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SETS AND FUNCTIONS

CARDINALITY

Let A be a finite set, the number of elements in set A is known as cardinality of A, usually denoted as
n(A).

RESULT

Let 4, B, C be finite sets, then
n(A U B) =n(A) + n(B) -n(A n B)
e n(AUBUC)=n(A)+n(B)+n(C)-n(AnB)-n(AnC)-n(BnC)+n(AnBnC()
e n(A/B)=n(A)-n(An B)
o n(AAB)=n(A)+n(B)-2n(An B)=n(AU B) -n(A n B)
o n(AxB)=n(A). n(B)
o n(A)=m= n(P(A)) = 2m, where P(A) is the power set of A.

RELATION

A relation R from a set A to B is a subset of A x B, ie, R € A x B. If (a, b) € R, then we say that
“ais related to b (aRb)” or a~b.
¢ If n(A) = m, n(B) = n, then the number of relations from A > B is 2™"

¢ Number of relations on A of cardinality n is 2n
NOTE

e R:A - Aissaid to be Reflexive relation if (a, a) ER , Va € A.
Number of reflexive relations on A of cardinality m is gm*-m

e R:A - Aissaid to be Symmetric relation if (a, b)) E R = (b, a) ER
Reflexive relation need not be symmetric and vice versa.

m(m+1)
Number of symmetric relations on A of cardinality mis 2 2

e R:A - Aissaid to be Anti-symmetric relationonaset Aif (a, b)) ER & (b,a) ER & a=b.
e R:A — Aissaid to be a Transitive relationon aset A. if (a,b) E R& (b,c) ER = (a,c) €
R.

EQUIVALENCE RELATION

If the relation R is reflexive, symmetric, transitive, then R is said to be an equivalence relation.

FUNCTIONS

Let A, B< Randlet f: A - B be a relation from A to B, then f is said to be a function from A to B if
each element of A is related to a unique element in B.



Here A is said to be the Domain D(f) of the function f and B is the Codomain of f.

If b € B is the unique element related from a € A then we say that b is the Image of a and write f(a)
= b, In this case a is known as a preimage of b. The set of all such b = f(a), a € A is called the Range
of f denoted by R(f). f is said to be real valued if R(f) € R

EXAMPLE
. =Vx, D(f) = R+ U {0} = [0, =) = R(f)

=k, D(f) =R, R(f) = {k}

=x,D(f)=R,R(f) =R

=@o+ aix + azxz+ -+ anxn, ai€ R, D(f) =R

flx)
flx)
flx)
flx)

CLASSIFICATION OF FUNCTIONS

e function f is said to be a one-one function if, f(x1) = f(x;) = x1= x, xfor any x4, x, € D(f).
Failure of the converse leads the function to be Many one.

e Afunction f: A - B is said to be a onto function if, f(A) = B. Otherwise, function is just from
Ainto B.

e A function which is both one-one and onto is known as a Bijection

COMPOSITION OF FUNCTIONS

Let f, g be function such that f: A - B, g: B - C, then their composition g o f: A - C can be
defined by g ° f(x) = g(f(x)), Vx € A.

NOTE

e Ingeneral go f # f o g, (later one is defined only if B = C).
egof,fog, fof,geo gallaredefined togetheronlyif A=B=C

INVERSE OF A FUNCTION

A function f: A - B is to be invertible if there is a function g: B> Asothat fe g=IB& go f =14,
where 14 is the identity function on the set A.

RESULTS

e f'is Invertible & f is a Bijection.

¢ Let A, B be sets with cardinalities m and n are respectively, then 3 a bijection
fiA>Ben=m.

e Let A, B be sets with cardinalities m and n respectively, then 3 an Injection
f:A-> B & fis abijection.

e Suppose A has cardinality n and B has cardinality m, then

+* No. of functions from A > B :=mn
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+* No. of Injections from A > B:={mPOn,, mmz=<nn

% No. of surjections from A > B := {m r=1(-10)m-r mCr,, mm<>nn
** No of Bijectionsfrom A > B:={n0!,, mm=#nn

e A graphical test to classify the function y = f(x):

% f is one-one if any horizontal line intersects the graph at most once.
Imagine the graphs of f(x) = ex, the line y =0, etc

< f is onto if any horizontal line intersects the graph atleast once
MONOTONICITY OF FUNCTIONS

MONOTONIC INCREASING FUNCTION

A function is said to be a monotonic increasing function if x; < x, = f(x1) < f(x3)
Example: greatest integer function, constant function, etc

STRICTLY INCREAING FUNCTION

A function f is said to be strictly increasing function if x; < x, = f(x1) < f(x3)
Example: Identity function

MONOTONIC DECRESING FUNCTION

A function f is said to be monotonic decreasing function if x; < x, = f(x1) = f(x3)
Example: Constant function

STRICTLY DECRESING FUNCTION

A function f is said to be srtictly decreasing function if x; < x, = f(x1) > f(x3)

Example:f(x) = £

X

LIMIT OF A FUNCTION

LIMIT OF A FUNCTION

let f: A — B be a real valued function, then f is said to have a limit [ € R at a point x = x,

If for every € > 0, there is a real number § = §(¢) such that [x — x| < § = |f(x) =[] < e.
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NOTE

if Lis the limit of f at the point x,, then we may write lim f(x) = L.
X—>Xg

RIGHT AND LEFT LIMITS

o Leftlimitof fatx =a:f(a”) = Jircrll_f(x) = }li_rg(l)f(a —h)
e Rightlimitof fatx = a:f(a*) = xlirggrf(x) = }li_r)r(l)f(a + h)
e f haslimit at x, iff both f(a™) and f(a™) existand f(a™) = f(a™) = xll,r,rcl f(x)

e lim f(x)is unique.
X—Xg

PROPERTIES OF LIMITS
Let lim f(x) = [ &lim g(x) = m then
xX—a xX—a

. Jlci_r)rlllcf(x) =cl
o limfl)g(x) =lm
o limf(x)/g(x) =1l/mm=#0

l'my(X)>
o limf(x)9) = limf(x)<xl*“ = m
x—-a x—-a

EXAMPLES

. 1
e |Jim—=1
x—0 1+x

. .1
e |imxsin-=0
x—0 X

L1
e |Jim—=o0
x—0 |x|

e lim|x["=0,n>0

x—0
0 lx] <1
e limx™ = 1 x=1
n—oo . .
dosen'texist, otherwise
n_n
e lim = na" 1
x-a X—a
. sinx
e |im =1
x-0 X
. sinx
e lim =0
x—>oo X
. tanx
e |im =1
x-0 X
. COosXx
e lim = oo
x-0 X
. Cosx
e lim =0
x—oo X
e limE2=1lop.a
A 8e

. logo(1+x
o im0 _y
x—-0 X
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e lim (1 +§)x =e?

X— 00

1
o lim(1+ ax)x=e“
x—0

SEQUENCE OF REAL NUMBERS

SEQUENCE OF REAL NUMBERS

A sequence of real numbers (or a sequence in R) is a function defined on the set N of natural
numbers whose range contained in R. If S:N — R is a sequence, we may denote the value of Satn
by S(n) = s, and the sequence by notations like(s,), (s,), (sp: n € N).

EXAMPLES

S=({(-1D"neN)

1 A1l
s=(Grmen)=(Gre )
Constant sequences: if b € R,B := (b, b, b, ...)
Fibonacci sequence: F := (f,),where f = 1,f, =1, fos2 = fus1 + fan =12, ...

BOUNDS OF THE SEQUENCE
Let (s;,) be a real sequence, then

o (S,)is bounded above & 3K € Rsuchthat$, < KVn € N.
e (S,)isbounded below & 3k € R suchthatS, >k Vn € N.
e (S,)isboundede Ik, K € Rsuchthatk <s, < KVn € N.

LIMIT POINT
Let(s,) be a real sequence, [ € R is said to be a limit point of (s,,)

If for every € > 0, there is a natural number N = N(¢) such that for all n = N, the terms S, satisfies
1S, — ] <e.

NOTE

If Lis the limit for the real sequence(S,,), then we may write S,, = [ or lim S,, = L. In this case the

n—oo

sequence (S, ) is said to be converging and say (S,,)converges to L.

EXAMPLE

1
e -0
n

1
e 2n—o1

1
e 2I'n 52
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RESULT

e Convergent sequences are bounded, converse need not be true

SUBSEQUENCES

Let A = (a,) be a sequence of real numbers and n; < n, < -+ < n; < -+ be strictly increasing
natural numbers, then the sequence A’ = (an,)given by (a,,,ay,, ...) is called a subsequence of A.

EXAMPLE
(i)is a subsequence of (%).
BOLZANO WEISTRASS THEOREM
Every bounded sequences has a limit point (and thereby a convergent subsequence).
RESULT
e Set of all limit points of bounded sequences is bounded.
LIMIT INFERIOR

Let A = (a,) be a sequence of real numbers, let b, = inf{ay, a1, x4z, -}, k = 1,2,3 ..., thenitis
clear that (by) is an increasing sequence. The limit inferior of (a,,), denoted by lim(a,,),is given by

lim{a,) = liminf{a,) = sup(by)
LIMIT SUPERIOR

Let A = (a,) be a sequence of real numbers, let b, = sup{ay, Qx4+1, Axs2, -}, k = 1,2,3, .., then it

is clear that (b, ) is a decreasing sequence. Then the limit superior of (a,,), denoted by lim{a,,) is
given by

lim{a,) = lim sup{a,) = inf(by)
NOTE

Let (a, ) be a realsequence, then

e (a,)convergesto!l © lim(a,) = lim(a,) = l.

o inf(a,) < lim{a,) < lim(a,) < sup(a,)

EXAMPLE

1 1
1. Consider the sequence {(a,) = 217%, then it is clear that inf(a,) = 2177 = 1and lim{a,) =

lim(a,) = sup(a,) = 2
2. Consider the sequence {(a,) = %, then clearly inf(a,) = lim(a,) = lim(a,) = 0 and

sup(a,) = 1



NOTE
Suppose {(a,) be a bounded sequence then

e (a,)isbounded & lim(a,)and lim{a,)are finite.

o lim{—a,) = —lim(a,)

o lim{—a,) = —lim{a,) & —lim{(—a,)= lim(a,)

Suppose that (a,), (b,,) are bounded real sequence, then

e lim(a,)+ lim(b,) < lim{a, + b,) < lim(a,) + lim(b,)) < lim{a,, + b,)) < lim{a,) +

lim(b,,)
o lim{ay)lim(b,) < lim(a,b,) < lim{a,)lim(b,) < lim{a,b,) < lim(a,)lim(b,)

TYPES OF SEQUENCES

OSCILLATING SEQUENCE

1. Finitely oscillating.
% (ay) is bounded but not converging

@,

@ lim{a,) # lim{a,)
% Exa,=(C-D"a,=1+CD"
2. Infinitely oscillating

s lim(a,) = —oo andlim(a,) = o
» Ex:iiap, =(—D"™,a, =(=2)"
MONOTONE SEQUENCES

A real sequence (a,,) is said to be Monotone if (a,,) satisfies either a,, < a,,q,Vnora, = a,,+1,vn.
In first case sequence is said to be increasing and in the later case sequence is said to be decreasing.

DIVERGING SEQUENCES

Sequences having limit Foo.
Ex:a, = —n,a, = 2"
CAUCHY SEQUENCE

A real sequence (a,,) is said to be Cauchy if forall ¢ > 0,3IN € N such that |a, — a,,| < &,Vn,m >
N.

NOTE
let (a,) be areal sequence, then

e (a,)is Cauchy & (a,) is convergent.
e (a,)is Cauchy = (a,) is bounded.
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CAUCHY CRITERION

e Let{a,) be areal sequence, if for some
0<a<l,la,4 —ayl < a™ vn,then{a,)is Cauchy.
e Let({a,) be areal sequences, if for some
0<a<l, a4 —ayl < ala, —a,_11,vVn = {a,) is Cauchy.

RESULT
let (a,), (b,) be real sequences, then

o |api1—ayl 2 0# |lap —ay] <a™vn, forsome0 < a <1.
o |api1—ayl =2 0# |lap —ayl < ala, —ap_1|Vn, forsome 0 < a < 1.

SANDWICH THEOREM (SQUEEZ THEOREM)
Let (x,), (¥n), (z,) be real sequence such that x,, < y,, < z,,,Vn, then (x;,),(z,) = L = (y,) = [
CAUCHYS THEOREM ON LIMITS
CAUCHY’S FIRST THEOREM
Let (S,,) be a real sequence such that (S,,) = [, whether finite or infinite,
then (@) -
COROLLARY

Let (S, ) be a real sequence such that (S;) » [,S,, = 0,

1
then ((s153 ...Sp)n) = [

CAUCHY’S SECOND THEOREM

1
Let (s,,) be a real sequence such that (s,,) = I, s, = 0, then lim 22 = lim (s5,)n = I(# o).
n—-oo

n—-oo Sp

CESARO’S THEOREM

aibp+azby_q+--+anbq

=ab

Let (a,), (b,) be real sequence so that (a,) = a,(b,) = b, then lim ~
n—-oo

RESULT

o Let(a,) be areal sequence, then lim It = 1> 1= lim a, =

n-oco 0an n—-oo

MONOTONE CONVERGENT THEOREM
let {a,) be a real monotone sequence, then {(a,,) is convergent <(a,,) is bounded.
NOTE

Let (a,) be a real sequence, then
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e (a,)is bounded and monotonically increasing <(a,,) is convergent to its sup
e (a,)is bounded and monotonically decreasing <(a,,) is convergent to its inf

CANTOR’S NESTED INTERVAL THEOREM

Let (a,), (by,) be real sequences so that a,, < b,, Vn and (a,,) = a,(b,,) = b by letting I, = [a,, b,],
suppose that I,;; € I,Vnthen N;=; I, = {a} = {b}.

% ie, (a,)&(b,) converges to the same point

MONOTONE SUBSEQUENCE THEOREM

Every sequence in R has a monotone subsequence

SERIES OF REAL NUMBERS

SERIES OF REAL NUMBERS

A series of real numbers is an expression of the form a; + a, + a5 ... or more compactly as
Yin=1 an,wWhere (a,) is a sequence of real numbers. The number a,, is called the n-th term of the
series and the sequence S,, = Y,i-; a; is called the n-th partial sum of the series Y57 a,

CONVERGENCE AND DIVERGENCE OF SERIES

A series },n—1 a, is said to be converge (to S € R) if the sequence of partial sum of the series
converge (to S € R).

NOTE
o If Y, a,convergesto S, then we write S = )7, a,
e Aseries which does not converge is called divergent series.
e Yn=1an, = lims,
n—-oco
CAUCHY CRITERION
The series Y., a, of real term is convergent <(s,,) is convergent.

NOTE

e The series )51 a, is convergent = (a,) = 0.
% Above implication is from a,, = S,,41 — Sy.

p-SERIES

. . o 1
p —series are the series of the form X.;_; —



RESULT
. Z;‘fﬂ% is convergent & p > 1.
e a,= % - 0, but Y77 a, is not convergent.
. Z;’{;lﬁ is convergent. < deg (p) > 1,where p(n) is a polynomial inn

e Y ,a, isconvergent.< (S,) is cauchy.
o Yoiiap=a&Xy b, =b=>%7_1(a,tby)=a+b

GEOMETRIC SERIES

. Soarm=ithl<1

o >  r™divergesfor|r| =1
ABSOLUTELY CONVERGENT SERIES

Let Yo @y, be a series of real numbers, then Y7, a,, is said to be absolutely convergent if
Yin=1la,| converges.

%+ Absolutely convergent series converges.
RESULT
Consider the real series Yp—1 @, Yme1 bn» 2me1(a, £ by) then,

% If any two of the above converges, then the third also converges.

< If any one of the above converges, and any one diverges, then the third will be diverges.

< If any two of the above diverges, then we cannot say about third.

e Suppose that ;-1 a, = a, then any type of series can be obtained from }.;7_; a,, by
grouping terms without altering the order.

o Y ..a,,a, = 0isconvergente(s,) is bounded above.

PRINGSHEIM’S THEOREM

Let Yp—1 @y , @y = 0 be areal series so that (a,) is a monotonically decreasing sequence, then,
Yin=1 4y is convergent =>na, — 0.

TEST FOR SERIES

COMPARISON TEST

Let Yp—1 Gy, Xime1 by, be areal series so that 0 < a,, < b,,then,

(i) Ym=1 by, converges =Y.7_; a,, converges.
(ii) Yin=q ay diverges =37, b, diverges.

LIMIT COMPARISON TEST

Let Yo=1 Ay, 2im=1 b, be real series so thata,, = 0,b,, = 0 & lim Z—” = [(# 0) < o, then

n—-oo Un

(i) Yome1 An» Xome1 by, converges or diverges together.
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(ii) Suppose l = 0 & Y.;°-1 b, converges, then Y7, a,, converges.
(iii) Suppose | = o & Y71 b, diverges, then Y7, a,, diverges.

CAUCHY’S ROOT TEST FOR +VE TERM SERIES
1
Let Yo, a, be a real series so that a,, = 0, & lim (a,)» = [, then
n—-oo

(i) Yim=q Gy convergesifl < 1
(ii) Y=y Ay divergesifl > 1
(iii) Test failsifl = 1

De ALEMBERT’S RATIO TEST FOR +VE TERM SERIES

Let Y.;—1 a,, be areal series so that a, = 0,& lim Intt — | then

n-oo an

(i) Yin=1 @y convergesifl < 1
(ii) Yin=q ay divergesifl > 1
(iii) Test failsif [ = 1

e logn < nfforanyc > 0.

RAABE’S TEST
) q . an
Let Y:p—; a, be a real series so thet a, = 0 & lim n( — 1) = [, then
n—-oo An+1
(i) If 1 > 1,%-; a, converges.
(ii) Ifl <1,)n=qay diverges.

(iii) If I = 1 test fails.

LOGARITHM TEST

Let Y:p—; a, be a real series so that a,, = 0 & lim (log( )) = [, then
n—-oo

an
An+1
(i) Ifl > 1,7, a, converges.

(ii) Ifl <1,Yn=qay diverges.
(iii) If I = 1 test fails.

CONDENSATION TEST

Let Y:n—; a, be a real series, then Y0, a, & Y.;=1 2™ a,n behaves alike.

ALTERNATING SERIES (LEBINIZ) TEST

Let Yo (=™ ay,, a, = 0is convergent if, a, = a,.1& a, = 0.

CONDITIONALLY CONVERGENT SERIES

A convergent series Y.;n—; a, is said to be conditionally convergent if },7°_,|a, | is not convergent.
ABLE’S TEST

Let Y:n—; a, be a real convergent series and (b,,) be a positive monotone decreasing sequence, then
Ym=1 Qn by is convergent.



o letYo—;an,Yme by be convergent series, then Y7, a, b, also convergent.
e Llet ), a, bean absolutely convergent real series, (b, ) is a real bounded sequence,
then),;_; a, b, convergent.

EXAMPLES FOR CONVERGENT SERIES

Bt =2
i e
S R AR

DIRECHLET THEOREM

Let ;1 @, be an absolutely convergent seires, By rearrangements (Bracketing) of terms of
Yin=1 4y, We can make an absolutely convergent series converges to same sum.

COROLLARY

Let ;1 a,, ba a divergent series of positive terms, by rearrangements of terms of Y., a,, we can
make only divergent series.

REIMANN THEOREM

Let Y:n—1 a, be a conditionally convergent real series, then by appropriate rearrangements of terms
of Yo=1 a, we can make series so that,

(i) Convergent to any number [ < oo
(ii) Divergent to oo
(iii) Divergent to —oo
(iv) Oscillates finitely.
(v) Oscillates infinitely
COROLLARY

Let Yo @, be aconditionally convergent real series, and }5-; a,, = 0, denotes S, = Y:n—; a,, then

1. S5, =0, forinfinitely many k

2. ltis possible that S, > 0, for infinitely many k.

3. ltis possible that S, < 0, for infinitely many k

4. |Itis possible that S, > 0, for all but finitely many k
NOTE

m —tail of a series Y.p—; ay:

Let Y:n—; a, be a real series, then the m-tail of the series is given by
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[o¢]

Z ap =y + Ay + Qg +

n=m

RESULT

e Y  a,isconvergent= Yy na, 2> 0asn— o

e Y, ay,isconvergent = Y., en doesn’t converge.

CONTINUITY

CONTINUITY OF A FUNCTION

Let f: A — B be a function, then f is said to be continuous at the point x = x; € A if lim f(x) =
X

f(x). Otherwise f is said to have a discontinuity at x,.

EXAMPLE

.1 1 . n
° sm;, cos o are Disccontinuous at 0.

o f(x)=x% sin%, a > 0 is continuous at 0
NOTE

e fissaid to be Left continuous if f(a™) = f(a).
e fissaid to be right continuous if f (at) = f(a).

TYPES OF DISCONTINUITIES
REMOVABLE DISCONTINUITY
f is said to have a removable discontinuity at x = a if f(a™) = f(at) # f(a).
Discontinuity can be removed by redefining functions at a by f(a) = f(a™) = f(a™).
NON REMOVABLE DISCONTINUITY
15t KIND:f is said to have a discontinuity of 1tkind at x = a if f(a™) # f(at)
1,x>0
Example : Signum function, f(x) ={—1,x <0
0,x=0

2" KIND:f is said to have a discontinuity of 2" kind at x = a if either or both f(a™), f(a™) doesn’t
exist.

NOTE

e Monotone functions doesn’t have the discontinuity of 2" kind.
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e fiscontinuousin [a,b] = f is bounded on [a, b]
e flx)= ﬁ is continuous in (a, b), but not bounded.

e f continuousin [a, b] = f attains its bounds atleast once on [a, b].
e fiscontinuousin [a,b] = R(f) = [l, L], where [ :=Minimum of f & L :=Maximum of f.
e fiscontinuous atc € (a,b) = f(x) has same sign as f(c) in some neighbourhood
(c—6,c+ ).
LOCATION ROOT THEOREM
Let f be continuous in [a, b], f(a)& f(b) are in opposite signs, then 3c € (a, b) such that f(c) = 0.
INTERMEDIATE VALUE THEOREM
Let f be continuousin [a, b], f(a) # f(b), then f assumes all values between f(a)& f(b).

FIXED POINT THEOREM

Let f: [a, b] - [a, b] be continuous, then 3¢ € [a, b] such that f(c) = c. (Fixed point)

EXAMPLE

(i) f is constant = f has only one fixed point.

(ii) f is the identity function <all points are fixed points.
NOTES

e Let f be afunction from [a, b], & 3c € [f(a), f(b)] such thatc &€ R(f) = f is not
continuous.

e Let f beinjective on [a, b], and satisfies Intermediate Value Theorem=f is continuous.

e Let f be continuous in [a, b], then f assumes all values between [ = min f & L = max f

e Let f be continuous in [a, b] and is Monotonic increasing, then R(f) = [f(a), f (b)].

e f:[a, b] - [a, b] has no fixed points at all = f is not continuous.

e Let f be continuous on [a, b]& f(a) = f(b) = Ia;, b; € (a,b) such that f(a;) = f(b;).

UNIFORM CONTINUITY

A function f defined on an interval I is said to be uniformly continuous on I if for each € > 0 there
exista & > 0 such that, |f(x, — f(x1)]| < € for arbitrary points x;, x, of I for which |x; — x,| < §

NON-UNIFORM CONTINUITY CRITERION
Let] € R andlet f:1 = R. Then the following satatements are equivalent.

1. fis not uniformly continuous on I.
2. there existan gy > 0 such that for every § > 0 there are points x4, ugin | such that |x5 —
us| <& and |f(xs = f(us)| = &
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3. There exist an g5 > 0 and two sequences (x,,) and (u,) inlsuch thatlim (x, —u,) =0
and |f(x, — f(uy)| = & foralln € N.

UNIFORM CONTINUITY THEOREM

Let | be a closed and bounded interval and let f: I — R be continuous on I. Then, f is uniformly
continuous on |.



