E, ENTRI

Orbital angular momentum

Consider a particle of mass m , and momentum \vec{p} and position vector \vec{r}. In classical mechanics, the particle's orbital angular momentum is given by a vector \vec{L}, defined by

$$
\vec{L}=\vec{r} \times \vec{p}
$$

This vector points in a direction that is perpendicular to the plain containing \vec{r} and \vec{p}, and has a magnitude $\mathrm{L}=\mathrm{rp} \sin \alpha$, where α is the angle between \vec{r} and \vec{p}. In Cartesian coordinates, the components of \vec{L} are

$$
\begin{gathered}
L_{x}=y p_{z}-z p_{y} \\
L_{y}=z p_{x}-x p_{z} \\
L_{z}=x p_{y}-y p_{x}
\end{gathered}
$$

The corresponding QM operators representing L_{x}, L_{y}, L_{z} are obtained by replacing $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and p_{x}, p_{y}, p_{z} with corresponding QM operators, giving

$$
\begin{aligned}
& L_{x}=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \\
& L_{y}=-i \hbar\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right) \\
& L_{x}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)
\end{aligned}
$$

In more compact form, this can be written as a Vector operator

$$
\vec{L}=-\mathrm{i} \hbar(\vec{r} \times \vec{\nabla})
$$

It is easy to prove that \vec{L} is Hermitian.

Angular momentum Algebra

Using the commutation relations derived for \vec{r} and \vec{p}, the commutation relation for different components of \vec{L} are readily derived.

$$
\begin{aligned}
{\left[L_{x}, L_{y}\right] } & =\left[\left(y p_{z}-z p_{y}\right), \mathrm{z} p_{x}-\mathrm{x} p_{z}\right] \\
& =\left[y p_{z}, \mathrm{z} p_{x}\right]+\left[\mathrm{z} p_{y}, \mathrm{x} p_{z}\right]+\left[\mathrm{y} p_{z}, \mathrm{x} p_{z}\right]+\left[\mathrm{z} p_{y}, \mathrm{z} p_{x}\right]
\end{aligned}
$$

Since y and p_{z} commute with each other and with z and p_{z}, the first term becomes

$$
\left[\mathrm{y} p_{z}, \mathrm{z} p_{x}\right]=\mathrm{y} p_{z} \mathrm{z} p_{x}-\mathrm{z} p_{x} \mathrm{y} p_{z}=\mathrm{y} p_{x}\left[p_{z}, z\right]=-i \hbar y p_{z}
$$

Similarly the second commutator becomes

$$
\left[z p_{y}, \mathrm{x} p_{z}\right]=\mathrm{z} p_{y} \times p_{z}-\mathrm{x} p_{z} z p_{y}=\mathrm{x} p_{y}\left[\mathrm{z}, p_{z}\right]=i \hbar x p_{y}
$$

The third ans forth commutator vanishes, thus we find that

E, ENTRI

$$
\left[L_{x}, L_{y}\right]=i \hbar\left[x p_{y}-y p_{x}\right]=i \hbar L_{x}
$$

Similarly we can show that

$$
\begin{aligned}
& {\left[L_{y}, L_{z}\right]=i \hbar L_{z}} \\
& {\left[L_{z}, L_{x}\right]=i \hbar L_{y}}
\end{aligned}
$$

The three equations are similar to the relation

$$
\vec{L} \times \vec{L}=i \hbar \vec{L}
$$

The fact that the operators representing the different components of the angular momentum do not commute, implies it is impossible to obtain definite values for all component of the angular momentum when measured simultaneously. This means that if the system is in eigenstate of one component of angular momentum, it will in general will not be an eigenstate of either of the other two components.

Commutation Relations

1. $\left[\widehat{x}, \widehat{L_{x}}\right]=\left[\widehat{x}, y p_{z}-z p_{y}\right]$

$$
\begin{aligned}
& =\left[\widehat{x}, y p_{z}\right]-\left[\hat{x}, z p_{y}\right] \\
& =0
\end{aligned}
$$

2. $\left[\widehat{y}, L_{y}\right]=0$
3. $\left[\hat{z}, L_{z}\right]=0$
4. $\left[y, L_{x}\right]=\left[y, y p_{z}-z p_{y}\right]$

$$
=\left[y, y p_{z}\right]-\left[y, z p_{y}\right]
$$

$$
=-\mathbf{z}\left[\mathbf{y}, \boldsymbol{p}_{z}\right]
$$

$$
=-i \hbar z
$$

5. $\left[L_{x}, y\right]=i \hbar z$
6. $\left[L_{y}, z\right]=i \hbar x$
7. $\left[L_{z}, \mathrm{x}\right]=\mathrm{i} \mathrm{h} y$
8. $\left[p_{x}, L_{x}\right]=\left[p_{x}, y p_{z}-z p_{y}\right]$

$$
=0
$$

9. $\left[p_{y}, L_{y}\right]=0$
10. $\left[p_{z}, L_{z}\right]=0$

E, ENTRI

11. $\left[p_{x}, L_{y}\right]=\left[p_{x}, \mathrm{z} p_{x}-\mathrm{x} p_{z}\right]$

$$
\begin{aligned}
& =-\left[p_{x}, x\right] p_{z} \\
& =i \hbar p_{z}
\end{aligned}
$$

12. $\left[p_{y}, L_{z}\right]=i \hbar p_{x}$
13. $\left[p_{z}, L_{x}\right]=i \hbar p_{y}$
14. $\left[L_{x}, L_{y} L_{z}\right]=\left[L_{x}, L_{y}\right] L_{z}+L_{y}\left[L_{x}, L_{z}\right]$

$$
\begin{aligned}
& =i \hbar L_{z} L_{z}+L_{y} i \hbar L_{y} \\
& =i \hbar\left[L_{z}^{2}+L_{y}^{2}\right]
\end{aligned}
$$

15. $\left[L^{2}{ }_{x}, \mathrm{y}\right]=\left[L_{x} L_{x}, \mathrm{y}\right]$

$$
\begin{aligned}
& =\left[L_{x}, y\right] L_{x}+L_{x}\left[L_{x}, y\right] \\
& =i \hbar z L_{x}+i \hbar L_{x} z \\
& =i \hbar\left[z L_{x}+L_{x} z\right]
\end{aligned}
$$

Raising operator and lowering operator

The operator L_{+}is called raising operator and L_{-}is known as lowering operator.

$$
\begin{aligned}
& L_{+}=L_{x}+i L_{y} \\
& \text { Also } L_{+}|l, m\rangle=C_{+}|l, m+1\rangle \\
& L_{-}=L_{x}-i L_{y} \\
& L_{-}|l, m\rangle=C_{-}|l, m-1\rangle \\
& \left(L_{+}\right)^{+}=L_{-} \\
& \left(L_{-}\right)^{+}=L_{+}
\end{aligned}
$$

Commutation relation

1. $\left[L_{+}, L_{x}\right]=\left[L_{x}+i L_{y}, L_{x}\right]$

$$
\begin{aligned}
& =\left[L_{x}, L_{x}\right]+i\left[L_{y}, L_{x}\right] \\
& =0+i x-i \hbar L_{z} \\
& =\hbar L_{z}
\end{aligned}
$$

2. $\left[L_{-}, L_{y}\right]=i \hbar L_{z}$
3. $\left[L_{+}, L_{-}\right]=2 \hbar L_{z}$
4. $\left[L_{y}, L_{+}\right]=-i \hbar L_{z}$
5. $L_{+} L_{-}=L^{2}-L^{2}{ }_{z}+\hbar L_{z}$
6. $L_{-} L_{+}=L^{2}-L_{z}^{2}-\hbar L_{z}$
