSFET has low signal to		
75.	A measure	of repeatability of measure	ment of a quant	ity is :
	(A)	Precision	(B)	Accuracy
	(C)	Significant	(D)	None of the above
76.	The analo		ntity correspond	ling to the magnetic circuit quantity,
	(A)	Conductivity	(B)	Resistivity
	(C)	Susceptibility	(D)	None of the above
77.	In load flo	w analysis the role of a slack	bus is:	
	(A)	as the reference bus		
	(B)	as a bus which can absorb a	and gives out act	tive power
	(C)	as a bus which can absorb a	and gives out rea	active power
	(D)	all of the above		
78.	Rotation o	f a Rotating Induction Type by :	Mechanical End	ergy Meter under no load condition can
	(A)	Copper shading bands	(B)	Compensating coils
	(C)	Eddy current damping	(D)	Drilling holes in the disc
79.	The needle	of a MI Ammeter oscillates	around a centra	al value. It may be due to poor:
	(A)	Damping torque	(B)	Controlling torque
	(C)	Deflecting torque	(D)	None of the above
80. The range of an Ammeter is to be extended from 250 mA to 2A. If the 250 mA meter internal resistance of 10Ω , what is the approximate value of the shunt resistance requested the range:				
	(A)	1.43Ω	(B)	2.5Ω
	(C)	5Ω	(D)	3.5 Ω
030/	2016		12	4

81.	Time taken by the Constituent Assembly to prepare Constitution is?					
	(A)	2 years 10 Months 8 days	(B)	2 years 11 Months 17 days		
	(C)	2 years 10 Months 17 days	(D)	2 years 11 Months 18 days		
82.	In India I	undamental duties are adopted	l from :			
	(A)	UK Constitution	(B)	USA Constitution		
	(C)	USSR Constitution	(D)	German Constitution		
83.	Who is th	e author of Ente Gurunathan?				
	(A)	Vallthol Narayana Menon	(B)	G Sankara Kurup		
	(C)	Kumaranasan	(D)	Poonthanam		
84.	The place	where Ayyankali started a sch	ool for depres	sed classes?		
	(A)	Neyyatinkara	(B)	Varkala		
	(C)	Ulloor	(D)	Vengannoor		
85.	Who start	ted the News Paper 'Mithavadi'	in 1907?			
	(A)	Moorkoth Kumaran	(B)	Vakkom Moulavi		
	(C)	Dr Palpu	(D)	Theruvath Raman		
86.	Who wrot	e 'Sahithya Vicharam'?				
	(A)	Joseph Mundassery	(B)	Kesava Dev		
	(C)	KC Kesava Pillai	(D)	M.P. Poul		
87.	How man	y people signed in Ezhava Men	norial'?			
	(A)	10028	(B)	13716		
	(C)	13176	(D)	100001		
88.	'Jathy Ku	mmy' which criticized the preva	ailing caste sy	stem was written by:		
	(A)	T K Madhavan	(B)	Pandit Karuppan		
	(C)	K P Vellon	(D)	Abraham Malpan		
89.	Who intro	duced the 'Subsidiary Alliance	System'?			
	(A)	Warren Hastings	(B)	Lord Lytton		
	(C)	Lord Wellesly	(D)	Lord Curzon		
90.	The natio	nal Anthem of India 'Jana gana	Mana' was fi	irst sung at :		
	(A)	Calcutta 1911	(B)	Delhi 1912		
	(C)	Mumbai 1913	(D)	Lahore 1919		
91.	Who is kn	own as 'Kerala Kalidasan'?				
	(A)	A R Raja Raja Varma				
	(B)	Raja Ravi Varma				
	(C)	Kerala Varma Valiya Koil Tha	ampuran			
	(D)	Kodungaloor Kunjikuttan Tha	mpuran			

92.	'Oru The	ruvinte Kadha' was written by :		
	(A)	Ponkunnam Varkey	(B)	S K Pottakkad
	(C)	Vaikkam Muhammed Basheer	(D)	Thakazhy Sivasankara Pillai
93.	Who was	the first Indian to be elected to th	ne British p	arliament?
	(A)	Gopala Krishna Ghokhale	(B)	Mottilal Nehru
	(C)	BalaGangadhara Thilak	(D)	Dadabhai Naoroji
94.	The great	Victoria Desert is located in :		
	(A)	Africa	(B)	Europe
	(C)	Australia	(D)	North America
95.	Ajanta Ca	aves are located in the state of:		
	(A)	Gujarat	(B)	Orissa
	(C)	Maharastra	(D)	Karnataka
96.	At which	pla <mark>c</mark> e Gauthama Buddha delivere	d his first s	sermon?
	(A)	Lumbini	(B)	Magadha
	(C)	Vaisaly	(D)	Saranath
97.	In which	of the following states does 16th N	ational Wor	men Boxing Championship take place
	(A)	Meghalaya	(B)	Assam
	(C)	Orissa	(D)	Maharastra
98.	Who has l	peen elected as the first male men	nber of nati	onal Commission for women?
	(A)	Alok Rawat	(B)	Chethan Bhagat
	(C)	Sudeep Nagarkar	(D)	Kailash Satyarthy
99.	Who has v	won the Nobel Prize 2015 in Litera	ature?	
	(A)	Patrick Modiano	(B)	Youyou Tu
	(C)	Svetlana Alexievich	(D)	Joseph William
100.	World Wa	ter Day is celebrated every year o	n:	
	(A)	July 12	(B)	May 22
	(C)	March 22	(D)	June 24