Banking Daily Quiz Blog - February 21

1. Read the data carefully and answer following questions:

Given below table shows total three types of items (A, B \& C) sold by a store on five days of a week. Table also shows total type A items sold by store and percentage of items B and items C sold by store.

Note- only three types of items sold by the store.

Days	Items A	\% of items B	\% of items C
Monday	240	32%	20%
Tuesday	320	48%	12%
Wednesday	420	45%	20%
Thursday	360	56%	20%
Friday	340	22%	10%

A. If total items B sold by store on Sunday is 25% more than that sold on Thursday and total items C sold on Sunday is 300% more than that sold on Friday, then find total number of items $B \&$ items C sold by store on Sunday?

B
1200

1150
(D) 1300

Total items B sold by store on Sunday will be,
$\frac{360}{24} \times 56 \times \frac{125}{100}=1050$
Total items C sold by store on Sunday will be,
$\frac{340}{68} \times 10 \times \frac{400}{100}=200$
Hence, Total items B \& items C sold by store on Sunday will be
$=1050+200=1250$

B. Total items C sold by store on Wednesday is what percent more than total items \mathbf{C} sold by store on Monday and Tuesday together?

$$
\text { A } \quad 20 \frac{22}{49} \%
$$

B $22 \frac{22}{49} \%$

$$
\text { (C) } 22 \frac{20}{49} \%
$$

$$
\text { D) } \quad 22 \frac{22}{47} \%
$$

$$
\text { (E) } \quad 22 \frac{18}{49} \%
$$

Solution

Total items C sold on Wednesday will be $=\frac{420}{35} \times 20=240$
Total items C sold on Monday \& Tuesday together will be.
$\frac{240}{48} \times 20+\frac{320}{40} \times 12$
$=100+96=196$
Hence, required percentage will be

$$
\frac{240-196}{196} \times 100 \%=\frac{44}{196} \times 100 \%=22 \frac{22}{49} \%
$$

C. Find the ratio between total items sold by store on Monday to total items sold by store on Thursday?

```
A 3:1
```


B
 1:3

(D) 1:4

E
 2:5

Solution

Total items sold by store on Monday will be,
$\frac{240}{48} \times 100=500$
Total items sold by store on Thursday will be,
$\frac{360}{24} \times 100=1500$
Hence, required ratio will be $=500: 1500=1: 3$
D. Find the difference between average number of items B sold by store on Tuesday \& Thursday and average number of items A sold by store on Thursday \& Friday.

Solution

As per data given in the question,
Total items B sold by store on Tuesday and Thursday together will be,
$\left[\frac{320}{40} \times 48\right]+\left[\frac{360}{24} \times 56\right]$
$=384+840=1224$
Hence, Average of items B sold by store on Tuesday and Thursday together will be,
$\frac{1224}{2}=612$
Total items A sold by store on Friday and Thursday together will be,
$340+360=700$
Hence, Average of items A sold by store on Friday and Thursday together will be,
$=\frac{700}{2}=350$
Hence, required difference will be $612-350=262$
E. Total items B sold by store on Monday \& Friday together are what percent less than total items \mathbf{C} sold by store on Wednesday \& Thursday together?
B $\quad 40 \%$
60%
(1) 50%
(E) 55%

Solution

As per data given in the question,
Total items B sold by store on Monday and Friday together will be,
$\left[\frac{240}{48} \times 32\right]+\left[\frac{340}{68} \times 22\right]$
$=160+110=270$
Total items C sold by store on Wednesday and Thursday together will be, $\left[\frac{420}{35} \times 20\right]+\left[\frac{360}{24} \times 20\right]$
$=240+300=540$
Hence, required percentage will be $=\frac{270}{540} \times 100 \%=50 \%$

2. Read the instruction carefully and answer the questions based on it.

In annual seminar of three companies, A, B and C some male and female employees represent their companies. Average number of female employees who represent A and B is 420 . Total male employee in A and B is 1620 . Number of female employees is $\frac{2}{3} r d$ and $\frac{2}{5} t h$ of male employee in A and B respectively.Total female employee
who represent C are 25% more than total female employee who represent A and total male employee who represent C are $33 \frac{1}{3} \%$ more than total female employee who represent B

A. 25% of total female employee and 20% of total male employee who represent B \& C together have MBA degree, then find total employee who do not have MBA degree.

\square
B
1724

1824

D 19241825

Solution

Total number of female employee who represent A and B
$=420 \times 2=840$
Let, Number of male employee who represent $\mathrm{A}=a$
And, Number of male employee who represent $\mathrm{B}=b$
So,
$a+b=1620 \ldots(i)$
$\frac{2}{3} a+\frac{2}{5} b=840 \ldots .(i i)$
nn colvino (i) Ry (ii)
$a=720, b=900$
So,
Number of male employee who represent $\mathrm{A}=a=720$
Number of female employee who represent A
$=\frac{2}{3} \times a=\frac{2}{3} \times 720=480$
Number of male employee who represent $\mathrm{B}=b=900$
Number of female employee who represent B
$=\frac{2}{5} \times b=\frac{2}{5} \times 900=360$
Total Female employee who represent C will be $480 \times \frac{125}{100}=600$
Total male employee who represent C will be $360 \times \frac{4}{3}=480$
Total employee who represent B \& C who do not have MBA degree will
be,
$(900+480) \times \frac{80}{100}+(360+600) \times \frac{75}{100}$
$=1104+720=1824$
B. What will be the ratio between total male employee who represent B $\& \mathbf{C}$ together to total female employee who represent A \& C together?22:17
(B) 23:1819:23
(D) 15:27

Solution

Total number of female employee who represent A and B
$=420 \times 2=840$
Let, Number of male employee who represent $\mathrm{A}=a$
And, Number of male employee who represent B $=b$
So,
$a+b=1620 \ldots(i)$
$\frac{2}{3} a+\frac{2}{5} b=840 \ldots \ldots$ (ii)
On solving (i) \& (ii)
$a=720, b=900$

So,
Number of male employee who represent $\mathrm{A}=a=720$
Number of female employee who represent A
$=\frac{2}{3} \times a=\frac{2}{3} \times 720=480$
Number of male employee who represent $\mathrm{B}=b=900$
Number of female employee who represent B
$=\frac{2}{5} \times b=\frac{2}{5} \times 900=360$
Total Female employee who represent C will be $480 \times \frac{125}{100}=600$
Total male employee who represent C will be $360 \times \frac{4}{3}=480$
Hence, Required ratio will be
$(900+480):(480+600)=1380: 1080=23: 18$

C. Find difference between Total male employees who represent C and total female employee who represent B.

C
 120

D 160
E
80

Solution

Total number of female employee who represent A and B
$=420 \times 2=840$
Let, Number of male employee who represent $\mathrm{A}=a$
And, Number of male employee who represent $\mathrm{B}=b$
So,
$a+b=1620 \ldots(i)$
$\frac{2}{3} a+\frac{2}{5} b=840 \ldots \ldots(i i)$
On solving (i) \& (ii)
$a=720, b=900$
So,
Number of male employee who represent $\mathrm{A}=a=720$
Number of female employee who represent A
$=\frac{2}{3} \times a=\frac{2}{3} \times 720=480$
Number of male employee who represent $\mathrm{B}=b=900$
Number of female employee who represent B
$=\frac{2}{5} \times b=\frac{2}{5} \times 900=360$
Total Female employee who represent C will be $480 \times \frac{125}{100}=600$

Total male employee who represent C will be $360 \times \frac{4}{3}=480$
Hence, Required difference $=480-360=120$
D. What will be the average number of females in $\mathbf{B} \& \mathrm{C}$?400

B 440480
(1) 450420

Solution

Total number of female employee who represent A and B
$=420 \times 2=840$
Let, Number of male employee who represent $\mathrm{A}=a$
And, Number of male employee who represent B $=b$
So,

$$
\begin{aligned}
& a+b=1620 \ldots(i) \\
& \frac{2}{3} a+\frac{2}{5} b=840 \ldots .(i i)
\end{aligned}
$$

On solving (i) \& (ii)
$a=720, b=900$
So,

Number of male employee who represent $\mathrm{A}=a=720$
Number of female employee who represent A
$=\frac{2}{3} \times a=\frac{2}{3} \times 720=480$
Number of male employee who represent $\mathrm{B}=b=900$
Number of female employee who represent B
$=\frac{2}{5} \times b=\frac{2}{5} \times 900=360$
Total Female employee who represent C will be $480 \times \frac{125}{100}=600$
Total male employee who represent C will be $360 \times \frac{4}{3}=480$
Hence, required average will be $\frac{360+600}{2}=\frac{960}{2}=480$.

E. Total employees who represent \mathbf{A} is what percent more than total male employee who represent B ?

A 33%

$$
\text { B } 30 \frac{2}{3} \%
$$

(C) $33 \frac{2}{3} \%$

(D) $30 \frac{1}{3} \%$
(E) $33 \frac{1}{3} \%$

Solution

Total number of female employee who represent A and B
$=420 \times 2=840$

Let, Number of male employee who represent $\mathrm{A}=a$
And, Number of male employee who represent $\mathrm{B}=b$
So,
$a+b=1620 \ldots(i)$
$\frac{2}{3} a+\frac{2}{5} b=840 \ldots \ldots(i i)$
On solving (i) \& (ii)
$a=720, b=900$
So,
Number of male employee who represent $\mathrm{A}=a=720$
Number of female employee who represent A
$=\frac{2}{3} \times a=\frac{2}{3} \times 720=480$
Number of male employee who represent $\mathrm{B}=b=900$
Number of female employee who represent B
$=\frac{2}{5} \times b=\frac{2}{5} \times 900=360$
Total Female employee who represent C will be $480 \times \frac{125}{100}=600$
Total male employee who represent C will be $360 \times \frac{4}{3}=480$
So,
Total employee who represent $\mathrm{A}=720+480=1200$
Hence, required percentage will be
$=\frac{1200-900}{900} \times 100 \%=\frac{300}{900} \times 100 \%=33 \frac{1}{3} \%$

E) ENTRI

