MYCOLOGY PART – 3 # 2. MASTIGOMYCOTA - They are commonly known as zoosporic fungi. - The cell wall is made up of chitin and cellulose. - They are mostly aquatic while another group are primarily terrestrial, although the organisms still form motile zoospores when open water is available. - Three types of zoospores are common in this group. These are: (a) Laterally biflagellate, (b) Posteriorly uniflagellate, and (c) Anteriorly uniflagellate type having "9 + 2" arrangement of component fibrils. - Most of them are filamentous and have coenocytic mycelium. However, unicellular form are present. - Some genera show the pseudosepta (false cross wall) formation. - Rhizoids are present in some of unicellular forms. - Saprophytes or parasites. - Due to presence of haustoria in a majority of Mastigomycotina, the mode of nutrition is typically absorptive. - Sexual reproduction takes place by gametic copulation, gametangial copulation and gametangial contact. - Oospores formation are common in almost all Mastigomycotina. Eg., Pythium, Albugo, Phythophora etc... ### **REPRODUCTION** - Vegetative reproduction - > Asexual reproduction - > Sexual reproduction # **Vegetative reproduction** - 1. **Fragmentation-** The vegetative mycelium or hyphae break into several fragments and these fragments have the capability to grow into new mycelium under favorable conditions. - 2. **Clamadospores-** Hyphal tips are mostly swollen and they get separated by a septum and then germinate to form mycelium. ### **Asexual reproduction** #### Through Zoospores- - The difference is by type of flagellum, the position of the flagellum, and a number of flagellum attached. - uniflagellate posterior type or uniflagellate tinsel type or biflagellated. - ➤ Single Anterior flagellum- Tinsel type - ➤ Single Posterior flagellum Whiplash type - ➤ Biflagellated zoospore (Reniform or kidney-shaped) Anterior Tinsel type and posterior whiplash-type # Sexual reproduction - 1. Gametic Copulation or Planogametic copulation - > the fusion of two naked gametes - 2. Gametangium Copulation- - ➤ The conjugation between the gametangia that leads to protoplasm fusion and ultimately nucleus forming spores. # 3. Gametangial contact- ➤ The conjugation tube is formed between the gametangia and the transfer of nucleus tales place leading to meiosis and formation of spores that form new hyphae. # **CLASSIFICATION OF MASTIGOMYCOTA** • Ainsworth (1973) classified the subdivision Mastigomycotina into three classes: | SI | CLASS | FEATURES | |----|---------------------|--| | 1. | Chytridiomycetes | They produces posteriorly uniflagellate zoospores Chytridiomycetous fungi occur as saprobes on plants and animal remains in water while other members occur as parasites on algae and aquatic animals. | | 2. | Hyphochytriomycetes | Zoospores are anteriorly uniflagellate. The hyphochytridiomycetes are those aquatic fungi whose thallus is holocarpic or eucarpic, monocentric or polycentric and their vegetative system is rhizoidal or hypha-like with intercalary swellings | | 3. | Oomycetes: | The Oomycetes contain 74 genera and 580 species, which are mostly aquatic, though some are terrestrial and live as parasites or saprophytes. Includes classic "water molds" in the Order Saprolegniales and the "downy mildews" in the Order Peronosporales. | # **ECONOMIC IMPORTANCE** - *Chytrids* cause wart disease of potato, wart diseases in roots of crucifers, crown wart of alfalfa, a brown spot of maize, - *Oomycetes* are responsible for late blight of potato, downy mildew, damping-off, fruit rot(*Pythium species*), footrot (*Pythium species*), white rust (*Albugo*), - Few have been reported as biocontrol agents. - Hypochytrids form an important group in marine or freshwater biodiversity.