
 

 

SETS AND FUNCTIONS 
 

CARDINALITY 
 

Let A be a finite set, the number of elements in set A is known as cardinality of A, usually denoted as 

𝑛(𝐴). 

 

RESULT 

 

Let 𝐴, 𝐵, 𝐶 be finite sets, then 

𝑛(𝐴 ∪ 𝐵) = 𝑛(𝐴) + 𝑛(𝐵) - 𝑛(𝐴 ∩ 𝐵) 

• 𝑛(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑛(𝐴) + 𝑛(𝐵) + 𝑛(𝐶) - 𝑛(𝐴 ∩ 𝐵) - 𝑛(𝐴 ∩ 𝐶) - 𝑛(𝐵 ∩ 𝐶) + 𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) 

• 𝑛(𝐴/𝐵) = 𝑛(𝐴) - 𝑛(𝐴 ∩ 𝐵) 

• 𝑛(𝐴∆𝐵) = 𝑛(𝐴) + 𝑛(𝐵) - 2𝑛(𝐴 ∩ 𝐵) = 𝑛(𝐴 ∪ 𝐵) - 𝑛(𝐴 ∩ 𝐵) 

• 𝑛(𝐴 × 𝐵) = 𝑛(𝐴). 𝑛(𝐵) 

• 𝑛(𝐴) = 𝑚 ⇒ 𝑛(𝑃(𝐴)) = 2𝑚, where 𝑃(𝐴) is the power set of A. 

 

RELATION 
 

A relation 𝑅 from a set 𝐴 to 𝐵 is a subset of 𝐴 × 𝐵, ie, 𝑅 ⊆ 𝐴 × 𝐵. If (𝑎, 𝑏) ∈ 𝑅, then we say that 

“𝑎 is related to 𝑏 (𝑎𝑅𝑏)” or 𝑎~𝑏. 

• If 𝑛(𝐴) = 𝑚, 𝑛(𝐵) = 𝑛, then the number of relations from 𝐴 → 𝐵 is 2𝑚𝑛
 

• Number of relations on 𝐴 of cardinality 𝑛 is 2𝑛2
 

 

NOTE 
 

• 𝑅: 𝐴 → 𝐴 is said to be Reflexive relation if (𝑎, 𝑎) ∈ 𝑅 , ∀𝑎 ∈ 𝐴. 

Number of reflexive relations on 𝐴 of cardinality 𝑚 is 2𝑚2−𝑚 

•  𝑅: 𝐴 → 𝐴 is said to be Symmetric relation if (𝑎, 𝑏) ∈ 𝑅 ⇒ (𝑏, 𝑎) ∈ 𝑅 

 Reflexive relation need not be symmetric and vice versa. 

Number of symmetric relations on 𝐴 of cardinality 𝑚 is 2
𝑚(𝑚+1)

2  

•  𝑅: 𝐴 → 𝐴 is said to be Anti-symmetric relation on a set 𝐴 if (𝑎, 𝑏) ∈ 𝑅 & (𝑏, 𝑎) ∈ 𝑅 ⇔ 𝑎 = 𝑏. 

• 𝑅: 𝐴 → 𝐴 is said to be a Transitive relation on a set A. if (𝑎, 𝑏) ∈ 𝑅 & (𝑏, 𝑐) ∈ 𝑅 ⇒ (𝑎, 𝑐) ∈

𝑅. 

 

EQUIVALENCE RELATION 
 

If the relation 𝑅 is reflexive, symmetric, transitive, then 𝑅 is said to be an equivalence relation. 

 

FUNCTIONS 

 

Let 𝐴, 𝐵 ⊂ ℝ and let 𝑓: 𝐴 → 𝐵 be a relation from 𝐴 𝑡𝑜 𝐵, then 𝑓 is said to be a function from 𝐴 to 𝐵 if 

each element of A is related to a unique element in B. 



 

 

Here A is said to be the Domain D(f) of the function 𝑓 and B is the Codomain of f. 

If 𝑏 ∈ 𝐵 is the unique element related from 𝑎 ∈ 𝐴 then we say that 𝑏 is the Image of 𝑎 and write 𝑓(𝑎) 

= 𝑏, In this case a is known as a preimage of b. The set of all such 𝑏 = 𝑓(𝑎), 𝑎 ∈ 𝐴 is called the Range 

of f denoted by 𝑅(𝑓). 𝑓 is said to be real valued if 𝑅(𝑓) ⊆ ℝ 

 

EXAMPLE 

 

• 𝒇(𝒙) = √𝒙, 𝑫(𝒇) = ℝ+ ∪ {𝟎} = [𝟎, ∞) = 𝑹(𝒇) 

• 𝒇(𝒙) = 𝒌, 𝑫(𝒇) = ℝ, 𝑹(𝒇) = {𝒌} 

• 𝒇(𝒙) = 𝒙, 𝑫(𝒇) = ℝ, 𝑹(𝒇) = ℝ 

• 𝒇(𝒙) = 𝒂𝟎 + 𝒂𝟏𝒙 + 𝒂𝟐𝒙𝟐 + ⋯ + 𝒂𝒏𝒙𝒏, 𝒂𝒊 ∈ ℝ, 𝑫(𝒇) = ℝ 

 

CLASSIFICATION OF FUNCTIONS 

 

• function 𝑓 is said to be a one-one function if, 𝑓(𝑥1) = 𝑓(𝑥2) ⇒ 𝑥1= 𝑥2 𝑥for any 𝑥1, 𝑥2 ∈ 𝐷(𝑓). 

Failure of the converse leads the function to be Many one. 

• A function 𝑓: 𝐴 → 𝐵 is said to be a onto function if, 𝑓(𝐴) = 𝐵. Otherwise, function is just from 

𝐴 into 𝐵. 

• A function which is both one-one and onto is known as a Bijection 

 

COMPOSITION OF FUNCTIONS 
 

Let 𝑓, 𝑔 be function such that 𝑓: 𝐴 → 𝐵, 𝑔: 𝐵 → 𝐶, then their composition 𝑔 ∘ 𝑓: A → C can be 

defined by 𝑔 ∘ 𝑓(𝑥) = 𝑔(𝑓(𝑥)), ∀𝑥 ∈ 𝐴. 

 

NOTE 

 

• In general 𝑔 ∘ 𝑓 ≠ 𝑓 ∘ 𝑔, (later one is defined only if 𝐵 = 𝐶). 

• 𝑔 ∘ 𝑓, 𝑓 ∘ 𝑔, 𝑓 ∘ 𝑓, 𝑔 ∘ 𝑔 all are defined together only if 𝐴 = 𝐵 = 𝐶 

 

INVERSE OF A FUNCTION 

 

A function 𝑓: 𝐴 → 𝐵 is to be invertible if there is a function 𝑔: 𝐵 → 𝐴 so that 𝑓 ∘ 𝑔 = 𝐼𝐵 & 𝑔 ∘ 𝑓 = 𝐼𝐴, 

where 𝐼𝐴 is the identity function on the set 𝐴. 

 

RESULTS 

 

• 𝑓 is Invertible ⇔ 𝑓 is a Bijection. 

• Let 𝐴, 𝐵 be sets with cardinalities 𝑚 and 𝑛 are respectively, then ∃ a bijection 

𝑓: 𝐴 → 𝐵 ⇔ 𝑛 = 𝑚. 

• Let 𝐴, 𝐵 be sets with cardinalities 𝑚 and 𝑛 respectively, then ∃ an Injection 

𝑓: 𝐴 → 𝐵 ⇔ 𝑓 is a bijection. 

• Suppose 𝐴 has cardinality 𝑛 and 𝐵 has cardinality 𝑚, then 

 ❖ No. of functions from 𝐴 → 𝐵 ∶= mn 



 

 

❖ No. of Injections from 𝐴 → 𝐵 ∶= {𝑚𝑃 0𝑛 ,, 𝑚 𝑚 ≥ < 𝑛 𝑛 

❖ No. of surjections from 𝐴 → 𝐵 ∶= {∑𝑚 𝑟=1(-10)𝑚-𝑟 𝑚𝐶𝑟 ,, 𝑚 𝑚 ≤ > 𝑛 𝑛 

❖ No of Bijections from 𝐴 → 𝐵 ∶= {𝑛0! ,, 𝑚 𝑚 = ≠ 𝑛 𝑛 

• A graphical test to classify the function 𝑦 = 𝑓(𝑥): 

❖ 𝑓 is one-one if any horizontal line intersects the graph at most once. 

Imagine the graphs of 𝑓(𝑥) = 𝑒𝑥, the line 𝑦 = 0, etc 

❖ 𝑓 is onto if any horizontal line intersects the graph atleast once 

MONOTONICITY OF FUNCTIONS 

MONOTONIC INCREASING FUNCTION 

A function is said to be a monotonic increasing function if 𝑥1 < 𝑥2 ⇒ 𝑓(𝑥1) ≤ 𝑓(𝑥2) 

Example: greatest integer function, constant function, etc 

STRICTLY INCREAING FUNCTION 

A function 𝑓 is said to be strictly increasing function if  𝑥1 < 𝑥2 ⇒ 𝑓(𝑥1) < 𝑓(𝑥2) 

Example: Identity function 

MONOTONIC DECRESING FUNCTION 

A function 𝑓 is said to be monotonic decreasing function if 𝑥1 < 𝑥2 ⇒ 𝑓(𝑥1) ≥ 𝑓(𝑥2) 

Example: Constant function 

STRICTLY DECRESING FUNCTION 

A function 𝑓 is said to be srtictly decreasing function if 𝑥1 < 𝑥2 ⇒ 𝑓(𝑥1) > 𝑓(𝑥2) 

Example:𝑓(𝑥) =
1

𝑥
 

 

LIMIT OF A FUNCTION 
 

LIMIT OF A FUNCTION 

let 𝑓: 𝐴 → 𝐵 be a real valued function, then 𝑓 is said to have a limit 𝑙 ∈ ℝ at a point 𝑥 = 𝑥0 

If for every 𝜀 > 0, there is a real number 𝛿 = 𝛿(𝜀) such that |𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓(𝑥) − 𝑙| < 𝜀. 

 

 



 

 

NOTE 

if 𝑙 is the limit of 𝑓 at the point 𝑥0, then we may write lim
𝑥→𝑥0

𝑓(𝑥) = 𝑙. 

RIGHT AND LEFT LIMITS 

• Left limit of 𝑓 at 𝑥 = 𝑎: 𝑓(𝑎−) = lim
𝑥→𝑎−

𝑓(𝑥) = lim
ℎ→0

𝑓(𝑎 − ℎ) 

• Right limit of 𝑓 at 𝑥 = 𝑎: 𝑓(𝑎+) = lim
𝑥→𝑎+

𝑓(𝑥) = lim
ℎ→0

𝑓(𝑎 + ℎ) 

• 𝑓 has limit at 𝑥0 iff both 𝑓(𝑎+) and 𝑓(𝑎−) exist and 𝑓(𝑎+) = 𝑓(𝑎−) = lim
𝑥→𝑥0

𝑓(𝑥) 

• lim
𝑥→𝑥0

𝑓(𝑥) is unique. 

PROPERTIES OF LIMITS 

Let lim
𝑥→𝑎

𝑓(𝑥) = 𝑙 & lim
𝑥→𝑎

𝑔(𝑥) = 𝑚 then 

• lim
𝑥→𝑎

𝑐𝑓(𝑥) = 𝑐𝑙 

• lim
𝑥→𝑎

𝑓(𝑥)𝑔(𝑥) = 𝑙𝑚 

• lim
𝑥→𝑎

𝑓(𝑥)/𝑔(𝑥) = 𝑙/𝑚, 𝑚 ≠ 0 

• lim
𝑥→𝑎

𝑓(𝑥)𝑔(𝑥) = lim
𝑥→𝑎

𝑓(𝑥)
(lim

𝑥→𝑎
𝑔(𝑥))

= 𝑙𝑚 

EXAMPLES 

• lim
𝑥→0

1

1+𝑥
= 1 

• lim
𝑥→0

 𝑥 sin
1

𝑥
= 0 

• lim
𝑥→0

1

|𝑥|
= ∞ 

• lim
𝑥→0

|𝑥|𝑛 = 0, 𝑛 > 0 

• lim
𝑛→∞

𝑥𝑛 = {
0
1

𝑑𝑜𝑠𝑒𝑛′𝑡𝑒𝑥𝑖𝑠𝑡

|𝑥| < 1
𝑥 = 1

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

• lim
𝑥→𝑎

𝑥𝑛−𝑎𝑛

𝑥−𝑎
= 𝑛𝑎𝑛−1 

• lim
𝑥→0

sin 𝑥

𝑥
= 1 

• lim
𝑥→∞

sin 𝑥

𝑥
= 0 

• lim
𝑥→0

tan 𝑥

𝑥
= 1 

• lim
𝑥→0

cos 𝑥

𝑥
= ∞ 

• lim
𝑥→∞

cos 𝑥

𝑥
= 0 

• lim
𝑥→0

𝑎𝑥−1

𝑥
= log𝑒 𝑎 

• lim
𝑥→0

log𝑒(1+𝑥)

𝑥
= 1 



 

 

• lim
𝑥→∞

(1 +
𝑎

𝑥
)

𝑥
= 𝑒𝑎 

• lim
𝑥→0

(1 + 𝑎𝑥)
1

𝑥 = 𝑒𝑎 

 

SEQUENCE OF REAL NUMBERS 
 

SEQUENCE OF REAL NUMBERS 

A sequence of real numbers (or a sequence in ℝ) is a function defined on the set ℕ of natural 

numbers whose range contained in ℝ. If  𝑆: ℕ → ℝ is a sequence, we may denote the value of S at 𝑛 

by 𝑆(𝑛) = 𝑠𝑛 and the sequence by notations like〈𝑠𝑛〉, (𝑠𝑛), (𝑠𝑛: 𝑛 ∈ ℕ). 

EXAMPLES 

• 𝑆 ≔ ((−1)𝑛: 𝑛 ∈ ℕ) 

• 𝑆 ≔ (
1

2𝑛
: 𝑛 ∈ ℕ) = (

1

2
,

1

4
,

1

6
, … ) 

• Constant sequences: if 𝑏 ∈ ℝ, 𝐵 ≔ (𝑏, 𝑏, 𝑏, … ) 

• Fibonacci sequence: 𝐹 ≔ 〈𝑓𝑛〉, where 𝑓1 = 1, 𝑓2 = 1, 𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛, 𝑛 = 1,2, … 

BOUNDS OF THE SEQUENCE  

Let 〈𝑠𝑛〉 be a real sequence, then 

• 〈𝑆𝑛〉 is bounded above ⇔ ∃𝐾 ∈ ℝ such that 𝑆𝑛 ≤ 𝐾 ∀𝑛 ∈ ℕ. 

• 〈𝑆𝑛〉 is bounded below ⇔ ∃𝑘 ∈ ℝ such that 𝑆𝑛 ≥ 𝑘 ∀𝑛 ∈ ℕ. 

• 〈𝑆𝑛〉 is bounded⇔ ∃𝑘, 𝐾 ∈ ℝ such that 𝑘 ≤ 𝑠𝑛 ≤ 𝐾 ∀𝑛 ∈ ℕ. 

LIMIT POINT 

Let〈𝑠𝑛〉 be a real sequence, 𝑙 ∈ ℝ is said to be a limit point of 〈𝑠𝑛〉 

If for every 𝜀 > 0, there is a natural number  ℕ = ℕ(𝜀) such that for all 𝑛 ≥ ℕ, the terms 𝑆𝑛 satisfies 

|𝑆𝑛 − 𝑙| < 𝜀. 

NOTE 

If 𝑙 is the limit for the real sequence〈𝑆𝑛〉, then we may write 𝑆𝑛 → 𝑙 or lim
𝑛→∞

𝑆𝑛 = 𝑙. In this case the 

sequence 〈𝑆𝑛〉 is said to be converging and say 〈𝑆𝑛〉converges to 𝑙. 

EXAMPLE 

• 
1

n
→ 0 

• 2
1

n → 1 

• 21−
1

n → 2 

 



 

 

RESULT 

• Convergent sequences are bounded, converse need not be true  

SUBSEQUENCES 

Let 𝐴 = 〈𝑎𝑛〉 be a sequence of real numbers and 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑘 < ⋯ be strictly increasing 

natural numbers, then the sequence 𝐴′ = 〈𝑎𝑛𝑘
〉given by (𝑎𝑛1

, 𝑎𝑛2
, … ) is called a subsequence of 𝐴. 

EXAMPLE 

 〈
𝟏

𝟐𝒏
〉is a subsequence of 〈

1

𝑛
〉. 

BOLZANO WEISTRASS THEOREM 

Every bounded sequences has a limit point (and thereby a convergent subsequence). 

RESULT 

• Set of all limit points of bounded sequences is bounded. 

LIMIT INFERIOR 

Let 𝐴 = 〈𝑎𝑛〉 be a sequence of real numbers, let 𝑏𝑘 = inf{𝑎𝑘 , 𝑎𝑘+1, 𝑎𝑘+2, … } , 𝑘 = 1,2,3 …, then it is 

clear that 〈𝑏𝑘〉 is an increasing sequence. The limit inferior of 〈𝑎𝑛〉, denoted by 𝑙𝑖𝑚〈𝑎𝑛〉,is given by 

𝑙𝑖𝑚〈𝑎𝑛〉 = lim 𝑖𝑛𝑓〈𝑎𝑛〉 = 𝑠𝑢𝑝〈𝑏𝑘〉 

LIMIT SUPERIOR 

Let 𝐴 = 〈𝑎𝑛〉 be a sequence of real numbers, let 𝑏𝑘 = sup{𝑎𝑘, 𝑎𝑘+1, 𝑎𝑘+2, … } , 𝑘 = 1,2,3, …, then it 

is clear that 〈𝑏𝑘〉 is a decreasing sequence. Then the limit superior of 〈𝑎𝑛〉, denoted by 𝑙𝑖𝑚〈𝑎𝑛〉 is 

given by 

𝑙𝑖𝑚〈𝑎𝑛〉 = lim 𝑠𝑢𝑝〈𝑎𝑛〉 = 𝑖𝑛𝑓〈𝑏𝑘〉 

NOTE 

Let 〈𝑎𝑛〉 be a realsequence, then 

• 〈𝑎𝑛〉 converges to 𝑙 ⇔ 𝑙𝑖𝑚〈𝑎𝑛〉 = 𝑙𝑖𝑚〈𝑎𝑛〉 = 𝑙. 

• 𝑖𝑛𝑓〈𝑎𝑛〉 ≤  𝑙𝑖𝑚〈𝑎𝑛〉 ≤ 𝑙𝑖𝑚〈𝑎𝑛〉 ≤ 𝑠𝑢𝑝〈𝑎𝑛〉 

EXAMPLE 

1. Consider the sequence 〈𝑎𝑛〉 = 21−
1

𝑛, then it is clear that 𝑖𝑛𝑓〈𝑎𝑛〉 = 21−
1

𝑛 = 1and 𝑙𝑖𝑚〈𝑎𝑛〉 =

𝑙𝑖𝑚〈𝑎𝑛〉 = 𝑠𝑢𝑝〈𝑎𝑛〉 = 2 

2. Consider the sequence 〈𝑎𝑛〉 =
1

𝑛
, then clearly 𝑖𝑛𝑓〈𝑎𝑛〉 =  𝑙𝑖𝑚〈𝑎𝑛〉 = 𝑙𝑖𝑚〈𝑎𝑛〉 = 0 and 

𝑠𝑢𝑝〈𝑎𝑛〉 = 1 

 



 

 

NOTE 

Suppose 〈𝑎𝑛〉 be a bounded sequence then  

• 〈𝑎𝑛〉 is bounded ⇔  𝑙𝑖𝑚〈𝑎𝑛〉 and 𝑙𝑖𝑚〈𝑎𝑛〉are finite. 

• 𝑙𝑖𝑚〈−𝑎𝑛〉 = −𝑙𝑖𝑚〈𝑎𝑛〉 

• 𝑙𝑖𝑚〈−𝑎𝑛〉 = − 𝑙𝑖𝑚〈𝑎𝑛〉 ⇔ −𝑙𝑖𝑚〈−𝑎𝑛〉=  𝑙𝑖𝑚〈𝑎𝑛〉 

Suppose that 〈𝑎𝑛〉, 〈𝑏𝑛〉 are bounded real sequence, then 

•  𝑙𝑖𝑚〈𝑎𝑛〉 +  𝑙𝑖𝑚〈𝑏𝑛〉 ≤   𝑙𝑖𝑚〈𝑎𝑛 + 𝑏𝑛〉 ≤  𝑙𝑖𝑚〈𝑎𝑛〉 + 𝑙𝑖𝑚〈𝑏𝑛〉 ≤ 𝑙𝑖𝑚〈𝑎𝑛 + 𝑏𝑛〉 ≤ 𝑙𝑖𝑚〈𝑎𝑛〉 +

𝑙𝑖𝑚〈𝑏𝑛〉 

• 𝑙𝑖𝑚〈𝑎𝑛〉𝑙𝑖𝑚〈𝑏𝑛〉 ≤  𝑙𝑖𝑚〈𝑎𝑛𝑏𝑛〉 ≤ 𝑙𝑖𝑚〈𝑎𝑛〉𝑙𝑖𝑚〈𝑏𝑛〉 ≤ 𝑙𝑖𝑚〈𝑎𝑛𝑏𝑛〉 ≤ 𝑙𝑖𝑚〈𝑎𝑛〉𝑙𝑖𝑚〈𝑏𝑛〉 

TYPES OF SEQUENCES 

OSCILLATING SEQUENCE 

1. Finitely oscillating. 

❖ 〈𝑎𝑛〉 is bounded but not converging 

❖ 𝑙𝑖𝑚〈𝑎𝑛〉 ≠ 𝑙𝑖𝑚〈𝑎𝑛〉 

❖ Ex:𝑎𝑛 = (−1)𝑛, 𝑎𝑛 = 1 + (−1)𝑛 

2. Infinitely oscillating 

❖ 𝑙𝑖𝑚〈𝑎𝑛〉 = −∞ and𝑙𝑖𝑚〈𝑎𝑛〉 = ∞ 

❖ Ex: : 𝑎𝑛 = (−1)𝑛𝑛, 𝑎𝑛 = (−2)𝑛 

MONOTONE SEQUENCES 

A real sequence 〈𝑎𝑛〉 is said to be Monotone if 〈𝑎𝑛〉 satisfies either 𝑎𝑛 ≤ 𝑎𝑛+1, ∀𝑛 or 𝑎𝑛 ≥ 𝑎𝑛+1, ∀𝑛. 

In first case sequence is said to be increasing and in the later case sequence is said to be decreasing. 

DIVERGING SEQUENCES 

Sequences having limit ∓∞. 

Ex: 𝑎𝒏 = −𝑛, 𝑎𝑛 = 2𝑛 

CAUCHY SEQUENCE 

A real sequence 〈𝑎𝑛〉 is said to be Cauchy if for all 𝜀 > 0, ∃𝑁 ∈ ℕ such that |𝑎𝑛 − 𝑎𝑚| < 𝜀, ∀𝑛, 𝑚 ≥

𝑁. 

NOTE 

let 〈𝑎𝑛〉 be areal sequence, then 

• 〈𝑎𝑛〉 is Cauchy ⟺ 〈𝑎𝑛〉 is convergent. 

• 〈𝑎𝑛〉 is Cauchy ⇒ 〈𝑎𝑛〉 is bounded. 

 



 

 

CAUCHY CRITERION 

• Let 〈𝑎𝑛〉 be a real sequence, if for some  

0 < 𝛼 < 1, |𝑎𝑛+1 − 𝑎𝑛| < 𝛼𝑛, ∀𝑛, then 〈𝑎𝑛〉 is Cauchy. 

• Let 〈𝑎𝑛〉 be a real sequences, if for some  

0 < 𝛼 < 1, |𝑎𝑛+1 − 𝑎𝑛| < 𝛼|𝑎𝑛 − 𝑎𝑛−1|, ∀𝑛 ⇒ 〈𝑎𝑛〉 is Cauchy. 

RESULT 

let 〈𝑎𝑛〉, 〈𝑏𝑛〉 be real sequences, then  

• |𝑎𝑛+1 − 𝑎𝑛| → 0 ⇏ |𝑎𝑛+1 − 𝑎𝑛| < 𝛼𝑛, ∀𝑛, for some 0 <  𝛼 < 1. 

• |𝑎𝑛+1 − 𝑎𝑛| → 0 ⇏ |𝑎𝑛+1 − 𝑎𝑛| <, 𝛼|𝑎𝑛 − 𝑎𝑛−1|∀𝑛, for some 0 <  𝛼 < 1. 

SANDWICH THEOREM (SQUEEZ THEOREM) 

Let 〈𝑥𝑛〉, 〈𝑦𝑛〉, 〈𝑧𝑛〉 be real sequence such that 𝑥𝑛 ≤ 𝑦𝑛 ≤ 𝑧𝑛, ∀𝑛, then 〈𝑥𝑛〉, 〈𝑧𝑛〉 → 𝑙 ⇒ 〈𝑦𝑛〉 → 𝑙 

CAUCHYS THEOREM ON LIMITS 

CAUCHY’S FIRST THEOREM 

Let 〈𝑆𝑛〉 be a real sequence such that 〈𝑆𝑛〉 → 𝑙, whether finite or infinite, 

 then 〈
𝑠1+𝑠2+⋯+𝑠𝑛

𝑛
〉 → 𝑙 

COROLLARY 

Let 〈𝑆𝑛〉 be a real sequence such that 〈𝑆𝑛〉 → 𝑙, 𝑆𝑛 ≥ 0, 

 then 〈(𝑠1𝑠2 … 𝑠𝑛)
1

𝑛〉 → 𝑙 

 

CAUCHY’S SECOND THEOREM 

Let 〈𝑠𝑛〉 be a real sequence such that 〈𝑠𝑛〉 → 𝑙, 𝑠𝑛 ≥ 0, then lim
𝑛→∞

𝑠𝑛+1

𝑠𝑛
= lim

𝑛→∞
(𝑠𝑛)

1

𝑛 = 𝑙(≠ ∞). 

CESARO’S THEOREM 

Let 〈𝑎𝑛〉, 〈𝑏𝑛〉 be real sequence so that 〈𝑎𝑛〉 → 𝑎, 〈𝑏𝑛〉 → 𝑏, then lim
𝑛→∞

𝑎1𝑏𝑛+𝑎2𝑏𝑛−1+⋯+𝑎𝑛𝑏1

𝑛
= 𝑎𝑏 

RESULT 

• Let 〈𝑎𝑛〉 be a real sequence, then lim
𝑛→∞

𝑎𝑛+1

𝑎𝑛
= 𝑙 > 1 ⇒ lim

𝑛→∞
𝑎𝑛 = ∞ 

MONOTONE CONVERGENT THEOREM 

let 〈𝑎𝑛〉 be a real monotone sequence, then 〈𝑎𝑛〉 is convergent ⇔〈𝑎𝑛〉 is bounded. 

NOTE 

 Let 〈𝑎𝑛〉 be a real sequence, then 



 

 

• 〈𝑎𝑛〉 is bounded and monotonically increasing ⇔〈𝑎𝑛〉 is convergent to its 𝑠𝑢𝑝 

• 〈𝑎𝑛〉 is bounded and monotonically decreasing ⇔〈𝑎𝑛〉 is convergent to its 𝑖𝑛𝑓 

CANTOR’S NESTED INTERVAL THEOREM 

Let 〈𝑎𝑛〉, 〈𝑏𝑛〉 be real sequences so that 𝑎𝑛 ≤ 𝑏𝑛, ∀𝑛 and 〈𝑎𝑛〉 → 𝑎, 〈𝑏𝑛〉 → 𝑏 by letting 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛], 

suppose that 𝐼𝑛+1 ⊆ 𝐼𝑛∀𝑛 then ⋂ 𝐼𝑛
∞
𝑛=1 = {𝑎} = {𝑏}. 

❖ ie, 〈𝑎𝑛〉&〈𝑏𝑛〉 converges to the same point 

MONOTONE SUBSEQUENCE THEOREM 

Every sequence in R has a monotone subsequence 

 

SERIES OF REAL NUMBERS 
 

SERIES OF REAL NUMBERS 

A series of real numbers is an expression of the form 𝑎1 + 𝑎2 + 𝑎3 … or more compactly as 

∑ 𝑎𝑛
∞
𝑛=1 ,where (𝑎𝑛) is a sequence of real numbers. The number 𝑎𝑛 is called the 𝑛-th term of the 

series and the sequence 𝑆𝑛 = ∑ 𝑎𝑖
𝑛
𝑖=1  is called the n-th partial sum of the series ∑ 𝑎𝑛

∞
𝑛=1  

CONVERGENCE AND DIVERGENCE OF SERIES 

A series ∑ 𝑎𝑛
∞
𝑛=1  is said to be converge (to 𝑆 ∈ ℝ) if the sequence of partial sum of the series 

converge (𝑡𝑜 𝑆 ∈ ℝ). 

NOTE 

• If ∑ 𝑎𝑛
∞
𝑛=1 converges to 𝑆, then we write 𝑆 = ∑ 𝑎𝑛

∞
𝑛=1  

• A series which does not converge is called divergent series. 

• ∑ 𝑎𝑛
∞
𝑛=1 = lim

𝑛→∞
𝑠𝑛 

CAUCHY CRITERION 

The series ∑ 𝑎𝑛
∞
𝑛=1  of real term is convergent ⟺〈𝑠𝑛〉 is convergent. 

NOTE 

• The series ∑ 𝑎𝑛
∞
𝑛=1  is convergent ⇒ 〈𝑎𝑛〉 → 0. 

❖ Above implication is from 𝑎𝑛 = 𝑆𝑛+1 − 𝑆𝑛.  

𝒑-SERIES  

𝑝 −series are the series of the form ∑
1

𝑛𝑝
∞
𝑛=1 . 

 

 



 

 

RESULT 

• ∑
1

𝑛𝑝
∞
𝑛=1  is convergent ⇔ 𝑝 > 1. 

• 𝑎𝑛 =
1

𝑛
→ 0, but ∑ 𝑎𝑛

∞
𝑛=1  is not convergent. 

• ∑
1

𝑝(𝑛)
∞
𝑛=1  𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡. ⇔ deg (𝑝) > 1, 𝑤ℎ𝑒𝑟𝑒 𝑝(𝑛) is a polynomial in 𝑛 

• ∑ 𝑎𝑛
∞
𝑛=1  𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡. ⟺ 〈𝑆𝑛〉 is cauchy. 

• ∑ 𝑎𝑛
∞
𝑛=1 = 𝑎 & ∑ 𝑏𝑛

∞
𝑛=1 = 𝑏 ⇒ ∑ (𝑎𝑛

∞
𝑛=1 + 𝑏𝑛) = 𝑎 + 𝑏 

GEOMETRIC SERIES 

• ∑ 𝑟𝑛∞
𝑛=1 =

𝑟

1−𝑟
, if |𝑟| < 1 

• ∑ 𝑟𝑛∞
𝑛=1  diverges for |𝑟| ≥ 1 

ABSOLUTELY CONVERGENT SERIES 

Let ∑ 𝑎𝑛
∞
𝑛=1  be a series of real numbers, then ∑ 𝑎𝑛

∞
𝑛=1  is said to be absolutely convergent if 

∑ |𝑎𝑛|∞
𝑛=1  converges. 

❖ Absolutely convergent series converges. 

RESULT 

Consider the real series ∑ 𝑎𝑛
∞
𝑛=1 , ∑ 𝑏𝑛

∞
𝑛=1 , ∑ (𝑎𝑛 ± 𝑏𝑛)∞

𝑛=1  then, 

❖ If any two of the above converges, then the third also converges. 

❖ If any one of the above converges, and any one diverges, then the third will be diverges. 

❖ If any two of the above diverges, then we cannot say about third. 

• Suppose that ∑ 𝑎𝑛
∞
𝑛=1 = 𝑎, then any type of series can be obtained from ∑ 𝑎𝑛

∞
𝑛=1  by 

grouping terms without altering the order. 

• ∑ 𝑎𝑛
∞
𝑛=1 , 𝑎𝑛 ≥ 0 is convergent⇔〈𝑠𝑛〉 is bounded above. 

PRINGSHEIM’S THEOREM 

Let ∑ 𝑎𝑛
∞
𝑛=1 , 𝑎𝑛 ≥ 0 be a real series so that (𝑎𝑛) is a monotonically decreasing sequence, then,  

∑ 𝑎𝑛
∞
𝑛=1  is convergent ⇒𝑛𝑎𝑛 → 0. 

TEST FOR SERIES 

COMPARISON TEST 

Let ∑ 𝑎𝑛
∞
𝑛=1 , ∑ 𝑏𝑛

∞
𝑛=1 , be a real series so that 0 ≤ 𝑎𝑛 ≤ 𝑏𝑛,then, 

(i) ∑ 𝑏𝑛
∞
𝑛=1  converges ⇒∑ 𝑎𝑛

∞
𝑛=1  converges. 

(ii) ∑ 𝑎𝑛
∞
𝑛=1  diverges ⇒∑ 𝑏𝑛

∞
𝑛=1  diverges. 

LIMIT COMPARISON TEST 

Let ∑ 𝑎𝑛
∞
𝑛=1 , ∑ 𝑏𝑛

∞
𝑛=1 , be real series so that 𝑎𝑛 ≥ 0, 𝑏𝑛 ≥ 0 & lim

𝑛→∞

𝑎𝑛

𝑏𝑛
= 𝑙(≠ 0) < ∞, then  

(i) ∑ 𝑎𝑛
∞
𝑛=1 , ∑ 𝑏𝑛

∞
𝑛=1  converges or diverges together. 



 

 

(ii) Suppose 𝑙 = 0 & ∑ 𝑏𝑛
∞
𝑛=1  converges, then ∑ 𝑎𝑛

∞
𝑛=1  converges. 

(iii) Suppose 𝑙 = ∞ & ∑ 𝑏𝑛
∞
𝑛=1  diverges, then ∑ 𝑎𝑛

∞
𝑛=1  diverges. 

CAUCHY’S ROOT TEST FOR +VE TERM SERIES 

Let ∑ 𝑎𝑛
∞
𝑛=1  be a real series so that 𝑎𝑛 ≥ 0, & lim

𝑛→∞
(𝑎𝑛)

1

𝑛 = 𝑙, then 

(i) ∑ 𝑎𝑛
∞
𝑛=1  converges if 𝑙 < 1 

(ii) ∑ 𝑎𝑛
∞
𝑛=1  diverges if 𝑙 > 1 

(iii) Test fails if 𝑙 = 1 

De ALEMBERT’S RATIO TEST FOR +VE TERM SERIES 

Let ∑ 𝑎𝑛
∞
𝑛=1  be a real series so that 𝑎𝑛 ≥ 0, & lim

𝑛→∞

𝑎𝑛+1

𝑎𝑛
= 𝑙, then 

(i) ∑ 𝑎𝑛
∞
𝑛=1  converges if 𝑙 < 1 

(ii) ∑ 𝑎𝑛
∞
𝑛=1  diverges if 𝑙 > 1 

(iii) Test fails if 𝑙 = 1 

• log 𝑛 < 𝑛𝑐 for any 𝑐 > 0. 

RAABE’S TEST 

Let ∑ 𝑎𝑛
∞
𝑛=1  be a real series so thet 𝑎𝑛 ≥ 0 & lim

𝑛→∞
𝑛 (

𝑎𝑛

𝑎𝑛+1
− 1) = 𝑙, then  

(i) If 𝑙 > 1, ∑ 𝑎𝑛
∞
𝑛=1  converges. 

(ii) If 𝑙 < 1, ∑ 𝑎𝑛
∞
𝑛=1  diverges. 

(iii) If 𝑙 = 1 test fails. 

LOGARITHM TEST 

Let ∑ 𝑎𝑛
∞
𝑛=1  be a real series so that 𝑎𝑛 ≥ 0 & lim

𝑛→∞
(log(

𝑎𝑛

𝑎𝑛+1
)) = 𝑙, then 

(i) If 𝑙 > 1, ∑ 𝑎𝑛
∞
𝑛=1  converges. 

(ii) If 𝑙 < 1, ∑ 𝑎𝑛
∞
𝑛=1  diverges. 

(iii) If 𝑙 = 1 test fails. 

CONDENSATION TEST 

Let ∑ 𝑎𝑛
∞
𝑛=1  be a real series, then ∑ 𝑎𝑛

∞
𝑛=1 & ∑ 2𝑛𝑎2𝑛

∞
𝑛=1  behaves alike. 

ALTERNATING SERIES (LEBINIZ) TEST 

Let ∑ (−1)𝑛∞
𝑛=1 𝑎𝑛, 𝑎𝑛 ≥ 0 is convergent if, 𝑎𝑛 ≥ 𝑎𝑛+1& 𝑎𝑛 → 0. 

CONDITIONALLY CONVERGENT SERIES 

A convergent series ∑ 𝑎𝑛
∞
𝑛=1  is said to be conditionally convergent if ∑ |𝑎𝑛|∞

𝑛=1  is not convergent. 

ABLE’S TEST 

Let ∑ 𝑎𝑛
∞
𝑛=1  be a real convergent series and 〈𝑏𝑛〉 be a positive monotone decreasing sequence, then 

∑ 𝑎𝑛
∞
𝑛=1 𝑏𝑛 is convergent. 



 

 

• Let ∑ 𝑎𝑛
∞
𝑛=1 , ∑ 𝑏𝑛

∞
𝑛=1  be convergent series, then ∑ 𝑎𝑛

∞
𝑛=1 𝑏𝑛  also convergent. 

• Let ∑ 𝑎𝑛
∞
𝑛=1  be an absolutely convergent real series, 〈𝑏𝑛〉 is a real bounded sequence, 

then∑ 𝑎𝑛
∞
𝑛=1 𝑏𝑛 convergent. 

EXAMPLES FOR CONVERGENT SERIES 

• ∑
(−1)𝑛+1

𝑛
∞
𝑛=1 =

1

1
−

1

2
+

1

3
− ⋯ = log 2 

• ∑
1

1+2+⋯+𝑛
∞
𝑛=1 =

1

1
+

1

3
+

1

6
+

1

10
+ ⋯ = 2 

• ∑
(−1)𝑛

2𝑛
∞
𝑛=1 =

1

1
−

1

2
+

1

4
−

1

8
+ ⋯ =

2

3
=

1

1−(−
1

2
)
 

• ∑
1

𝑛!
∞
𝑛=1 =

1

1!
+

1

2!
+

1

3!
+ ⋯ = 𝑒 − 1 

DIRECHLET THEOREM 

Let ∑ 𝑎𝑛
∞
𝑛=1  be an absolutely convergent seires, By rearrangements (Bracketing) of terms of 

∑ 𝑎𝑛
∞
𝑛=1 ,  we can make an absolutely convergent series converges to same sum. 

COROLLARY 

Let ∑ 𝑎𝑛
∞
𝑛=1  ba a divergent series of positive terms, by rearrangements of terms of  ∑ 𝑎𝑛

∞
𝑛=1  we can 

make only divergent series. 

REIMANN THEOREM 

Let ∑ 𝑎𝑛
∞
𝑛=1  be a conditionally convergent real series, then by appropriate rearrangements of terms 

of ∑ 𝑎𝑛
∞
𝑛=1  we can make series so that, 

(i) Convergent to any number 𝑙 < ∞ 

(ii) Divergent to ∞ 

(iii) Divergent to −∞ 

(iv) Oscillates finitely. 

(v) Oscillates infinitely 

COROLLARY 

Let ∑ 𝑎𝑛
∞
𝑛=1  be aconditionally convergent real series, and ∑ 𝑎𝑛

∞
𝑛=1 = 0, denotes 𝑆𝑘 = ∑ 𝑎𝑛

∞
𝑛=1 , then 

1. 𝑆𝑘 = 0, for infinitely many k 

2. It is possible that 𝑆𝑘 > 0, for infinitely many k. 

3. It is possible that 𝑆𝑘 < 0, for infinitely many k 

4. It is possible that 𝑆𝑘 > 0, for all but finitely many k 

NOTE 

𝑚 −tail of a series ∑ 𝑎𝑛
∞
𝑛=1 : 

Let ∑ 𝑎𝑛
∞
𝑛=1  be a real series, then the 𝑚-tail of the series is given by 



 

 

∑ 𝑎𝑛

∞

𝑛=𝑚

= 𝑎𝑚 + 𝑎𝑚+1 + 𝑎𝑚+2 + ⋯ 

RESULT 

• ∑ 𝑎𝑛
∞
𝑛=1  is convergent ⇒ ∑ 𝑎𝑛

∞
𝑛=𝑚 → 0 𝑎𝑠 𝑛 → ∞ 

• ∑ 𝑎𝑛
∞
𝑛=1  is convergent ⇒ ∑ 𝑒𝑎𝑛∞

𝑛=1  doesn’t converge. 

CONTINUITY 

CONTINUITY OF A FUNCTION 

Let 𝑓: 𝐴 → 𝐵 be a function, then 𝑓 is said to be continuous at the point 𝑥 = 𝑥0 ∈ 𝐴 if lim
𝑥→𝑥0

𝑓(𝑥) =

𝑓(𝑥0). Otherwise 𝑓 is said to have a discontinuity at 𝑥0. 

EXAMPLE 

• sin
1

𝑥
, cos

1

𝑥
 are Disccontinuous at 0. 

• 𝑓(𝑥) = 𝑥𝑎 sin
1

𝑥
, 𝑎 > 0 is continuous at 0 

NOTE 

• 𝑓 is said to be Left continuous if 𝑓(𝑎−) = 𝑓(𝑎). 

• 𝑓 is said to be right continuous if 𝑓(𝑎+) = 𝑓(𝑎). 

TYPES OF DISCONTINUITIES 

REMOVABLE DISCONTINUITY 

𝑓 is said to have a removable discontinuity at 𝑥 = 𝑎 if 𝑓(𝑎−) = 𝑓(𝑎+) ≠ 𝑓(𝑎). 

 Discontinuity can be removed by redefining functions at 𝑎 by 𝑓(𝑎) = 𝑓(𝑎−) = 𝑓(𝑎+). 

NON REMOVABLE DISCONTINUITY 

1st KIND:𝑓 is said to have a discontinuity of 1st kind at 𝑥 = 𝑎 if 𝑓(𝑎−) ≠ 𝑓(𝑎+) 

 Example : Signum function ,  𝑓(𝑥) = {
1

−1
0

, 𝑥 > 0
, 𝑥 < 0
, 𝑥 = 0

 

2nd KIND:𝑓 is said to have a discontinuity of 2nd kind at 𝑥 = 𝑎 if either or both 𝑓(𝑎−), 𝑓(𝑎+) doesn’t 

exist. 

NOTE 

• Monotone functions doesn’t have the discontinuity of 2nd kind. 



 

 

• 𝑓 is continuous in [𝑎, 𝑏] ⇒ 𝑓 is bounded on [𝑎, 𝑏] 

❖ 𝑓(𝑥) =
1

𝑥−𝑎
 is continuous in (𝑎, 𝑏), but not bounded. 

• 𝑓 continuous in [𝑎, 𝑏] ⇒ 𝑓 attains its bounds atleast once on [𝑎, 𝑏]. 

• 𝑓 is continuous in [𝑎, 𝑏] ⇒ 𝑅(𝑓) = [𝑙, 𝐿], where 𝑙 ∶=Minimum of 𝑓 & 𝐿 ∶=Maximum of 𝑓. 

• 𝑓 is continuous at 𝑐 ∈ (𝑎, 𝑏) ⇒ 𝑓(𝑥) has same sign as 𝑓(𝑐) in some neighbourhood  

(𝑐 − 𝛿, 𝑐 + 𝛿). 

 

LOCATION ROOT THEOREM 

Let 𝑓 be continuous in [𝑎, 𝑏], 𝑓(𝑎)& 𝑓(𝑏) are in opposite signs, then ∃𝑐 ∈ (𝑎, 𝑏) such that 𝑓(𝑐) = 0. 

INTERMEDIATE VALUE THEOREM 

Let 𝑓 be continuous in [𝑎, 𝑏], 𝑓(𝑎) ≠ 𝑓(𝑏), then 𝑓 assumes all values between 𝑓(𝑎)& 𝑓(𝑏). 

FIXED POINT THEOREM 

Let 𝑓: [𝑎, 𝑏] → [𝑎, 𝑏] be continuous, then ∃𝑐 ∈ [𝑎, 𝑏] such that 𝑓(𝑐) = 𝑐. (Fixed point) 

EXAMPLE 

(i) 𝑓 is constant ⇒ f has only one fixed point. 

(ii) 𝑓 is the identity function ⇔all points are fixed points. 

NOTES 

• Let 𝑓 be a function from [𝑎, 𝑏], & ∃𝑐 ∈ [𝑓(𝑎), 𝑓(𝑏)] such that 𝑐 ∉ 𝑅(𝑓) ⇒ 𝑓 is not 

continuous. 

• Let 𝑓 be injective on [𝑎, 𝑏], and satisfies Intermediate Value Theorem⇒𝑓 is continuous. 

• Let 𝑓 be continuous in [𝑎, 𝑏], then 𝑓 assumes all values between 𝑙 = min 𝑓 & 𝐿 = max 𝑓 

• Let 𝑓 be continuous in [𝑎, 𝑏] and is Monotonic increasing, then 𝑅(𝑓) = [𝑓(𝑎), 𝑓(𝑏)]. 

• 𝑓: [𝑎, 𝑏] → [𝑎, 𝑏] has no fixed points at all ⇒ 𝑓 is not continuous. 

• Let 𝑓 be continuous on [𝑎, 𝑏]& 𝑓(𝑎) = 𝑓(𝑏) ⇒ ∃𝑎𝑖 , 𝑏𝑖 ∈ (𝑎, 𝑏) such that 𝑓(𝑎𝑖) = 𝑓(𝑏𝑖). 

UNIFORM CONTINUITY 

A function f defined on an interval  𝐼  is said to be uniformly continuous on 𝐼 if for each 𝜀 > 0 there 

exist a 𝛿 > 0 such that, |𝑓(𝑥2 − 𝑓(𝑥1)| < 𝜀 for arbitrary points 𝑥1, 𝑥2 of 𝐼 for which |𝑥1 − 𝑥2| < 𝛿 

NON-UNIFORM CONTINUITY CRITERION 

Let 𝐼 ⊆ 𝑅 and let 𝑓: 𝐼 → 𝑅. Then the following satatements are equivalent. 

1. f is not uniformly continuous on I. 

2. there exist an 𝜀0 > 0 such that for every 𝛿 > 0 there are points 𝑥𝛿 , 𝑢𝛿in I such that |𝑥𝛿 −

𝑢𝛿| < 𝛿 𝑎𝑛𝑑 |𝑓(𝑥𝛿 − 𝑓(𝑢𝛿)| ≥ 𝜀0. 



 

 

3. There exist an 𝜀0 > 0 and two sequences (𝑥𝑛) 𝑎𝑛𝑑 (𝑢𝑛)  in I such that 𝑙𝑖𝑚 (𝑥𝑛 − 𝑢𝑛)  = 0 

and |𝑓(𝑥𝑛 − 𝑓(𝑢𝑛)| ≥ 𝜀0  for all 𝑛 ∈ ℕ. 

UNIFORM CONTINUITY THEOREM 

Let I be a closed and bounded interval and let 𝑓: 𝐼 → 𝑅 be continuous on I. Then, f is uniformly 

continuous on I. 

 


