

SETS AND FUNCTIONS

CARDINALITY

Let A be a finite set, the number of elements in set A is known as cardinality of A, usually denoted as n(A).

RESULT

Let A, B, C be finite sets, then

 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

- $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(A \cap C) n(B \cap C) + n(A \cap B \cap C)$
- $n(A/B) = n(A) n(A \cap B)$
- $n(A \Delta B) = n(A) + n(B) 2n(A \cap B) = n(A \cup B) n(A \cap B)$
- $n(A \times B) = n(A)$. n(B)
- $n(A) = m \Rightarrow n(P(A)) = 2m$, where P(A) is the power set of A.

RELATION

A relation *R* from a set *A* to *B* is a subset of $A \times B$, ie, $R \subseteq A \times B$. If $(a, b) \in R$, then we say that "*a* is related to *b* (aRb)" or $a \sim b$.

- If n(A) = m, n(B) = n, then the number of relations from $A \rightarrow B$ is 2^{mn}
- Number of relations on A of cardinality n is 2^{n^2}

NOTE

- R: A → A is said to be Reflexive relation if (a, a) ∈ R , ∀a ∈ A.
 Number of reflexive relations on A of cardinality m is 2^{m²-m}
- R: A → A is said to be Symmetric relation if (a, b) ∈ R ⇒ (b, a) ∈ R
 Reflexive relation need not be symmetric and vice versa.

Number of symmetric relations on A of cardinality m is $2^{\frac{m(m+1)}{2}}$

- $R: A \rightarrow A$ is said to be Anti-symmetric relation on a set A if $(a, b) \in R \& (b, a) \in R \Leftrightarrow a = b$.
- R: A → A is said to be a Transitive relation on a set A. if (a, b) ∈ R & (b, c) ∈ R ⇒ (a, c) ∈ R.

EQUIVALENCE RELATION

If the relation R is reflexive, symmetric, transitive, then R is said to be an equivalence relation.

FUNCTIONS

Let $A, B \subset \mathbb{R}$ and let $f: A \rightarrow B$ be a relation from A to B, then f is said to be a function from A to B if each element of A is related to a unique element in B.

Here A is said to be the Domain D(f) of the function f and B is the Codomain of f.

If $b \in B$ is the unique element related from $a \in A$ then we say that b is the Image of a and write f(a) = b, In this case a is known as a preimage of b. The set of all such b = f(a), $a \in A$ is called the Range of f denoted by R(f). f is said to be real valued if $R(f) \subseteq \mathbb{R}$

EXAMPLE

- $f(x) = \sqrt{x}$, $D(f) = \mathbb{R}_+ \cup \{0\} = [0, \infty) = R(f)$
- $f(x) = k, D(f) = \mathbb{R}, R(f) = \{k\}$
- f(x) = x, $D(f) = \mathbb{R}$, $R(f) = \mathbb{R}$
- $f(x) = a_0 + a_1x + a_2x_2 + \cdots + a_nx_n$, $a_i \in \mathbb{R}$, $D(f) = \mathbb{R}$

CLASSIFICATION OF FUNCTIONS

- function f is said to be a one-one function if, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ afor any $x_1, x_2 \in D(f)$. Failure of the converse leads the function to be Many one.
- A function *f*: *A* → *B* is said to be a onto function if, *f*(*A*) = *B*. Otherwise, function is just from *A* into *B*.
- A function which is both one-one and onto is known as a Bijection

COMPOSITION OF FUNCTIONS

Let f, g be function such that $f: A \to B$, $g: B \to C$, then their composition $g \circ f: A \to C$ can be defined by $g \circ f(x) = g(f(x)), \forall x \in A$.

NOTE

- In general $g \circ f \neq f \circ g$, (later one is defined only if B = C).
- $g \circ f$, $f \circ g$, $f \circ f$, $g \circ g$ all are defined together only if A = B = C

INVERSE OF A FUNCTION

A function $f: A \rightarrow B$ is to be invertible if there is a function $g: B \rightarrow A$ so that $f \circ g = I_B \& g \circ f = I_A$, where I_A is the identity function on the set A.

RESULTS

- f is Invertible \Leftrightarrow f is a Bijection.
- Let A, B be sets with cardinalities m and n are respectively, then \exists a bijection $f: A \rightarrow B \Leftrightarrow n = m$.
- Let A, B be sets with cardinalities m and n respectively, then \exists an Injection

 $f: A \rightarrow B \Leftrightarrow f$ is a bijection.

- Suppose A has cardinality n and B has cardinality m, then
- ♦ No. of functions from $A \rightarrow B := mn$

♦ No. of Injections from $A \rightarrow B := \{mP \ 0n \ ,, m \ m \ge < n \ n \}$

- ♦ No. of surjections from $A \rightarrow B := \{\sum m r = 1(-10)m r mCr, m m \le > n n\}$
- ♦ No of Bijections from $A \rightarrow B := \{n0!, m \ m = \neq n \ n \}$
- A graphical test to classify the function y = f(x):
- f is one-one if any horizontal line intersects the graph at most once.

Imagine the graphs of f(x) = ex, the line y = 0, etc

f is onto if any horizontal line intersects the graph at least once

MONOTONICITY OF FUNCTIONS

MONOTONIC INCREASING FUNCTION

A function is said to be a monotonic increasing function if $x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$

Example: greatest integer function, constant function, etc

STRICTLY INCREAING FUNCTION

A function *f* is said to be strictly increasing function if $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$

Example: Identity function

MONOTONIC DECRESING FUNCTION

A function f is said to be monotonic decreasing function if $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$

Example: Constant function

STRICTLY DECRESING FUNCTION

A function f is said to be srtictly decreasing function if $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$

Example: $f(x) = \frac{1}{x}$

LIMIT OF A FUNCTION

LIMIT OF A FUNCTION

let $f: A \to B$ be a real valued function, then f is said to have a limit $l \in \mathbb{R}$ at a point $x = x_0$ If for every $\varepsilon > 0$, there is a real number $\delta = \delta(\varepsilon)$ such that $|x - x_0| < \delta \Rightarrow |f(x) - l| < \varepsilon$.

if *l* is the limit of *f* at the point x_0 , then we may write $\lim_{x \to x_0} f(x) = l$.

RIGHT AND LEFT LIMITS

- Left limit of f at x = a: $f(a^-) = \lim_{x \to a^-} f(x) = \lim_{h \to 0} f(a h)$ •
- Right limit of f at x = a: $f(a^+) = \lim_{x \to a^+} f(x) = \lim_{h \to 0} f(a + h)$ •
- f has limit at x_0 iff both $f(a^+)$ and $f(a^-)$ exist and $f(a^+) = f(a^-) = \lim_{x \to x_0} f(x)$ •
- $\lim_{x \to x_0} f(x) \text{ is unique.}$ •

PROPERTIES OF LIMITS

Let $\lim_{x \to a} f(x) = l \& \lim_{x \to a} g(x) = m$ then

- $\lim_{x \to a} cf(x) = cl$
- $\lim_{x \to a} f(x)g(x) = lm$ • $x \rightarrow a^{-1}$
- $\lim_{x \to a} f(x)/g(x) = l/m, m \neq 0$

•
$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} f(x)^{\left(\lim_{x \to a} g(x)\right)} = l^m$$

EXAMPLES

- $\lim_{x \to 0} \frac{1}{1+x} = 1$
- $\lim_{x \to 0} x \sin \frac{1}{x} = 0$
- $\lim_{x \to 0} \frac{1}{|x|} = \infty$
- $\lim_{x\to 0} |x|^n = 0, n > 0$ • |x| < 10 $\lim_{n \to \infty} x^n = \begin{cases} 1 & x \\ dosen'texist, otherwise \end{cases}$ •
- $\lim_{x \to a} \frac{x^n a^n}{x a} = na^{n-1}$ •
- $\lim_{x \to 0} \frac{\sin x}{x} = 1$
- $\lim_{x \to \infty} \frac{\sin x}{x} = 0$
- $\lim_{x \to 0} \frac{\tan x}{x} = 1$
- $\lim_{x \to 0} \frac{\cos x}{x} = \infty$ $\lim_{x \to \infty} \frac{\cos x}{x} = 0$
- $\lim_{x \to 0} \frac{a^x 1}{x} = \log_e a$ $\lim_{x \to 0} \frac{\log_e(1 + x)}{x} = 1$

- $\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a$
- $\lim_{x \to 0} (1 + ax)^{\frac{1}{x}} = e^{a}$

SEQUENCE OF REAL NUMBERS

SEQUENCE OF REAL NUMBERS

A sequence of real numbers (or a sequence in \mathbb{R}) is a function defined on the set \mathbb{N} of natural numbers whose range contained in \mathbb{R} . If $S: \mathbb{N} \to \mathbb{R}$ is a sequence, we may denote the value of S at nby $S(n) = s_n$ and the sequence by notations like (s_n) , (s_n) , (s_n) , $(s_n: n \in \mathbb{N})$.

EXAMPLES

- $S \coloneqq ((-1)^n : n \in \mathbb{N})$
- $S \coloneqq \left(\frac{1}{2n}: n \in \mathbb{N}\right) = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots\right)$
- Constant sequences: if $b \in \mathbb{R}$, $B \coloneqq (b, b, b, ...)$
- Fibonacci sequence: $F := \langle f_n \rangle$, where $f_1 = 1, f_2 = 1, f_{n+2} = f_{n+1} + f_n, n = 1, 2, ...$

BOUNDS OF THE SEQUENCE

Let $\langle s_n \rangle$ be a real sequence, then

- (S_n) is bounded above $\Leftrightarrow \exists K \in \mathbb{R}$ such that $S_n \leq K \forall n \in \mathbb{N}$.
- $\langle S_n \rangle$ is bounded below $\Leftrightarrow \exists k \in \mathbb{R}$ such that $S_n \ge k \forall n \in \mathbb{N}$.
- (S_n) is bounded $\Leftrightarrow \exists k, K \in \mathbb{R}$ such that $k \leq s_n \leq K \forall n \in \mathbb{N}$.

LIMIT POINT

Let (s_n) be a real sequence, $l \in \mathbb{R}$ is said to be a limit point of (s_n)

If for every $\varepsilon > 0$, there is a natural number $\mathbb{N} = \mathbb{N}(\varepsilon)$ such that for all $n \ge \mathbb{N}$, the terms S_n satisfies $|S_n - l| < \varepsilon.$

NOTE

If l is the limit for the real sequence (S_n) , then we may write $S_n \to l$ or $\lim_{n \to \infty} S_n = l$. In this case the sequence $\langle S_n \rangle$ is said to be converging and say $\langle S_n \rangle$ converges to *l*.

EXAMPLE

- $\frac{1}{n} \rightarrow 0$ $2^{\frac{1}{n}} \rightarrow 1$ $2^{1-\frac{1}{n}} \rightarrow 2$

• Convergent sequences are bounded, converse need not be true

SUBSEQUENCES

Let $A = \langle a_n \rangle$ be a sequence of real numbers and $n_1 < n_2 < \cdots < n_k < \cdots$ be strictly increasing natural numbers, then the sequence $A' = \langle a_{n_k} \rangle$ given by $(a_{n_1}, a_{n_2}, \dots)$ is called a subsequence of A.

EXAMPLE

 $\langle \frac{1}{2n} \rangle$ is a subsequence of $\langle \frac{1}{n} \rangle$.

BOLZANO WEISTRASS THEOREM

Every bounded sequences has a limit point (and thereby a convergent subsequence).

RESULT

• Set of all limit points of bounded sequences is bounded.

LIMIT INFERIOR

Let $A = \langle a_n \rangle$ be a sequence of real numbers, let $b_k = \inf\{a_k, a_{k+1}, a_{k+2}, ...\}$, k = 1, 2, 3 ..., then it is clear that $\langle b_k \rangle$ is an increasing sequence. The limit inferior of $\langle a_n \rangle$, denoted by $\lim \langle a_n \rangle$, is given by

$$\lim \langle a_n \rangle = \lim \inf \langle a_n \rangle = \sup \langle b_k \rangle$$

LIMIT SUPERIOR

Let $A = \langle a_n \rangle$ be a sequence of real numbers, let $b_k = \sup\{a_k, a_{k+1}, a_{k+2}, ...\}$, k = 1, 2, 3, ..., then it is clear that $\langle b_k \rangle$ is a decreasing sequence. Then the limit superior of $\langle a_n \rangle$, denoted by $\overline{lim}\langle a_n \rangle$ is given by

$$\overline{lim\langle a_n\rangle} = \lim \sup \langle a_n\rangle = \inf \langle b_k\rangle$$

NOTE

Let $\langle a_n \rangle$ be a realsequence, then

- $\langle a_n \rangle$ converges to $l \Leftrightarrow lim \langle a_n \rangle = \overline{lim \langle a_n \rangle} = l$.
- $inf\langle a_n \rangle \leq lim\langle a_n \rangle \leq \overline{lim\langle a_n \rangle} \leq sup\langle a_n \rangle$

EXAMPLE

- 1. Consider the sequence $\langle a_n \rangle = 2^{1-\frac{1}{n}}$, then it is clear that $inf \langle a_n \rangle = 2^{1-\frac{1}{n}} = 1$ and $\underline{lim}\langle a_n \rangle = \overline{lim}\langle a_n \rangle = sup \langle a_n \rangle = 2$
- 2. Consider the sequence $\langle a_n \rangle = \frac{1}{n}$, then clearly $inf \langle a_n \rangle = \underline{lim} \langle a_n \rangle = \overline{lim} \langle a_n \rangle = 0$ and $sup \langle a_n \rangle = 1$

Suppose $\langle a_n \rangle$ be a bounded sequence then

• $\langle a_n \rangle$ is bounded $\Leftrightarrow lim \langle a_n \rangle$ and $\overline{lim \langle a_n \rangle}$ are finite.

•
$$lim\langle -a_n\rangle = -\overline{lim\langle a_n\rangle}$$

• $\overline{\lim(-a_n)} = -\underline{\lim(a_n)} \Leftrightarrow -\overline{\lim(-a_n)} = \underline{\lim(a_n)}$

Suppose that $\langle a_n \rangle$, $\langle b_n \rangle$ are bounded real sequence, then

- $\underbrace{\lim\langle a_n\rangle}_{\overline{\lim\langle b_n\rangle}} + \underbrace{\lim\langle b_n\rangle}_{\leq} \underline{\lim\langle a_n + b_n\rangle}_{\leq} \leq \underline{\lim\langle a_n\rangle}_{+} + \overline{\lim\langle b_n\rangle}_{\leq} \leq \overline{\lim\langle a_n + b_n\rangle} \leq \overline{\lim\langle a_n\rangle}_{+} + \underbrace{\lim\langle b_n\rangle}_{\leq} \leq \overline{\lim\langle a_n\rangle}_{+} + \underbrace{\lim\langle b_n\rangle}_{=} \leq \overline{\lim\langle a_n\rangle}_{+} + \underbrace{\lim\langle a_n\rangle}_{+} + \underbrace{\lim\langle$
- $\underline{\lim\langle a_n\rangle}\underline{\lim\langle b_n\rangle} \leq \underline{\lim\langle a_nb_n\rangle} \leq \underline{\lim\langle a_n\rangle}\overline{\lim\langle b_n\rangle} \leq \overline{\lim\langle a_nb_n\rangle} \leq \overline{\lim\langle a_n\rangle}\underline{\lim\langle b_n\rangle}$

TYPES OF SEQUENCES

OSCILLATING SEQUENCE

- 1. Finitely oscillating.
 - $\langle a_n \rangle$ is bounded but not converging
 - $lim\langle a_n \rangle \neq \overline{lim\langle a_n \rangle}$

• **Ex**:
$$a_n = (-1)^n$$
, $a_n = 1 + (-1)^n$

2. Infinitely oscillating

$$lim\langle a_n \rangle = -\infty \text{ and } \overline{lim\langle a_n \rangle} = \infty$$

★ **Ex:** :
$$a_n = (-1)^n n$$
, $a_n = (-2)^n$

MONOTONE SEQUENCES

A real sequence $\langle a_n \rangle$ is said to be Monotone if $\langle a_n \rangle$ satisfies either $a_n \leq a_{n+1}$, $\forall n$ or $a_n \geq a_{n+1}$, $\forall n$. In first case sequence is said to be increasing and in the later case sequence is said to be decreasing.

DIVERGING SEQUENCES

Sequences having limit $\mp \infty$.

Ex: $a_n = -n$, $a_n = 2^n$

CAUCHY SEQUENCE

A real sequence $\langle a_n \rangle$ is said to be Cauchy if for all $\varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $|a_n - a_m| < \varepsilon$, $\forall n, m \ge N$.

NOTE

let $\langle a_n \rangle$ be areal sequence, then

- $\langle a_n \rangle$ is Cauchy $\Leftrightarrow \langle a_n \rangle$ is convergent.
- $\langle a_n \rangle$ is Cauchy $\Rightarrow \langle a_n \rangle$ is bounded.

- Let $\langle a_n \rangle$ be a real sequence, if for some $0 < \alpha < 1$, $|a_{n+1} a_n| < \alpha^n$, $\forall n$, then $\langle a_n \rangle$ is Cauchy.
- Let $\langle a_n \rangle$ be a real sequences, if for some $0 < \alpha < 1$, $|a_{n+1} a_n| < \alpha |a_n a_{n-1}|$, $\forall n \Rightarrow \langle a_n \rangle$ is Cauchy.

RESULT

let $\langle a_n \rangle$, $\langle b_n \rangle$ be real sequences, then

- $|a_{n+1} a_n| \rightarrow 0 \Rightarrow |a_{n+1} a_n| < \alpha^n$, $\forall n$, for some $0 < \alpha < 1$.
- $|a_{n+1} a_n| \rightarrow 0 \Rightarrow |a_{n+1} a_n| <, \alpha |a_n a_{n-1}| \forall n$, for some $0 < \alpha < 1$.

SANDWICH THEOREM (SQUEEZ THEOREM)

Let $\langle x_n \rangle$, $\langle y_n \rangle$, $\langle z_n \rangle$ be real sequence such that $x_n \leq y_n \leq z_n$, $\forall n$, then $\langle x_n \rangle$, $\langle z_n \rangle \rightarrow l \Rightarrow \langle y_n \rangle \rightarrow l$

CAUCHYS THEOREM ON LIMITS

CAUCHY'S FIRST THEOREM

Let $\langle S_n \rangle$ be a real sequence such that $\langle S_n \rangle \rightarrow l$, whether finite or infinite,

then
$$\left< \frac{s_1 + s_2 + \dots + s_n}{n} \right> \rightarrow l$$

COROLLARY

Let $\langle S_n \rangle$ be a real sequence such that $\langle S_n \rangle \rightarrow l, S_n \geq 0$,

then
$$\langle (s_1 s_2 \dots s_n)^{\frac{1}{n}} \rangle \to l$$

CAUCHY'S SECOND THEOREM

Let $\langle s_n \rangle$ be a real sequence such that $\langle s_n \rangle \to l$, $s_n \ge 0$, then $\lim_{n \to \infty} \frac{s_{n+1}}{s_n} = \lim_{n \to \infty} (s_n)^{\frac{1}{n}} = l(\neq \infty)$.

CESARO'S THEOREM

Let $\langle a_n \rangle$, $\langle b_n \rangle$ be real sequence so that $\langle a_n \rangle \to a$, $\langle b_n \rangle \to b$, then $\lim_{n \to \infty} \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n} = ab$

RESULT

• Let $\langle a_n \rangle$ be a real sequence, then $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l > 1 \Rightarrow \lim_{n \to \infty} a_n = \infty$

MONOTONE CONVERGENT THEOREM

let $\langle a_n \rangle$ be a real monotone sequence, then $\langle a_n \rangle$ is convergent $\Leftrightarrow \langle a_n \rangle$ is bounded.

NOTE

Let $\langle a_n \rangle$ be a real sequence, then

- $\langle a_n \rangle$ is bounded and monotonically increasing $\Leftrightarrow \langle a_n \rangle$ is convergent to its *sup*
- $\langle a_n \rangle$ is bounded and monotonically decreasing $\Leftrightarrow \langle a_n \rangle$ is convergent to its *inf*

CANTOR'S NESTED INTERVAL THEOREM

Let $\langle a_n \rangle$, $\langle b_n \rangle$ be real sequences so that $a_n \leq b_n$, $\forall n$ and $\langle a_n \rangle \rightarrow a$, $\langle b_n \rangle \rightarrow b$ by letting $I_n = [a_n, b_n]$, suppose that $I_{n+1} \subseteq I_n \forall n$ then $\bigcap_{n=1}^{\infty} I_n = \{a\} = \{b\}$.

↔ ie, $\langle a_n \rangle \& \langle b_n \rangle$ converges to the same point

MONOTONE SUBSEQUENCE THEOREM

Every sequence in R has a monotone subsequence

SERIES OF REAL NUMBERS

SERIES OF REAL NUMBERS

A series of real numbers is an expression of the form $a_1 + a_2 + a_3$... or more compactly as $\sum_{n=1}^{\infty} a_n$, where (a_n) is a sequence of real numbers. The number a_n is called the *n*-th term of the series and the sequence $S_n = \sum_{i=1}^n a_i$ is called the n-th partial sum of the series $\sum_{n=1}^{\infty} a_n$

CONVERGENCE AND DIVERGENCE OF SERIES

A series $\sum_{n=1}^{\infty} a_n$ is said to be converge (to $S \in \mathbb{R}$) if the sequence of partial sum of the series converge (to $S \in \mathbb{R}$).

NOTE

- If $\sum_{n=1}^{\infty} a_n$ converges to *S*, then we write $S = \sum_{n=1}^{\infty} a_n$
- A series which does not converge is called divergent series.
- $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n$

CAUCHY CRITERION

The series $\sum_{n=1}^{\infty} a_n$ of real term is convergent $\Leftrightarrow \langle s_n \rangle$ is convergent.

NOTE

- The series $\sum_{n=1}^{\infty} a_n$ is convergent $\Rightarrow \langle a_n \rangle \to 0$.
- Above implication is from $a_n = S_{n+1} S_n$.

*p***-SERIES**

p —series are the series of the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$.

- $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent $\Leftrightarrow p > 1$.
- $a_n = \frac{1}{n} \rightarrow 0$, but $\sum_{n=1}^{\infty} a_n$ is not convergent.
- $\sum_{n=1}^{\infty} \frac{1}{p(n)}$ is convergent. $\Leftrightarrow \deg(p) > 1$, where p(n) is a polynomial in n
- $\sum_{n=1}^{\infty} a_n$ is convergent. $\Leftrightarrow \langle S_n \rangle$ is cauchy.
- $\sum_{n=1}^{\infty} a_n = a \& \sum_{n=1}^{\infty} b_n = b \Rightarrow \sum_{n=1}^{\infty} (a_n + b_n) = a + b$

GEOMETRIC SERIES

- $\sum_{n=1}^{\infty} r^n = \frac{r}{1-r}$, if |r| < 1
- $\sum_{n=1}^{\infty} r^n$ diverges for $|r| \ge 1$

ABSOLUTELY CONVERGENT SERIES

Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers, then $\sum_{n=1}^{\infty} a_n$ is said to be absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ converges.

Absolutely convergent series converges.

RESULT

Consider the real series $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$, $\sum_{n=1}^{\infty} (a_n \pm b_n)$ then,

- If any two of the above converges, then the third also converges.
- If any one of the above converges, and any one diverges, then the third will be diverges.
- If any two of the above diverges, then we cannot say about third.
- Suppose that $\sum_{n=1}^{\infty} a_n = a$, then any type of series can be obtained from $\sum_{n=1}^{\infty} a_n$ by grouping terms without altering the order.
- $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ is convergent $\Leftrightarrow \langle s_n \rangle$ is bounded above.

PRINGSHEIM'S THEOREM

Let $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ be a real series so that (a_n) is a monotonically decreasing sequence, then,

 $\sum_{n=1}^{\infty} a_n$ is convergent $\Rightarrow na_n \to 0$.

TEST FOR SERIES

COMPARISON TEST

Let $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$, be a real series so that $0 \le a_n \le b_n$, then,

- $\sum_{n=1}^{\infty} b_n$ converges $\Rightarrow \sum_{n=1}^{\infty} a_n$ converges. $\sum_{n=1}^{\infty} a_n$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_n$ diverges. (i)
- (ii)

LIMIT COMPARISON TEST

Let $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$, be real series so that $a_n \ge 0$, $b_n \ge 0$ & $\lim_{n \to \infty} \frac{a_n}{b_n} = l (\ne 0) < \infty$, then

 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ converges or diverges together. (i)

- (ii) Suppose $l = 0 \& \sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- (iii) Suppose $l = \infty \& \sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

CAUCHY'S ROOT TEST FOR +VE TERM SERIES

Let $\sum_{n=1}^{\infty} a_n$ be a real series so that $a_n \ge 0$, $\lim_{n \to \infty} (a_n)^{\frac{1}{n}} = l$, then

- (i) $\sum_{n=1}^{\infty} a_n$ converges if l < 1
- (ii) $\sum_{n=1}^{\infty} a_n$ diverges if l > 1
- (iii) Test fails if l = 1

De ALEMBERT'S RATIO TEST FOR +VE TERM SERIES

Let $\sum_{n=1}^{\infty} a_n$ be a real series so that $a_n \ge 0$, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l$, then

- (i) $\sum_{n=1}^{\infty} a_n$ converges if l < 1
- (ii) $\sum_{n=1}^{\infty} a_n$ diverges if l > 1
- (iii) Test fails if l = 1
- $\log n < n^c$ for any c > 0.

RAABE'S TEST

Let $\sum_{n=1}^{\infty} a_n$ be a real series so thet $a_n \ge 0$ & $\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = l$, then

- (i) If l > 1, $\sum_{n=1}^{\infty} a_n$ converges.
- (ii) If l < 1, $\sum_{n=1}^{\infty} a_n$ diverges.
- (iii) If l = 1 test fails.

LOGARITHM TEST

Let $\sum_{n=1}^{\infty} a_n$ be a real series so that $a_n \ge 0$ & $\lim_{n \to \infty} \left(\log(\frac{a_n}{a_{n+1}}) \right) = l$, then

- (i) If l > 1, $\sum_{n=1}^{\infty} a_n$ converges.
- (ii) If l < 1, $\sum_{n=1}^{\infty} a_n$ diverges.
- (iii) If l = 1 test fails.

CONDENSATION TEST

Let $\sum_{n=1}^{\infty} a_n$ be a real series, then $\sum_{n=1}^{\infty} a_n \& \sum_{n=1}^{\infty} 2^n a_{2^n}$ behaves alike.

ALTERNATING SERIES (LEBINIZ) TEST

Let $\sum_{n=1}^{\infty} (-1)^n a_n$, $a_n \ge 0$ is convergent if, $a_n \ge a_{n+1} \& a_n \to 0$.

CONDITIONALLY CONVERGENT SERIES

A convergent series $\sum_{n=1}^{\infty} a_n$ is said to be conditionally convergent if $\sum_{n=1}^{\infty} |a_n|$ is not convergent.

ABLE'S TEST

Let $\sum_{n=1}^{\infty} a_n$ be a real convergent series and $\langle b_n \rangle$ be a positive monotone decreasing sequence, then $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

- Let $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ be convergent series, then $\sum_{n=1}^{\infty} a_n b_n$ also convergent.
- Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent real series, $\langle b_n \rangle$ is a real bounded sequence, then $\sum_{n=1}^{\infty} a_n b_n$ convergent.

EXAMPLES FOR CONVERGENT SERIES

- $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \frac{1}{1} \frac{1}{2} + \frac{1}{3} \dots = \log 2$ $\sum_{n=1}^{\infty} \frac{1}{1+2+\dots+n} = \frac{1}{1} + \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \dots = 2$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n} = \frac{1}{1} \frac{1}{2} + \frac{1}{4} \frac{1}{8} + \dots = \frac{2}{3} = \frac{1}{1 \left(-\frac{1}{2}\right)}$
- $\sum_{n=1}^{\infty} \frac{1}{n!} = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots = e 1$

DIRECHLET THEOREM

Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent seires, By rearrangements (Bracketing) of terms of $\sum_{n=1}^{\infty} a_n$, we can make an absolutely convergent series converges to same sum.

COROLLARY

Let $\sum_{n=1}^{\infty} a_n$ ba a divergent series of positive terms, by rearrangements of terms of $\sum_{n=1}^{\infty} a_n$ we can make only divergent series.

REIMANN THEOREM

Let $\sum_{n=1}^{\infty} a_n$ be a conditionally convergent real series, then by appropriate rearrangements of terms of $\sum_{n=1}^{\infty} a_n$ we can make series so that,

- (i) Convergent to any number $l < \infty$
- (ii) Divergent to ∞
- Divergent to $-\infty$ (iii)
- Oscillates finitely. (iv)
- (v) Oscillates infinitely

COROLLARY

Let $\sum_{n=1}^{\infty} a_n$ be aconditionally convergent real series, and $\sum_{n=1}^{\infty} a_n = 0$, denotes $S_k = \sum_{n=1}^{\infty} a_n$, then

- 1. $S_k = 0$, for infinitely many k
- 2. It is possible that $S_k > 0$, for infinitely many k.
- 3. It is possible that $S_k < 0$, for infinitely many k
- 4. It is possible that $S_k > 0$, for all but finitely many k

NOTE

m -tail of a series $\sum_{n=1}^{\infty} a_n$:

Let $\sum_{n=1}^{\infty} a_n$ be a real series, then the m-tail of the series is given by

$$\sum_{n=m}^{\infty} a_n = a_m + a_{m+1} + a_{m+2} + \cdots$$

RESULT

- $\sum_{n=1}^{\infty} a_n$ is convergent $\Rightarrow \sum_{n=m}^{\infty} a_n \to 0$ as $n \to \infty$
- $\sum_{n=1}^{\infty} a_n$ is convergent $\Rightarrow \sum_{n=1}^{\infty} e^{a_n}$ doesn't converge.

CONTINUITY

CONTINUITY OF A FUNCTION

Let $f: A \to B$ be a function, then f is said to be continuous at the point $x = x_0 \in A$ if $\lim_{x \to x_0} f(x) = f(x_0)$. Otherwise f is said to have a discontinuity at x_0 .

EXAMPLE

- $\sin \frac{1}{x}$, $\cos \frac{1}{x}$ are Disccontinuous at 0.
- $f(x) = x^a \sin \frac{1}{x}, a > 0$ is continuous at 0

NOTE

- f is said to be Left continuous if $f(a^-) = f(a)$.
- f is said to be right continuous if $f(a^+) = f(a)$.

TYPES OF DISCONTINUITIES

REMOVABLE DISCONTINUITY

f is said to have a removable discontinuity at x = a if $f(a^-) = f(a^+) \neq f(a)$.

Discontinuity can be removed by redefining functions at a by $f(a) = f(a^{-}) = f(a^{+})$.

NON REMOVABLE DISCONTINUITY

1st KIND: f is said to have a discontinuity of **1**st kind at x = a if $f(a^-) \neq f(a^+)$

Example : Signum function , $f(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ 0 & x = 0 \end{cases}$

2nd KIND: f is said to have a discontinuity of 2nd kind at x = a if either or both $f(a^{-})$, $f(a^{+})$ doesn't exist.

NOTE

• Monotone functions doesn't have the discontinuity of 2nd kind.

- f is continuous in $[a, b] \Rightarrow f$ is bounded on [a, b]
 - $f(x) = \frac{1}{x-a}$ is continuous in (a, b), but not bounded.
- f continuous in $[a, b] \Rightarrow f$ attains its bounds at least once on [a, b].
- f is continuous in $[a, b] \Rightarrow R(f) = [l, L]$, where l := Minimum of f & L := Maximum of f.
- f is continuous at $c \in (a, b) \Rightarrow f(x)$ has same sign as f(c) in some neighbourhood $(c \delta, c + \delta)$.

LOCATION ROOT THEOREM

Let f be continuous in [a, b], f(a) & f(b) are in opposite signs, then $\exists c \in (a, b)$ such that f(c) = 0.

INTERMEDIATE VALUE THEOREM

Let f be continuous in [a, b], $f(a) \neq f(b)$, then f assumes all values between f(a) & f(b).

FIXED POINT THEOREM

Let $f: [a, b] \rightarrow [a, b]$ be continuous, then $\exists c \in [a, b]$ such that f(c) = c. (Fixed point)

EXAMPLE

- (i) f is constant \Rightarrow f has only one fixed point.
- (ii) f is the identity function \Leftrightarrow all points are fixed points.

NOTES

- Let f be a function from $[a, b], \& \exists c \in [f(a), f(b)]$ such that $c \notin R(f) \Rightarrow f$ is not continuous.
- Let f be injective on [a, b], and satisfies Intermediate Value Theorem $\Rightarrow f$ is continuous.
- Let f be continuous in [a, b], then f assumes all values between $l = \min f \& L = \max f$
- Let f be continuous in [a, b] and is Monotonic increasing, then R(f) = [f(a), f(b)].
- $f:[a,b] \rightarrow [a,b]$ has no fixed points at all $\Rightarrow f$ is not continuous.
- Let f be continuous on [a, b]& $f(a) = f(b) \Rightarrow \exists a_i, b_i \in (a, b)$ such that $f(a_i) = f(b_i)$.

UNIFORM CONTINUITY

A function f defined on an interval I is said to be uniformly continuous on I if for each $\varepsilon > 0$ there exist a $\delta > 0$ such that, $|f(x_2 - f(x_1)| < \varepsilon$ for arbitrary points x_1 , x_2 of I for which $|x_1 - x_2| < \delta$

NON-UNIFORM CONTINUITY CRITERION

Let $I \subseteq R$ and let $f: I \rightarrow R$. Then the following satatements are equivalent.

- 1. f is not uniformly continuous on I.
- 2. there exist an $\varepsilon_0 > 0$ such that for every $\delta > 0$ there are points x_{δ} , u_{δ} in I such that $|x_{\delta} u_{\delta}| < \delta$ and $|f(x_{\delta} f(u_{\delta})| \ge \varepsilon_0$.

3. There exist an $\varepsilon_0 > 0$ and two sequences (x_n) and (u_n) in I such that $\lim (x_n - u_n) = 0$ and $|f(x_n - f(u_n)| \ge \varepsilon_0$ for all $n \in \mathbb{N}$.

UNIFORM CONTINUITY THEOREM

Let I be a closed and bounded interval and let $f: I \rightarrow R$ be continuous on I. Then, f is uniformly continuous on I.

