
 

 

ECONOMICS MODULE 7 PART 2 
LINEAR FUNCTIONS 
In this section we begin our study of specific functions. At its simplest, a 
function relates one variable with another. So let us begin by defining a 
variable. An unknown value or an entity that can take different values is called 
a variable. The known value in an equation or a number that takes fixed values 
is called a constant. Thus a magnitude which does not change is a constant. In 
the context of an equation, when a constant is joined to a variable, then the 
a constant is called a coefficient. Sometimes in an equation a coefficient is 
denoted by a letter of the alphabet, rather than by a numeral. This letter is 
supposed to represent a constant, but doesn’t have a fixed numerical value. 
These types of coefficients are called parameters.  
The general form of the linear equation in one variable is 

ax+b=c 
where is the unknown or the variable and a, b and c are unspecified 
parameters. In the context of a specific equation, a, b and c can acquire 
specific numerical values, but we are speaking of general equations. We can 
solve this equation by expressing x in terms of the parameters. 
Solving it we get, 

 
The crucial points to remember about linear functions are: 
a) all variables are raised to the power 1 and no other power, and 
b) the slope of the graph (the line) remains constant at all point.  
 

QUADRATIC FUNCTIONS 
In the previous section, we looked at linear equations and functions. We saw 
that a linear equation has the general form  +  
 = , where x is the variable 



 

 

or unknown, and a,b, c are constants or parameters. This equation is called 
linear, because x is raised only to the power 1, and not to any lower or higher 
power.  
A linear function has the general form = xy + ba . The graph is a 
straight line and the slope remains constant. This means that a one-unit change 
in x always increases or decreases y by the same amount (the slope can be 
negative). This may hold for some relationships in Economics, like a linear 
demand curve or supply curve. But there are many situations in economics 
where we need to deal with non-linear relationships, where a given change in x 
does not always lead to a constant change in y. In this section, we deal with a 
simple non-linear function, called quadratic function. We shall also discuss 
quadratic equations. A quadratic function, when graphed, gives a U-shaped 
curve. We will describe how to solve quadratic equations. 

 

 

 

 
 



 

 

Cubic Functions 
A Cubic function is expressed by a cubic equation which has the general form: 

ax3+ bx2+ c x + d = 0 
where a, b, c and d are constants. There is no general formula for solving a 
cubic function, but approximate solutions may be found graphically by plotting 
the graph and finding the points of intersection with the axes. Basic properties 
of the cubic function are: 
1) The graph of cubic functions will have either no turning point or two 
turning points; 
2) A cubic function will have either one root or three roots. 
It is hard to factorize a cubic function, unlike a quadratic function. The shape of 
a cubic function is usually S-shaped. There are several contexts in which cubic 
functions are useful in Economics.  
Like we considered a quadratic cost 
function in the last section, we can have a cubic cost function as well. Consider 
a total cost function of the type TC= 2q3+ 15q2+ 50q+ 50 .  
The curve of this 
equation will be upward sloping, with a slightly flat surface in the beginning 
for lower values of q (till about q = 1.5).  
Then there will be a range of q values 
where the TC curve will be less flat, that is, the slope is more than that at the 
lowest values of q (from about q = 1.5 to q = 2.5).  
It is in this middle range that the production is most efficient. At high levels of output, 
(particularly after q =5) the slope is very steep.  
 
General Polynomial Functions 
Quadratic and cubic functions belong to a group of functions called 
polynomials. The general form of a polynomial function of a single variable is: 

 
where, a0, a1, . . . , and are constants.  



 

 

The 'degree' of the polynomial is given by the highest power of x in the expression. 
Therefore, a quadratic function is a polynomial of degree 2 and a cubic function is a 
polynomial of degree 3. 
The Meaning of the word ‘polynomial’ is multi-term. 

 
In the case of Here, the first function is a constant function, the second a linear function 
and the third a quadratic function. 
We are not going to study polynomials in depth, but you do need to be aware 
that they are continuous graphs, with no breaks or jumps. Therefore, it is quite 
safe to plot these graphs by joining the points as calculated and hence use the 
graphs to estimate roots and turning points. 

 Exponential Functions 
 
The argument or the independent variable of an exponential function appears as 
an exponent. The general form of the univariate exponential function is: 
y= f (x) = bx 

where b is called the base and is assumed to be greater than 1 (i.e., b> 1); and 
x∈ R (the set of real numbers). When x= 0, y = b0= 1,for any base. When b >1 
then b 
x monotonically increases with x. 
Note: b > 1 restriction has been imposed, since with b = 0 or 1, we get constant 
functions y = 0 or y = 1, respectively. Also, with b< 0, we may get a function 
involving a complex value of the form√− 
, as x ∈ R.Moreover, with 0 <b < 1, 
we can always attain the base which is greater than 1 (for instance, consider b = 
0.5 and x = 2, put these values in the exponential function to get y = 0.52⇒y = 
2-2. Here, we have b> 1 and x< 0. Since our x∈ R, such a result holds for an 
exponential function). 
Exponential functions have a special role in economic analysis because of their 
use in calculating the growth of variables over time. Exponential functions also 
play an important role in a related problem—the calculation of the present 
value of a future payment.  
Exponential functions are strictly monotonic and, 



 

 

therefore, one-to-one. One-to-one functions have an inverse. The inverse of an 
An exponential function is called a logarithmic function.  
The properties of logarithmic functions are discussed in the next subsection. 
Logarithmic functions have a range of uses in economic analysis. These include the 
transformation of a non-linear relationship into a linear expression, which can 
be more easily evaluated; and the specification of an economic function with a 
constant elasticity. 
  
Logarithmic Functions 
Any exponential function has an inverse since it is strictly monotonic and, 
therefore, one-to-one. The classes of functions that are inverses to exponential 
functions are logarithmic functions. Logarithmic functions are used in many 
different ways in Economics. This section defines these functions and shows 
some of their useful properties by illustrating their application in Economic 
problems. 
Any point (i, j) in the exponential function y = bx 
, has a corresponding point (j, 
i) in the logarithmic function y = logb(x).  
Like the exponential function, the 
logarithmic function is strictly monotonic and increasing. Logarithmic 
functions are everywhere concave, while exponential functions are everywhere 
convex. You will learn about convex and concave functions.The domain of a 
logarithmic function is restricted to the set of positive real 
numbers, while the range of the function is the set of all real numbers, which is 
the converse of the case for exponential functions. 
 
The definition of a logarithmic function is as follows.  
The logarithmic function 
y x = logbb =1, which is read as “y is the base b logarithm of x,” satisfies the 
relationship by = x. This definition of logarithms implieslog 1 b 
b = for any base, 
since b 1=b, also that logbbxx = x. By the definition of an inverse function, 
Economic models often employ a logarithmic transformation of the variables 
of the model. A logarithmic transformation is the conversion of a variable that 



 

 

can take on different real positive values into its logarithm. In this section we 
demonstrate properties of logarithmic transformations and show why this is 
such a useful tool for economists. Economic models frequently include 
nonlinear relationships. For example, real money balances are represented by 
the quotient of nominal balances (M) over the price level (P)— (M/P), and the 
real exchange rate equals the product of the nominal exchange rate (E) and the 
foreign price level (P*) divided by the domestic price level (P)— (EP*/P). 
Nonlinear relationships among variables may be expressed as linear 
relationships among their logarithms. Multi-equation models that include 
products or quotients are more difficult to solve, than models that are linear in 
the variables of interest. Thus expressing these models in terms of the 
logarithms of their variables is often a useful strategy for making analysis more 
straightforward. 
Applications of linear functions in everyday life 
The applications of linear functions in everyday life are vast. Some common 
applications involve solving: 
 

● Age problems 
● Speed, time and distance problems 
● Geometry problems 
● Percentage and money problems 
● Pressure and force problems 
● Salary problems 

These everyday problems are converted to mathematical forms to form linear 
equations, which are solved using various methods. These equations should clearly 
explain the relationship between the data and the variables. 
 
Linear Algebra: Matrices,Vectors, Determinants.Linear Systems 
 Linear algebra is a fairly extensive subject that covers vectors and matrices, 
determinants,systems of linear equations, vector spaces and linear transformations, 
eigenvalue problems,and other topics. As an area of study it has a broad appeal in 
that it has many applications 
in engineering, physics, geometry, computer science, economics, and other areas. It 
also contributes to a deeper understanding of mathematics itself. 



 

 

Matrices, which are rectangular arrays of numbers or functions, and vectors are the 
main tools of linear algebra. Matrices are important because they let us express large 
amounts of data and functions in an organized and concise form. Furthermore, since 
matrices are single objects, we denote them by single letters and calculate them 
directly. All these features have made matrices and vectors very popular for 
expressing scientific and mathematical ideas. 
 
Matrices, Vectors:Addition and Scalar Multiplication 
The basic concepts and rules of matrix and vector algebra are introduced in Secs. 7.1 
and 7.2 and are followed by linear systems (systems of linear equations), a main 
application, 
. A matrix is a rectangular array of numbers or functions which we will enclose in 
brackets. For example, 

 
are matrices. The numbers (or functions) are called entries or, less commonly, 
elements of the matrix. The first matrix in (1) has two rows, which are the horizontal 
lines of entries. 
Furthermore, it has three columns, which are the vertical lines of entries. The second 
and third matrices are square matrices, which means that each has as many rows as 
columns—3 and 2, respectively. The entries of the second matrix have two indices, 
signifying their location within the matrix. The first index is the number of the row and 
the second is the number of the column, so that together the entry’s position is 
uniquely identified. For 
example, (read a two three) is in Row 2 and Column 3, etc. The notation is standard 
and applies to all matrices, including those that are not square. 
Matrices having just a single row or column are called vectors. Thus, the fourth matrix 
in (1) has just one row and is called a row vector. The last matrix in (1) has just one 
column and is called a column vector. Because the goal of the indexing of entries was 
to uniquely identify the position of an element within a matrix, one index suffices for 



 

 

vectors, whether they are row or column vectors. Thus, the third entry of the row vector 
in (1) is denoted byMatrices are handy for storing and processing data in applications. 
Consider the following two common examples. 
 
Vectors 
A vector is a matrix with only one row or column. Its entries are called the components 
of the vector. We shall denote vectors by lowercase boldface letters a, b, or by its 
general components in brackets, , and so on. Our special vectors in (1) suggest 
that a (general) row vector is of the form 

 
Matrix Multiplication 
Matrix multiplication means that one multiplies matrices by matrices. Its definition is 
standard but it looks artificial. Thus you have to study matrix multiplication carefully, 
multiply a few matrices together for practice until you can understand how to do it. 
Here then is the definition. 

 
Linear Systems of Equations. 
Gauss Elimination 
We now come to one of the most important use of matrices, that is, using matrices to 
solve systems of linear equations. We showed informally, in Example 1 of Sec. 7.1, how 
to represent the information contained in a system of linear equations by a matrix, 
called the augmented matrix. This matrix will then be used in solving the linear system 
of equations. Our approach to solving linear systems is called the Gauss elimination 
method. 



 

 

Since this method is so fundamental to linear algebra, the student should be alert. 
A shorter term for systems of linear equations is just linear systems. Linear systems 
model many applications in engineering, economics, statistics, and many other areas. 
Electrical networks, traffic flow, and commodity markets may serve as specific 
examples of applications. 

 

 
Cramer’s Rule Definition 
Cramer’s rule is one of the important methods applied to solve a system of equations. 
In this method, the values of the variables in the system are to be calculated using the 
determinants of matrices. Thus, Cramer’s rule is also known as the determinant 
method. 
 
Consider a system of linear equations with n variables x₁, x₂, x₃, …, xₙ written in the matrix 
form AX = B. 



 

 

 
Here, 
 
A = Coefficient matrix (must be a square matrix) 
 
X = Column matrix with variables 
 
B = Column matrix with the constants (which are on the right side of the equations) 
 
Now, we have to find the determinants as: 
 
D = |A|, Dx1, Dx2, Dx3,…, Dxn 
 
Here, Dxi for i = 1, 2, 3,…, n is the same determinant as D such that the column is replaced 
with B. 
 
Thus, 
 
x1 = Dx1/D; x2 = Dx2/D; x3 = Dx3/D; ….; xn = Dxn/D {where D is not equal to 0} 
 



 

 

 

 
 
 
  

 
Inverse of a matrix and Cramer’s rule 



 

 

We are aware of algorithms that allow us to solve linear systems and invert a matrix. 
It turns out that determinants make it possible to find those by explicit formulas. For 
instance, if A is an n × n invertible matrix, then 

 
Note that the (i, j) entry of matrix (1) is the cofactor Aji (not Aij !). In fact the entry 
is Aji det(A)as we multiply the matrix by 1 
det(A). [We can divide by det(A) since it is not 0 
for an invertible matrix.]  
Curiously, in spite of the simple form, formula (1) is hardly 
applicable for finding A−1 when n is large. This is because computing det(A) and 
the cofactors require too much time for such n. Notice that det(A) can be found as 
as soon as we know the cofactors, because of the cofactor expansion formula. 
Cramer’s Rule for x = A−1b We know that if Ax = b and A is nonsingular, then x = A−1b. 
Applying the formula A−1 = CT/det A  

gives us:  
Cramer’s rule gives us another way of looking at this equation. To derive 
this rule we break x down into its components. Because the i’th component 
of CTb is a sum of cofactors times some number, it is the determinant of some 
matrix Bj 
 



 

 

 
 
CHARACTERISTIC ROOTS AND VECTORS 
DEFINITION OF CHARACTERISTIC ROOTS AND VECTORS 
A matrix is a rectangular array of objects or 
elements We will take these elements as being elements. We will take these elements 
as being 
real numbers and indicate an element by its row 
and column position. 
• Let aij  R denote an element of a matrix which 
occupies the position of the ith row and jth 
column. 
• D t t i b it l l tt d it Denote a matrix by a capital letter and its 
elements by the corresponding lower case letter. 

If a matrix A is n x m, we write  



 

 

 
• A matrix is said to be 
(i) square if # rows = # columns and a 
square matrix is said to be 

(ii) symmetric if  
The principle diagonal elements of a 
square mat i A i b th l t trix A are given by the elements 
aij, i = j. 
• The principle diagonal is the ordered ntuple (a11,..., ann). 
• The trace of a square matrix is defined as of a square matrix is defined as 
the sum of the principal diagonal 

elements. It is denoted  

 
The Identity Matrix 
• An identity matrix is a square matrix with ones in 



 

 

its principle diagonal and zeros elsewhere An n its principle diagonal and zeros 
elsewhere. An n n identity matrix is denoted In. For example 

 
Determinants 
Definition. The minor of the element aij, 
d t d |M denoted |Mij| i th d t i t f th | is the determinant of the 
submatrix formed by deleting the ith row 
and the jth column. 
• Example: If A = [a Example: If A = [aij] is 3 x 3 then |M ] is 3 x 3, then |M13|= 
a21a32 – a31a22. |M12| = a21a33 – a31a23.  
Definition. The cofactor of the element aij 
d t d |C |i b( 1)i+j denoted |C |M | ij| given by (-1)i+j |Mij| . 

 
Properties of Determinants 
1. |A| =|A'| 
2. The interchange of any two rows (or two 
col.) will change the sign of the determinant but will not change its 
determinant, but will not change its absolute value. 
3. The multiplication of any p rows (or col) of a 
matrix A by a scalar k will change the value of matrix A by a scalar k will change 
the value of 
the determinant to kp |A|. 
4. The addition (subtraction) of any multiple of any 



 

 

row to (from) another row will leave the value 
of the determinant unaltered, if the linear 
combination is placed in the initial (the combination is placed in the initial (the 
transformed) row slot. The same holds true if 
we replace the word “row” by column. 
5. If one row (col) is a multiple of another 
row ( l) th l f th d t i t ill (col), the value of the determinant will 
be zero. 
6. If A and B are square, then |AB| = |A||B|.  

 

 
 
 



 

 

Vector Space 
• Def. A vector space is a collection of 
vect th t i l d d th ti tors that is closed under the operations 
of addition and scalar multiplication. 
• Remark: Rn is a vector space. 
• Def. A set of vectors span a vector space 
if any vector in that space can be written if any vector in that space can be 
written 
as a linear combination of the vectors in 
that set. 
Inverse Matrix 
• Given an n  n square matrix A, the 
i ti fA d t dA 1 inverse matrix of A, denoted A i th t -1, is that 
matrix which satisfies 
A-1 A = A A-1 = In . 
When such a matrix exists, A is said to be 
nonsingular If A-1 . If A exists it is unique it is unique.  
 
General Results for CharacteristicRoots and Vectors 

● For a square matrix A, we have 
● The product of the characteristic roots is equal to the i. The product of the 

characteristic roots is equal to the determinant of the matrix. 
●  The rank of A is equal to the number of nonzero 

characteristic roots. 
●  The characteristic roots of A2 are the squares of the 
● characteristic roots A, but the characteristic vectors of 

both matrices are the same. 
● . The characteristic roots of A-1 are the reciprocal of the 

characteristic roots of A, but the characteristic vectors of 
Both matrices are the same. 



 

 

 
DEFINITIONS OF PROBABILITY 
The term probability has been interpreted in terms of four definitions viz., 
1) Classical definition. 
2) Axiomatic definition. 
3) Empirical definition. 
4) Subjective definition. 
 
1) Classical Definition 
The classical definition states that if an experiment consists of N 
outcomes 
which are mutually exclusive, exhaustive and equally likely and NA of 
them 
are favorable to an event A, then the probability of the event A (P (A)) is 
defined as 
P (A) = NA / N 
In other words, the probability of an event A equals the ratio of the 
number of 



 

 

outcomes NA favorable to A to the total number of outcomes. See the 
following example for a better understanding of the concept. 
Example1: Two unbiased dice are thrown simultaneously. Find the 
probability that the product of the points appearing on the dice is 18. 
There are 36 (N) possible outcomes if two dice are thrown 
simultaneously. 
These outcomes are mutually exclusive, exhaustive and equally likely 
based 
on the assumption that the dice are unbiased. Now we denote A: the 
product 
of the points appearing on the dice is 18. 
The events favorable to ‘A’ are [(3, 6), (6, 3)] only, therefore, NA = 2. 
According to classical definition of probability 
P (A) = NA / N = 1/18 
When none of the outcomes is favorable to the event A, NA= 0, P (A) also 
takes the value 0, in that case we say that event A is impossible. 
There are many defects of the classical definition of probability. Unless 
the outcomes of an event are mutually exclusive, exhaustive and equally 
likely,classical definitions cannot be applied. Again, if the number of 
outcomes of an event is infinitely large, the definition fails. The phrase 
‘equally likely appearing in the classical definition of probability means 
equally probable,thus the definition is circular in nature. 
2) Axiomatic Definition 
In the axiomatic definition of probability, we start with a probability space 
‘S’ where the set ‘S’ of abstract objects is called outcomes. The set S and 
its subsets are called events. The probability of an outcome A is by 
definition a number P 
(A) assigned to A. Such a number satisfies the following axioms: 
a) P (A) ≥ 0 i.e., P (A) is a nonnegative number. 
b) The probability of the certain event S is 1, i.e., P (S) = 1. 
c) If two events A and B have no common elements, or, A and B are 



 

 

mutually exclusive, the probability of the event (A U B) consisting of 
the outcomes that are in A or in B equals to sum of their probabilities: 
P (A U B) = P (A) + P (B) 
The axiomatic definition of probability is a relatively recent concept . 
However, the axioms and the results stated above 
had been used earlier.  
Kolmogoroff’s contribution was the interpretation of probability as an 
abstract concept and the development of the theory as a pure 
mathematical discipline. 
We comment next on the connection between an abstract sample space 
and the underlying real experiment. The first step in model formation is 
between elements of S and experimental outcomes. The actual 
outcomes of a real experiment can involve a large number of observable 
characteristics. In the formation of the model, we select from these 
characteristics the one that is of interest in our investigation. 
For example, consider the possible models of the throwing of an 
unbiased die by the 3 players X, Y and Z. 
X says that the outcomes of this consist of six faces of the die, forming 
the sample space {1,2,3,4,5,6}. 
Y argues that the experiment has only 2 outcomes, even or odd, forming 
the sample space {even, odd} 
Z bets that the die will rest on the left side of the table and the face with 
one point will show. Her experiment consists of infinitely many points 
consisting of the six faces of the die and the coordinate of the table 
where the die rests finally. 
3) Empirical Definition 
In N trials of a random experiment if an event is found to occur m times, 
the relative frequency of the occurrence of the event is m/N. If this relative 
frequency approaches a limiting value p, as N increases indefinitely, then 
‘p’ 
is called the probability of the event A. 



 

 

( ) limN 
m P A → ∞ N 
⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ 
To give a meaning to the limit we must interpret the above formula as an 
assumption used to define P(A). This concept was introduced by Von 
Mises.However, the use of such a definition as a basis of deductive theory 
has not enjoyed wide acceptance. 
4) Subjective Definition 
In the subjective interpretation of probability, the number P (A) is 
assigned to a statement. A, which is a measure of our state of knowledge 
or belief 
concerning the truth of A. These kinds of probabilities are most often used 
in our daily life and conversations. We often make statements like “I am 
100% sure that I will pass the examination” i.e., P(of passing the 
examinations) = 1, 
or “there is 50% chance that India will win the match against Pakistan” 
i.e., P(India will win the match against Pakistan)= ½ 
 
Theorem of Total Probability 
If two events A and B are mutually exclusive, exhaustive and equally likely, 
then the occurrence of either A or B, (A U B) is given by the sum of their 
probability. Thus, 
P (A U B) = P(A) + P(B) 
This is also known as the Addition Theorem. 
Proof: Let us assume that a random experiment has n possible outcomes 
which are mutually exclusive, exhaustive and equally likely. While m1 of 
them are favorable to A, m2 are favorable to B. By the classical definition 
of probability 
P(A) = m1 / n and P(B) = m2 / n 
Since A and B are mutually exclusive and exhaustive, the number of 
events 



 

 

favorable to the event (A U B) is given by m1 + m2, therefore, 
P(A U B) = (m1 + m2) / n = (m1 / n) + (m2 / n) = P(A) + P(B) (proved) 
Deductions from Theorem of Total Probability 
1) Theorem of Complementary Event 
If A denotes the occurrence of the event A, then Ac (read as ‘compliment 
of 
A’) denotes non occurrence of the event A and P(A) = 1 - P(Ac 
 
Since A and Ac are mutually exclusive and exhaustive events, S = {A,Ac 
 
Applying the theorem of total probability we get, 
P(S) = P(A) + P(Ac ) = 1 
or, P(Ac ) = 1 - P(A)  
 

 
Theorem of Compound Probability 
The probability of occurrence of the event A and B simultaneously is 
given by 
the product of the probability of the event A and conditional probability 
of the 
event B given that A has actually occurred, which is denoted by P(A/B). 
P(A/B) is given by the ratio of the number of events favorable to the event 
A 



 

 

and B to the number of events favorable to the event A. Symbolically, 
 P(A I B) = P(A) × P(B/A). 
Proof: Suppose a random experiment has n mutually exclusive, 
exhaustive 
and equally likely outcomes among which m1, m2 and m12 are favorable 
to the 
events A, B and (A I B) respectively. 
P (A I B) = m12 / n 
 = m1/n × m12 / m1 
= P(A) × P(B/A) (Proved). 
 This theorem is also known as the multiplication theorem. 
Deductions from Theorem of Total Probability 
The occurrence of one event, say, B may be associated with the 
occurrence or non-occurrence of another event, say, A. This in turn 
implies that we can think of B to be composed of two mutually exclusive 
events (A I B) and (AcI B). Applying the theorem of total probability 
P(B) = P(A I B) + P(Ac  I B)= P(A) × P(B/A) + P(Ac ) × P(B/Ac )… [using 
theorem of compound probability] 
1) Extension of Compound Probability Theorem 
The above theorem can be extended to include the cases when there are 
three or more events. Suppose there are three events A, B and C, then 
P(A I B I C) = P(A) × P(B/A) × P(C/(A I B) 
And so on for more than three events.  
 
CONDITIONAL PROBABILITY AND 
CONCEPT OF INDEPENDENCE 
15.6.1 Conditional Probability 
From the theorem of compound probability we can get the probability of 
one 
even, say, event B conditioned on some other event, say A. As we have 



 

 

discussed earlier, this is symbolically written as P(B/A). From the theory 
of 
compound probability, we know that 
P(A I B) = P(A) × P(B/A) 
or, P(B/A) = P(A I B) / P(A) provided that P(A) ≠ 0. 
Example 4: Find out the probability of getting the Ace of hearts when one 
card is drawn from a well-shuffled pack of cards given the fact that the 
card is 
red. 
Let A denotes the event that the card is red and B denotes the event that 
the 
the card is the Ace of hearts. Then clearly we are interested in finding P 
(B/A). 
From the theorem of conditional of probability 
P (B/A) = P(A I B) / P(A) = (1/52)/(26/52) = 1/26 
Concept of Independent Events 
Two events A and B are said to be statistically independent if the 
occurrence 
one event is not affected by the occurrence of another event. Similarly, 
several events are said to be independent, mutually independent or 
statistically 
independent if the occurrence of one event is not affected by the 
supplementary knowledge of the occurrence of other events. These 
imply that 
P(B/A) = P(B/Ac ) = P(B) 
Therefore, from the theorem of compound probability, we get 
P (A I B) = P(A) × P(B/A) 
 = P (A) × P (B) 
Similarly, for three events we have the following results is that events are 
mutually or statistically independent 
P(A I B I C) = P(A) × P(B) × P(C) along with 



 

 

P (A I B) = P (A) × P (B) 
P (C I B) = P (C) × P (B) 
P (C I A) = P (C) × P (A) 
For more events A, B, C, D to be mutually independent following should 
hold: 
P(A I BI C I D) = P(A) × P(B) × P(C) × P(D) along with 
P(A I B I C) = P(A) × P(B) × P(C) 
P(A I B I D) = P(A) × P(B) × P(D) 
P(D I B I C) = P(D) × P(B) × P(C) 
P(A I D I C) = P(A) × P(D) × P(C) 
P (AI B) = P (A) × P (B) 
 

BAYES’ THEOREM AND ITS APPLICATION 
Suppose an event A can occur if and only if one of the mutually exclusive 
events B1, B2, B3,…………….., Bn occurs. If the unconditional probabilities P(B1), 
P(B2), P(B3),…….., P(Bn) are known and the conditional probabilities are 
P(A/B1),  

 
P(A /B3),………., P(A /Bn) are also known. Then the conditional probability 
P(Bi/A) could be calculated when A has actually occurred. 
P(A) = 1 
 
i=∑P(AI Bi) = 1 

           i=∑P(Bi) P(A/Bi) 
P(Bi/A) = P(Bi I A) / P(A) = P(A /Bi)×P(A) / 1 



 

 

i=∑P(Bi) P(A/Bi), therefore 
P(Bi/A) = P(A /Bi)×P(A) / 1n 
i=∑P(Bi) P(A/Bi) 
This is known as Bayes’ theorem. This is a very strong result in the theory 
of probability. An example will illustrate the theorem more vividly.  
Empirical Distributions 
An empirical distribution is one for which each possible event is assigned 
a probability derived from experimental observation. It is assumed that 
the events are independent and the sum of the probabilities is 1. 
An empirical distribution may represent either a continuous or a discrete 
distribution. If it represents a discrete distribution, then sampling is done 
“on step”. If it represents a continuous distribution, then sampling is done 
via 
“interpolation”. The way the table is described usually determines if an 
empirical distribution is to be handled discretely or continuously; e.g., 

 

 
Discrete Distributions 
To put a little historical perspective behind the names used with these 



 

 

distributions, James Bernoulli (1654-1705) was a Swiss mathematician whose 
book Ars Conjectandi (published posthumously in 1713) was the first significant 
book on probability; it gathered together the ideas on counting, and among 
other things provided a proof of the binomial theorem. Siméon-Denis Poisson 
(1781- 1840) was a professor of mathematics at the Faculté des Sciences whose 
1837 text 
Recherchés sur la probabilité des jugements en matière criminelle et en 
matière civile introduisant la discrete distribution now call the Poisson 
distribution. Keep in mind that scholars such as these evolved their theories with 
the objective of providing sophisticated abstract models of real-world 
phenomena (an effort which, among other things, gave birth to the calculus as 
a major modeling tool) 
I. Bernoulli Distribution 
A Bernoulli event is one for which the probability the event occurs is p and 
the probability the event does not occur is 1-p; i.e., the event is has two 
possible outcomes (usually viewed as success or failure) occurring with 
probability p and 1-p, respectively. A Bernoulli trial is an instantiation of a 
Bernoulli event. So long as the probability of success or failure remains the 
same from trial to trial (i.e., each trial is independent of the others), a 
The sequence of Bernoulli trials is called a Bernoulli process. Among other 
conclusions that could be reached, this means that for n trials, the 
probability of n successes is pn 
. 
A Bernoulli distribution is the pair of probabilities of a Bernoulli event, 
which is too simple to be interesting. However, it is implicitly used in “yesno” 
decision processes where the choice occurs with the same probability 
from trial to trial (e.g., the customer chooses to go down aisle 1 with 
probability p) and can be case in the same kind of mathematical notation 
used to describe more complex distributions: 

 



 

 

 
Binomial Distribution 
The Bernoulli distribution represents the success or failure of a single 
Bernoulli trial. The Binomial Distribution represents the number of 
successes and failures in n independent Bernoulli trials for some given value 
of n. For example, if a manufactured item is defective with probability p, 
then the binomial distribution represents the number of successes and 
failures in a lot of n items. In particular, sampling from this distribution 
gives a count of the number of defective items in a sample lot. Another 
An example is the number of heads obtained in tossing a coin n times. 

 
Poisson Distribution (values n = 0, 1, 2, . . .) 
The Poisson distribution is the limiting case of the binomial distribution 
where p ® 0 and n ® ¥. The expected value E(X) = l where np ® l as p ® 0 
and n ® ¥. The standard deviation is l . The pdf is given by 
 
This distribution dates back to Poisson's 1837 text regarding civil and 
criminal matters, in effect scotching the tale that its first use was for 
modeling deaths from the kicks of horses in the Prussian army. In addition 
to modeling the number of arrivals over some interval of time (recall the 



 

 

relationship to the exponential distribution; a Poisson process has 
exponentially distributed interarrival times), 
The distribution has also been used to model the number of defects on a 
manufactured article. In general the Poisson distribution is used for 
situations where the probability of an event occurring is very small, but 
the number of trials is very large (so the event is expected to actually 
occur a few times). 
 
 
 
Graphically, with Λ = 2, it appears as: 
 

 
Geometric Distribution 
 



 

 

 
 
Like the exponential distribution, it is "memoryless" (and is the only discrete 
distribution with this property; see the discussion of the exponential 
distribution). 
Its expected value is given by 

 

 
 
Negative Binomial Distribution 
The negative binomial distribution is a discrete probability distribution of the 
number of failures in a sequence of iid Bernoulli trials with probability of success 



 

 

p before a specified (non-random) number of successes (denoted r) occurs. 
It is also called Pascal Distribution (when r is an integer). 
 
For x+r Bernoulli trials with success probability p, the negative binomial gives 
the probability of x failures and r successes, with a success on the last trial. 
 
Its pmf: 

 
 
Normal Distribution 
The normal(μ,σ2) distribution is used for continuous random variables that can 
take any value −∞≤x<∞. 
 
The normal distribution is immensely useful because of the central limit 
theorem, which states that, under mild conditions, the mean of many random 
variables independently drawn from the same distribution is distributed 
approximately normally, irrespective of the form of the original distribution  

 
 



 

 

 
Log-normal distribution 
 
In probability theory, a log-normal (or lognormal) distribution is a continuous 
probability distribution of a random variable whose logarithm is normally 
distributed. Thus, if the random variable X is log-normally distributed, then Y = 
ln(X) has a normal distribution.[1][2] Equivalently, if Y has a normal distribution, 
then the exponential function of Y, X = exp(Y), has a log-normal distribution. A 
random variable which is log-normally distributed takes only positive real 
values. It is a convenient and useful model for measurements in exact and 
engineering sciences, as well as medicine, economics and other topics (e.g., 
energies, concentrations, lengths, prices of financial instruments, and other 
metrics). 
 
The distribution is occasionally referred to as the Galton distribution or Galton's 
distribution, after Francis Galton.[3] The log-normal distribution has also been 



 

 

associated with other names, such as McAlister, Gibrat and Cobb–Douglas.

 
 
A log-normal process is the statistical realization of the multiplicative product 
of many independent random variables, each of which is positive. This is 
justified by considering the central limit theorem in the log domain (sometimes 
called Gibrat's law). The log-normal distribution is the maximum entropy 
probability distribution for a random variate X—for which the mean and 
variance of ln(X) are specified. 
 


