Banking Daily Quiz Blog - March 10

1. A vessel contain mixture of milk and water in the ratio of $6: 1$ respectively. If 21 liters mixture taken out and replaced with 77 liters of milk, then the resultant mixture becomes twice of the initial mixture. Find the quantity of the initial mixture?

56 liters

B 52 liters

50 liters

D 45 liters

E None of these

Solution

Let total initial mixture $=7 \mathrm{x}$

ATQ -
$\left(6 x-21 \times \frac{6}{7}+77\right)+\left(x-21 \times \frac{1}{7}\right)=14 x$
$7 x=56$
$x=8$

So, quantity of the initial mixture $=7 \mathrm{x}$
$=56$ liters
2. Length and speed of train A is ' L ' meters and $108 \mathrm{~km} / \mathrm{hr}$. It crosses a platform; whose length is $\mathbf{6 0 \%}$ less than the length of train A in $\mathbf{2 8}$ sec. If train B crosses the same platform in 24 sec running at the speed of $90 \mathrm{~km} / \mathrm{hr}$, then find the time taken by train A to cross train B running in same direction?172 sec
(B) $\quad 182 \mathrm{sec}$192 sec

$$
\text { D } \quad 162 \mathrm{sec}
$$None of these

Solution

ATQ -

$$
\frac{L+L \times \frac{40}{100}}{108 \times \frac{5}{18}}=28
$$

$1.4 \mathrm{~L}=840 \mathrm{~L}$
$=600$ meters

And, length of platform $=0.4 \times 600=240$ meters

Let length of train $B=X$ meters
$\frac{X+240}{24}=90 \times \frac{5}{18}$
$X=360$ meters
Required time $=\frac{600+360}{(108-90) \times \frac{5}{18}}=\frac{960}{5}=192 \mathrm{sec}$
3. A can complete 45% of a work in $11 \frac{1}{4}$ days and B can do $\mathbf{3 0 \%}$ of same work in 3 days. If $\mathbf{A}, \mathbf{B} \boldsymbol{\&} \mathbf{C}$ can do the same work in $6 \frac{1}{4}$ days, then find that C is how much percent less efficient than A ?

(B) $\mathbf{5 0 \%}$

D 30%None of these

Solution

Let total work $=90 \mathrm{x}$ unit

Efficiency of $\mathrm{A}=90 x \times \frac{45}{1 n^{n}} \times \frac{4}{15}=3.6 \mathrm{x}$ unit/day

Efficiency of $\mathrm{B}=90 x \times \frac{30}{100} \times \frac{1}{3}=9 \mathrm{x}$ unit/day
Efficiency of $(\mathrm{A}+\mathrm{B}+\mathrm{C})=90 x \times \frac{4}{25}=14.4 x$ unit/day
So, efficiency of $\mathrm{C}=14.4 x-(3.6 x+9 x)=1.8 x$ units/day
Required percentage $=\frac{3.6 x-1.8 x}{3.6 x} \times 100=50 \%$
4. Six years ago, the ratio of age of Kunal to Sagar was $6: 5$ and four years hence ratio of age of Kunal to Sagar will be $11: 10$. Find the present age of Sagar?
A)
12 years

B 13 years14 years

D 15 years

E
16 years

Solution
Let six years ago age of Kunal and Sagar was 6x and 5x respectively
$\frac{6 x+10}{5 x+10}=\frac{11}{10}$
$60 x+100=55 x+110$
$5 x=10$
$x=2$ years
So, present age of Sagar $=5 \times 2+6=16$ years
5. A and B entered into business my making investment of Rs. 2400 and 2800 respectively. After six months A left the business and after four more months C joined the business with capital $\mathbf{2 0 \%}$ more than A's
investment. If at the end of year sum of profit share of A and C is Rs. 4200, then find total profit?Rs. 10200

B
Rs. 11200

C Rs. 12200
(D) Rs. 13200

E
 None of these

Profit ratio of A, B \& C respectively $=2400 \times 6: 2800 \times 12: 2400 \times 1.2 \times$ 2
$=14400: 33600: 5760$
$=15: 35: 6$

Let total profit $=$ Rs. 56 x
Given, $15 \mathrm{x}+6 \mathrm{x}=4200$
$x=$ Rs. 200

So, total profit $=56 \times 200=$ Rs. 11200
6. A man borrowed Rs. Rs. 12000 on compound interest at the rate of $\mathbf{2 0 \%}$ per annum and at the end of first year man again borrowed Rs. ' X ' more on compound interest at the same rate of interest. If at the end of second year, man paid total amount of Rs.20400, then find value of ' \mathbf{X} '?Rs. 2400
(B) Rs. 2600Rs. 2500
(D) Rs. 2200

Solution

First year total Interest $=12000 \times \frac{20}{100}=R s .2400$
For second year total amount $=(12000+2400+X)$
$(12000+2400+X) \times \frac{120}{100}=20400$
$\mathrm{X}=$ Rs. 2600
7. ' A ' invested Rs. X in a scheme on simple interest at the rate of $\mathbf{2 0 \%}$ p.a. for two years and ' B ' invested Rs. Y in same scheme. If interest got by A is Rs. 480 more than that of B after two years. If X is $\mathbf{2 5 \%}$ more than \mathbf{Y}, then find value sum of amount invested by $\mathbf{A} \& B$?
A
Rs. 11400
(B) Rs. 11800

C Rs. 10400
(D) Rs. 10800

E None of these

Given, $\mathrm{X}=1.25 \mathrm{Y}$
ATQ -

$$
\begin{aligned}
& 1.25 Y \times 2 \times \frac{20}{100}-Y \times 2 \times \frac{20}{100}=480 \\
& Y=4800 \\
& X=1.25 \times 4800 \\
& X=\text { Rs. } 6000
\end{aligned}
$$

Required sum $=4800+6000=R s .10800$
8. A shopkeeper marked the price of an article 25% above the cost price and allowed two successive discounts of $\mathbf{1 0 \%}$ and 5% respectively. If shopkeeper made a profit of Rs. 89.1, then find at what price shopkeeper sold the article to make a profit of 40% ?

Rs. 1814.4
(B) Rs. 1844.8

Rs. 1444.4
(D) Rs.1644.4

Solution

Let cost price of an article = Rs. $100 x$

Marked price of an article $=$ Rs. $125 x$
Selling price of an article $=125 x \times \frac{90}{100} \times \frac{95}{100}=R s .106 .875 x$
ATQ -
$106.875 x-100 x=89.1 x=12.96$

Cost price of an article = Rs. 1296
For 40% of profit Selling price $=1296 \times \frac{140}{100}=R s .1814 .4$
9. A box contains $\mathbf{1 2}$ red, $\mathbf{6}$ green and ' x ' yellow balls. Probability of choosing one green ball out of the box is $\frac{2}{9}$, then find the probability of choosing one ball which can be either red or yellow?
(A) $\frac{4}{9}$
(B) $\frac{2}{9}$
(C) $\frac{5}{9}$
(D) $\frac{7}{9}$

E None of these

Solution

Required Probability = 1 - Probability of choosing one green ball
$=1-\frac{6}{27}=\frac{7}{9}$
10. When digits of the two digits number are reversed, number obtained is 9 less than twice ofthe original number. Also, the new number obtained is $\mathbf{1 7 5 \%}$ of the original number. Find the sum of the digits of the number?

(B) 10

11
(D) 12
(E) 13

Solution

Let the unit digit and tens digit of the number be y and x respectively.
Original number $=(10 x+y)$

ATQ
$1.75(10 x+y)=10 y+x$
$x: y=1: 2$
let the unit and tens digits be 2 a and 1a respectively
Now, (21a) $+9=2(12 a)$
$\mathrm{a}=3$
unit digit $=6$
and tens digit $=3$
sum of both the digits $=9$

