
 

 

MODULE 7 PART 3 
Population and Sample-sampling and sample 
designs 
In statistics, we are interested in obtaining information about a total collection 
of elements,which we will refer to as the population. The population is often too 
large for us to examine each of its members. For instance, we might have all 
the residents of a given state, or all the television sets produced in the last year 
by a particular manufacturer, or all the households in a given community. In 
such cases, we try to learn about the population by choosing 
and then examining a subgroup of its elements. This subgroup of a population 
is called a sample. 
If the sample is to be informative about the total population, it must be, in some 
sense,representative of that population. For instance, suppose that we are 
interested in learning about the age distribution of people residing in a given 
city, and we obtain the ages of the first 100 people to enter the town library. If 
the average age of these 100 people is 46.2years, are we justified in concluding 
that this is approximately the average age of the entire 
population?  
Probably not, for we could certainly argue that the sample chosen in this case 
is probably not representative of the total population because usually more 
young students and senior citizens use the library than do working-age citizens. 
In certain situations, such as the library illustration, we are presented with a 
sample and must then decide whether this sample is reasonably 
representative of the entire population. 
In practice, a given sample generally cannot be assumed to be representative 
of a population unless that sample has been chosen in a random manner. This 
is because any specific nonrandom rule for selecting a sample often results in 
one that is inherently biased toward 
some data values as opposed to others. 



 

 

Thus, although it may seem paradoxical, we are most likely to obtain a 
representative sample by choosing its members in a totally random fashion 
without any prior considerations of the elements that will be chosen. In other 
words, we need not attempt to deliberately choose the sample so that it 
contains, for instance, the same gender percentage in the same percentage 
of people in each profession as found in the general population. 
Rather, we should just leave it up to “chance” to obtain roughly the correct 
percentages. 
Once a random sample is chosen, we can use statistical inference to draw 
conclusions about the entire population by studying the elements of the 
sample 
 Sampling 
Sampling is a statistical procedure that is concerned with the selection of 
certain individual observations from the target population. It helps to make 
statistical inferences about the population. Some of the basic terminologies 
are as follows  
Population 
A population is any complete group (i.e., people, sales territories, stores, etc.) 
sharing some common set of characteristics. It can be defined as including all 
people or items with the characteristic one wishes to understand and draw 
inferences about them.  
Population frame 
A list, map, directory, or other source used to represent the population 
Census 
A census is an investigation of all the individual elements making up the 
population—a total 
listing rather than a sample. 

Sample 
A sample is a subset or some part of a larger population. It is “a smaller (but 
hopefully 



 

 

representative) collection of units from a population used to determine truths 
about that 
population”  
 

SAMPLE DESIGN 
A sample design is a definite plan for obtaining a sample from a given 
population. It refers to the technique or the procedure the researcher would 
adopt in selecting items for the sample. 
Steps in Sample Design: 
• Type of Universe 
• Sampling Unit 
• Sampling Frame 
• Size of Sample 
• Budgetary Constraints 
• Sampling Procedure 

 
 
Characteristics Of A Good Sample Design 

●  Sample design must result in a truly representative sample 
●  Sample design must be such which results in a small sampling error 
●  Sample design must be viable in the context of funds available for the 



 

 

● research study 
●  Sample design must be such so that systematic bias can be controlled 

in a better way 
● Sample should be such that the results of the sample study can be 

applied, in general, for the universe with a reasonable level of confidence 
Basic principles of sampling 
Theory of sampling is based on the following laws 
a. Law of Statistical Regularity – This law comes from the mathematical theory 
of probability. According to King,” Law of Statistical Regularity says that a 
moderately large number of the items chosen at random from the large group 
are almost sure on the average to possess the features of the large group.” 
According to this law the units of the sample must be selected at random. 
b. Law of Inertia of Large Numbers – This law states that the other things being 
equal the larger the size of the sample; the more accurate the results are likely 
to be. 
 
Types of Sample Design 
 
• Probability Sampling Design 
 Each element/respondent has a known probability of being included in the 
sample. 
• Non-probability Sampling Design 
 Each element/respondent in the population is not given an equal chance of 
selection. 
 
 
 
 
 

 Probability Sampling Design 



 

 

 
 
Types of Probability Sampling 
1. Simple Random Sampling 
2. Systematic Sampling 
3. Stratified Random Sampling 
a. Proportionate 
b. Disproportionate 
4. Cluster (or Area) Sampling 
5. Multistage sampling  
 
Types of Random Sampling 
1. Simple Random Sampling 
It is a sampling procedure where each element in the population will have an 
equal chance of being selected in the sample. This process is simple because 
it requires only one stage of the sample selection process. Here we number 
each frame unit from 1 to N. Then use a random number table or a random 
number generator to select n distinct numbers between 1 and N, inclusively. It 
is easier to perform for small populations but cumbersome for large 
populations. 
2.Systematic Random Sampling 



 

 

It is convenient and relatively easy to measure. Here an initial starting point is 
selected by a random process; then every nth number on the list is selected. 
The first sample element is selected randomly from the first k population 
elements. Thereafter, sample elements are selected at a constant interval, k 
from the ordered sequence frame. 
k = N/n 
where: 
n= sample size 
N= population size 
k = size of selection interval 
For example one wishes to take a sample of 50 from a list consisting of 10,000 
purchase 
orders. Purchase orders for the previous fiscal year are serialized 1 to 10,000 (N 
=10,000). A sample of fifty (n = 50) purchase orders is needed for an audit. k = 
10,000/50= 200. First sample element randomly selected from the first 200 
purchase orders. 
Assume the 45th purchase order was selected. Subsequent sample elements: 
245, 445,645 . . . 
 
Stratified Random Sampling 
Here the population is divided into non overlapping subpopulations called 
strata. A random sample is selected from each stratum. Each stratum is then 
sampled as an independent sub-population, out of which individual elements 
can be randomly selected. 
Every unit in a stratum has the same chance of being selected. 
a) Proportionate -- the percentage of the sample taken from each stratum is 
proportionate to the percentage that each stratum is within the population. 
b) Disproportionate -- proportions of the strata within the sample are different 
from the proportions of the strata within the population. 



 

 

 
 
Cluster Sampling 
It is also called ‘two-stage sampling’. In the first stage a sample of areas is 
chosen. In the second stage a sample of respondents within those areas is 
selected. Here population is divided into non overlapping clusters or areas of 
homogeneous units usually based on 
geographical dispersed population. Each cluster is a miniature, or microcosm, 
of the population. A subset of the clusters is selected randomly for the sample. 
If the number of elements in the subset of clusters is larger than the desired 
value of n, these clusters may be subdivided to form a new set of clusters and 
subjected to a random selection process. 

 



 

 

 

 
Multistage Sampling 
Multi-stage sampling (also known as multi-stage cluster sampling) is a more 
complex form of cluster sampling which contains two or more stages in sample 
selection.  
In multi-stage sampling large clusters of population are divided into smaller 
clusters in several stages in order to make primary data collection more 
manageable in terms of cost effectiveness andtime effectiveness. 
 It is quite effective in primary data collection from geographically 



 

 

dispersed population where face-to-face contact is required (e.g. semi-
structured in-depth interviews). 
Types of Non Probability Sampling 
1) Convenience Sampling:  
A type of nonprobability sampling which involves the sample being drawn from 
that part of the population which is close to hand. That is, readily available and 
convenient. It is also termed as grab or opportunity sampling or accidental or 
haphazard sampling. Sample elements are selected for the convenience of the 
researcher. The researcher using such a sample cannot scientifically make 
generalizations about the total population 
from this sample because it would not be representative enough. This type of 
sampling is most useful for pilot testing. 
2) Judgment Sampling: Here the sample elements are selected by the 
judgment of the researcher. The researcher chooses the sample based on who 
they think would be appropriate 
for the study. This is used primarily when there are a limited number of people 
that have 
expertise in the area being researched. 
3) Quota Sampling: Here the population is first segmented into mutually 
exclusive subgroups, just as in stratified sampling. Then judgment is used to 
select subjects or units from 
each segment based on a specified proportion. In quota sampling the 
selection of the sample 
is non-random. For example, an interviewer may be told to sample 200 females 
and 300males between the ages of 45 and 60. He might be tempted to 
interview those who look most helpful. 
4.Snowball Sampling: survey subjects are selected based on referral from 
other survey respondents. In social science research, snowball sampling is a 
similar technique, where existing study subjects are used to recruit more 
subjects into the sample. 
 



 

 

Types of Error 
i)Sampling error 
If researchers are not careful in planning and defining the sampling process, it 
can lead to faulty research findings. Sampling error is the error that occurs 
because of a representative sample from the population rather than the entire 
population. 
 In statistical terminology, it’s the difference between the statistic you measure 
and the parameter you would find if you took a census of the entire population. 
Sample error can’t be eliminated, but it can be 
reduced. In general, it works like the larger the sample, the smaller the margin 
of error. 
ii) Non Sampling error 
This is due to poor data collection methods (like faulty instruments or 
inaccurate data recording, missing data, selection bias, non response bias 
(where individuals don’t want to or can’t respond to a survey), poorly conceived 
concepts, vague definitions and defective questions. Increasing the sample 
size will not reduce these errors. They key is to avoid 
making the errors in the first place with a well-planned design for the survey or 
experiment. 

Parameter 
In a statistical inquiry, our interest lies in one or more characteristics of the 
population. A measure of such a characteristic is called a parameter. For 
example, we may be interested in the mean income of the people of some 
region for a particular year. We may also like to know the standard deviation of 
these incomes of the people. Here, both mean and standard deviation are 
parameters. 
Parameters are conventionally denoted by Greek alphabets. For example, the 
population mean can be denoted by p and population standard deviation can 
be i denoted by o . 
It is important to note that the value of a parameter is computed from all the 



 

 

population observations. Thus, the parameter 'mean income' is calculated 
from all the income figures of different individuals that constitute the 
population.  
Similarly, for the calculation of the parameter 'correlation coefficient of heights 
and weights', we require the values of all the pairs of heights and weights in a 
population. Thus, 
We can define a parameter as a function of the population values. If 8 is a 
parameter that we want to obtain from the population values XI, X, , . X, , then 

Statistic 
While discussing the census and the sample survey, we have seen that due to 
various constraints, sometimes it is difficult to obtain information about the  
whole population. In other words, it may not always be possible to compute a 
population parameter. In such situations, we try to get some idea about the 
parameter from the information obtained from a sample drawn from the 
population.  
This sample information is summarized in the form of a stati.vtic. For example, 
sample mean or sample median or sample mode is called a statistic. Thus, a 
statistic is calculated from the values of the units that are included in the 
sample. So, a statistic can be defined as the function of the sample values. 
Conventionally, a statistic is denoted by an English alphabet. 
 For example, the sample mean may be denoted by 2 and the 
sample standard deviation may be denoted by s. If T is a statistic that we want 
to obtain from the sample values x, , x, , . xn , then 

Estimator and Estimate 
The basic purpose of a statistic is to estimate some population parameter. The 
Procedure followed or the formula used to compute a statistic is called an 
estimator and the value of a statistic so computed is known as an estimate. . 

 



 

 

This formula is an estimator. Next, if we use this formula and get jj = 10, this ' 10' 
is an estimate.  
 

SAMPLING DISTRIBUTION 
By now it should be clear that generally the size of a sample is much smaller 
than the parent population. Consequently, many samples can be selected 
from the same population which are different from one another. Since an 
estimate of a parameter depends upon the sample values, and these values 
may change from one sample to another, there can be different estimates or 
values of a statistic for the same parameter.  
This variation in values is called sampling fluctuation.  
Suppose, a number of samples, each of size n, are drawn from a population of 
size N and for each sample, the value of the statistic is computed. If the number 
of samples is large, these values can be damaged in the form of a relative 
frequency distribution. 
When the number of samples tends to infinity, the resultant relative frequency 
distribution of the values of a statistic is called the sampling distribution of the 
given statistics. 
Suppose, we are interested in estimating the population mean (which is a 
parameter), denoted by p. A random sample of size n is drawn from this 
population (of size N). The sample mean 

 
is a statistic corresponding to the population mean p. We should note x that is 
a random variable as its value changes from one sample 'to another in a 
probabilistic manner 

STANDARD ERROR OF A STATISTIC 
In the previous Section we learnt that we can draw a number of samples 
depending upon the population and sample sizes. From each sample we get a 
different value for the statistic we qe looking for. These values can be arranged 



 

 

in the form of a probability distribution, which is called the sampling distribution 
of the concerned statistic.  
The statistic is also similar to a random variable since a probability is 
' attached to each value it takes.  
two important properties of the sampling distribution. 
1) The expectation of the sampling distribution of the statistic is equal to the 
population parameter. Thus if we have the sampling distribution of sample 
means, then its expected value is equal to population mean. Symbolically, 

 
2) The standard deviation of the sampling distribution is called 'standard mr' 
of the concerned statistic. Thus if we have sampling distribution of sample 
means, then its standard deviation is called the 'standard error of sample 
means'. Thus stand nmr indicates the spread of the sample means away 
film the population mean.  
Measurement and Scaling techniques 
scaling techniques 

Scaling technique is a method of placing respondents in continuation of 

gradual change in the pre-assigned values, symbols or numbers based on the 
features of a particular object as per the defined rules. All the scaling 
techniques are based on four pillars, i.e., order, description, distance and origin. 
Types of Scaling Techniques 
The researchers have identified many scaling techniques; today, we will 
discuss some of the most common scales used by business organizations, 
researchers, economists, experts, etc. 
These techniques can be classified as primary scaling techniques and other 
scaling techniques. 
Primary Scaling Techniques 
The major four scales used in statistics for market research consist of the 
following: 



 

 

 
 

Nominal Scale 
Nominal scales are adopted for non-quantitative labeling variables which are 
unique and different from one another. 
 
 
Types of Nominal Scales: 

● Dichotomous: A nominal scale that has only two labels is called 
‘dichotomous’; for example,Yes/No. 

● Nominal with Order: The labels on a nominal scale arranged in an 
ascending or descending order are termed as ‘nominal with order’; for 
example, Excellent, Good, Average, Poor, Worst. 

● Nominal without Order: Such nominal scale which has no sequence, is 
called ‘nominal without order’; for example, Black, White. 

Ordinal Scale 
The ordinal scale functions on the concept of the relative position of the objects 
or labels based on the individual’s choice or preference. 
For example, At Amazon.in, every product has a customer review section where 
the buyers rate the listed product according to their buying experience, 
product features, quality, usage,etc. 
The ratings so provided are as follows: 



 

 

1. 5 Star – Excellent 
2. 4 Star – Good 
3. 3 Star – Average 
4. 2 Star – Poor 
5. 1 Star – Worst 

 
Interval Scale 
An interval scale is also called a cardinal scale which is the numerical labeling 
with the same difference among the consecutive measurement units. With the 
help of this scaling technique, 
researchers can obtain a better comparison between the objects. 
 
 
 
Ratio Scale 
One of the most superior measurement techniques is the ratio scale. Similar to 
an interval scale, a ratio scale is an abstract number system. It allows 
measurement at proper intervals, 
order, categorization and distance, with an added property of originating from 
a fixed zero point. Here, the comparison can be made in terms of the acquired 
ratio. 
 
Other Scaling Techniques 
Scaling of objects can be used for a comparative study between more than 
one object(products, services, brands, events, etc.). Or can be individually 
carried out to understand the 
consumer’s behavior and response towards a particular object 



 

 

 
THE CENTRAL LIMIT THEOREM 
In this section, we will consider one of the most remarkable results in probability 
—namely, the central limit theorem. Loosely speaking, this theorem asserts that 
the sum of a large number of independent random variables has a distribution 
that is approximately normal.  
Hence, it not only provides a simple method for computing approximate 
probabilities for sums of independent random variables, but it also helps 
explain the remarkable fact that the empirical frequencies of so many natural 
populations exhibit a bell-shaped(that is, a normal) curve. 
In its simplest form, the central limit theorem is as follows 

 



 

 

 
 

 

The sampling distribution 
 
The sampling distribution of a statistic is the distribution of all 
possible values taken by the statistic when all possible samples of a 
fixed size n are taken from the population. It is a theoretical idea—we 
do not actually build it. 
The sampling distribution of a statistic is the probability distribution 
of that statistic. 
We take many random samples of a given size 
n from a population with meanµ and standard deviation σ. 
Some sample means will be above the population mean 
µ and some will be below, making up the sampling distribution. 

 
For any population with mean µ and standard deviation σ: 



 

 

● The mean, or center of the sampling distribution of , is equal to the 

population mean µ :  
●  The standard deviation of the sampling distribution is σ/√n, where 

n is the sample size : .  
 

 
Mean of a sampling distribution of 
There is no tendency for a sample mean to fall systematically above or 
below µ, even if the distribution of the raw data is skewed. Thus, the mean 
of the sampling distribution is an unbiased estimate of the population mean 
µ — it will be “correct on average” in many samples. 
 Standard deviation of a sampling distribution of 
The standard deviation of the sampling distribution measures how much the 
Sample statistics vary from sample to sample. It is smaller than the standard 
deviation of the population by a factor of √n. Î Averages are less 
variable than individual observations. 
For normally distributed populations 
When a variable in a population is normally distributed, the sampling 
distribution of for all possible samples of size n is also normally distributed.  



 

 

 
 

F-DISTRIBUTION  

 
As we have said in the previous unit, F-distribution was introduced by Prof. R. A. 
Fisher and defined as the ratio of two independent chi-square variates when 
divided by their respective degrees of freedom. If we draw a 
random sample X1, X2 ,..., Xn   of size n1 from a normal population with mean 
1 and variance σ2 and another independent random sample Y , Y ,..., Y   of 
1 1 2 n2 
size n2 from another normal population with mean 2 and variance 2 
respectively then as we have studied in Unit 3 that  S2 / 2 is distributed as 
  

 
PROPERTIES OF F-DISTRIBUTION 
 The F-distribution has wide properties in Statistics. Some of them are as follow: 



 

 

1.The probability curve of F-distribution is a positively skewed curve. The curve 
becomes highly positively skewed when ν2 is smaller than ν1. 
2.F-distribution curve extends on abscissa from 0 to . 
3.F-distribution is a unimodal distribution, that is, it has a single mode. 
4.The square of t-variate with ν df follows F-distribution with 1 and ν 
degrees of freedom. 

 
  
 
 
 
Probability Curve of F-distribution 

 
 
The F-distribution has the following applications: 

● F-distribution is used to test the hypothesis about equality of the 
variances of two normal populations. 

● F-distribution is used to test the hypothesis about multiple correlation 
coefficients. 



 

 

● F-distribution is used to test the hypothesis about correlation ratio. 
● F-distribution is used to test the equality of means of k-populations, 

when one characteristic of the population is considered i.e. F-distribution 
is used in one-way analysis of variance. 

● F-distribution is used to test the equality of k-population means for two 
characteristics at a time i.e. F-distribution is used in two-way analysis of 
variance. 

 Chi-squared Distributions 
Definition: The chi-squared distribution with k degrees of freedom is the 
distribution of a random variable that is the sum of the squares of k 
independent 
standard normal random variables. Weʼll call this distribution χ2 
(k). 
Thus, if Z1, ... , Zk are all standard normal random variables (i.e., each Zi ~ 
N(0,1)), and if they are independent, then 

 

 
Notice that the phrase “degrees of freedom” refers to the number of 
independent standard normal variables involved. The idea is that since 
these k variables are independent, we can choose them “freely” (i.e., 
independently). 
The following exercise should help you assimilate the definition of chi-
squared distribution, as well as get a feel for the χ2(1) distribution. 
For k > 1, itʼs harder to figure out what the χ2 
(k) distribution looks like just using 



 

 

the definition, but simulations using the definition can help. The following 
diagram 
shows histograms of four random samples of size 1000 from an N(0,1) 
distribution: 

 
 

 

 



 

 

t Distributions 
Definition: The t distribution with k degrees of freedom is the distribution 
of a random variable which is of the form 

 
i. Z ~ N(0,1) 
ii. U ~ χ2 (k), and 
iii. Z and U are independent. 

 

 



 

 

 
THEORY OF ESTIMATION 
 
In many real-life problems, the population parameter(s) is (are) 
unknown and someone is interested to obtain the value(s) of 
parameter(s). But, if the whole population is too large to study or the units 
of the population are destructive in nature or there is a limited resources 
and manpower available then it is not practically convenient to examine 
each and every unit of the population to find 
the value(s) of parameter(s). In such situations, one can draw samples 
from the population under study and utilize sample observations to 
estimate the parameter(s). 
Every one of us makes estimates(s) in our day to day life. For example, a 
house wife estimates the monthly expenditure on the basis of particular 
needs, a sweet shopkeeper estimates the sale of sweets on a day, etc. So 
the technique of finding an estimator to produce an estimate of the 
unknown parameter on the basis of a sample is called estimation. 
There are two methods of estimation: 
1. Point Estimation 
Point Estimates 
A point estimate is a sample statistic calculated using the sample data 
to estimate the most likely value of the corresponding unknown 



 

 

population parameter. In other words, point estimate is a single value 
derived from a sample and used to estimate the population value. 
 
For instance, if we use a value of x̅ to estimate the mean µ of a 
population. 
 
x̅ = Σx/n 
 
2. Interval Estimation 
A confidence interval estimate is a range of values constructed from 
sample data so that the population parameter is likely to occur within 
the range at a specified probability. The specified probability is the level 
of confidence. 
 
Broader and probably more accurate than a point estimate 
Used with inferential statistics to develop a confidence interval – where 
we believe with a certain degree of confidence that the population 
parameter lies. 
Any parameter estimate that is based on a sample statistic has some 
amount of sampling error. 
In statistics, interval estimation is the use of sample data to calculate an 
interval of possible values of an unknown population parameter. 
 
 

PROPERTIES OF GOOD ESTIMATOR 
Prof. Ronald A. Fisher was the man who pushed ahead the theory of 
estimation and introduced these concepts and gave some properties of 
good estimator as follows: 
1. Unbiasedness 
2. Consistency 
3. Efficiency 



 

 

4. Sufficiency 
 
Unbiasedness 
A first desirable property is that the expected value of the estimate 
ˆθ = T(y) be equal to the actual value of the parameter θ. 
Definition 1.2. An estimator T(y) of the parameter θ is unbiased (or 
correct)  In the above definition we used the notation  

 
[·], which stresses the 
dependency on θ of the expected value of T(y), due to the fact that the 
pdf of y is parameterized by θ itself. 
The unbiasedness condition (1.1) guarantees that the estimator T(·) does 
not introduce systematic errors, i.e., errors that are not averaged out even 
when considering an infinite amount of observations of y. In other words, 
T(·) does not overestimate neither underestimate θ, on average 

 
Consistency 
Another desirable property of an estimator is to provide an estimate that 
converges to the actual value of θ as the number of measurements 
grows. 
Being the estimate of a random variable, we need to introduce the notion 
of convergence in probability. 
Definition 1.3. Let {yi}∞ 



 

 

i=1 be a sequence of random variables. The sequence of estimators ˆθn 
= Tn(y1 , . . . , yn) of θ is said to be consistent if ˆθn 
converges in probability to θ, for all admissible values of θ, i.e. 

 
 
 
In the previous section, we learned about unbiasedness. An estimator T 
is 
said to be unbiased estimator of parameter, say,  if the mean of sampling 
distribution of estimator T is equal to the true value of the parameter . 
This 
The concept was defined for a fixed sample size. In this section, we will 
learn about consistency which is defined for increasing sample size. 
If X ,X , ..., X 1 2 n is a random sample of size n taken from a population 
whose probability density (mass) function is f(x,θ) where,  is the 
population 
parameter then consider a sequence of estimators, say, T1 = t1(X1), 
T2 = t2(X1, X2), T3 = t3(X1, X2, X3),…, Tn = tn(X1, X2, ..., Xn) . A sequence of 
estimators is said to be consistent for parameter  if the deviation of the 
values 
The estimator from the parameter tends to zero as the sample size 
increases. That 
 



 

 

means values of estimators tend to get closer to the parameter  as 
sample size increases. 
In other words, a sequence {Tn} of estimators is said to be consistent 
sequence of estimators of  if Tn converges to  in probability, that is 

 
EFFICIENCY 
In some situations, we see that there are more than one estimators of a 
parameter which are unbiased as well as consistent. For example, 
sample mean and sample median both are unbiased and consistent for 
the parameter 
  When sampling is done from normal population with mean  and known 
variance σ2 
.In such situations, there arises a necessity of some other criterion which 
will help us to choose ‘best estimator’ among them. A criterion which is 
based on the concept of variance of the sampling distribution of the 
estimator is termed as efficiency. 
If T1 and T2 are two estimators of a parameter . Then T1 is said to be more 
efficient than T2 for all sample sizes if 

 
SUFFICIENCY 
In statistical inference, the aim of the investigator or statistician may be 
to make a decision about the value of the unknown parameter (). The 
information that guides the investigator in making a decision is supplied 
by the random sample X ,X , ..., X 1 2 n . However, in most of the cases the 



 

 

observations would be too numerous and too complicated. Directly use 
of these observations 
is complicated or cumbersome, therefore, a simplification or 
condensation would be desirable. The technique of condensing or 
reducing the random sample X ,X , ..., X 1 2 n into a statistic such that it 
contains all the information about parameters  that is contained in the 
sample is known as sufficiency. So prior to continuing our search of 
finding the best estimator, we introduce the concept of sufficiency. 
A sufficient statistic is a particular kind of statistic that condenses 
random samples X ,X , ...,X 1 2 n in a statistic T t(X ,X , ...,X )  1 2 n in such a 
way that no information about the parameter  is lost. That means, it 
contains all the information about  that contained in the sample and if 
we know the value of sufficient statistics, then the sample values 
themselves are not needed and cannothing tell you more about . In other 
words, 
A statistic T is said to be sufficient for estimating a parameter  if it 
contains all the information about  which are available in the sample. 
This property of an estimator is called sufficiency. In other words, 
An estimator T is sufficient for parameter  if and only if the conditional 
distribution of X ,X , ...,X 1 2 n given T = t is independent of . 
Mathematically, 
f x ,x , ...,x / T t g x ,x , ...,x  1 2 n 1 2 n    
where, the function g x , x ,...,x  1 2 n  does not depend on the parameter . 
 
 
 

Applications 
Numerous fields require the use of estimation theory. Some of these fields 
include: 
 

◆ Interpretation of scientific experiments 



 

 

◆ Signal processing 
◆ Clinical trials 
◆ Opinion polls 
◆ Quality control 
◆ Telecommunications 
◆ Project management 
◆ Software engineering 
◆ Control theory (in particular Adaptive control) 
◆ Network intrusion detection system 
◆ Orbit determination 

 

 
            Testing of hypothesis 

The Null and Alternative Hypotheses 
 
Rain from Seeded Clouds. In Example we modeled the log-rainfalls from 
26 seeded clouds as normal random variables with unknown mean μ 
and unknown variance σ2. Let θ = (μ, σ2) denote the parameter vector. 
We are interested in whether or notμ > 4. To word this in terms of the 
parameter vector, we are interested 
in whether or not θ lies in the set {(μ, σ2) : μ > 4}. In Example 8.6.4, we 
calculated the probability that μ > 4 as part of a Bayesian analysis. If one 
does not wish to do 
a Bayesian analysis, one must address the question of whether or not 
 μ > 4 by other means, such as those introduced in this chapter. 
Consider a statistical problem involving a parameter θ whose value is 
unknown 
but must lie in a certain parameter space . Suppose now that  can be 
partitioned into two disjoint subsets 0 and 1, and the statistician is 
interested in whether θ lies in 0 or in 1. 



 

 

We shall letH0 denote the hypothesis that θ ∈ 0 and letH1 denote the 
hypothesis that θ ∈ 1. Since the subsets 0 and 1 are disjoint and 0 ∪ 1 = , 
exactly one of the hypotheses H0 and H1 must be true. The statistician 
must decide which of the 
hypotheses H0 or H1 appear to be true. A problem of this type, in which 
there are only two possible decisions, is called a problem of testing 
hypotheses. If the statistician makes the wrong decision, he might suffer 
a certain loss or pay a certain cost. In many problems, he will have an 
opportunity to observe some data before he has to make his decision, 
and the observed values will provide him with information about the 
value of θ. A procedure for deciding which hypothesis to choose is called 
a test procedure or simply a test. 
 
Null and Alternative Hypotheses/Reject.  
The hypothesis H0 is called the null hypothesis 
and the hypothesis H1 is called the alternative hypothesis. When 
performing a test, if we decide that θ lies in 1, we are said to reject H0. If 
we decide that θ lies in 0, we are said not to reject H0. 
The terminology referring to the decisions in Definition 9.1.1 is asymmetric 
with regard to the null and alternative hypotheses. We shall return to this 
point later in the section. 
H0: μ ≥ 140, 
H1: μ < 140. 

 The Critical Region and Test Statistics 
Testing Hypotheses about the Mean of a Normal Distribution with Known 
Variance. Suppose that X = (X1,...,Xn) is a random sample from the normal 
distribution with 
unknown mean μ and known variance σ2. We wish to test the hypotheses 
H0: μ = μ0, 
H1: μ  = μ0. (9.1.2) 



 

 

It might seem reasonable to reject H0 if Xn is far from μ0. For example, we 
could 
choose a number c and reject H0 if the distance from Xn to μ0 is more 
than c. One 
way to express this is by dividing the set S of all possible data vectors x = 
(x1,...,xn) 
(the sample space) into the two sets 
S0 = {x : −c ≤ Xn − μ0 ≤ c}, and S1 = S0

C. 
We then reject H0 if X ∈ S1, and we don’t reject H0 if X ∈ S0. A simpler way 
to express 
the procedure is to define the statistic T = |Xn − μ0|, and reject H0 if T ≥ c. 
In general, consider a problem in which we wish to test the following 
hypotheses: 
H0: θ ∈ Ω, and H1: θ ∈ Ω. (9.1.3) 
Suppose that before the statistician has to decide which hypothesis to 
choose, she 
can observe a random sample X = (X1,...,Xn) drawn from a distribution 
that involves the unknown parameter θ. We shall let S denote the sample 
space of then-dimensional random vector X. In other words, S is the set 
of all possible values of the random sample. 
In a problem of this type, the statistician can specify a test procedure by 
partitioning the sample space S into two subsets. One subset S1 contains 
the values of X for which she will reject H0, and the other subset S0 
contains the values of X for which she will not reject H0. 
Test Statistic/Rejection Region. Let X be a random sample from a 
distribution that 
depends on a parameter θ. Let T = r(X) be a statistic, and let R be a subset 
of the 
real line. Suppose that a test procedure for the hypotheses (9.1.3) is of the 
form “reject 



 

 

H0 if T ∈ R.” Then we call T a test statistic, and we call R the rejection region 
of the 
test. 
When a test is defined in terms of a test statistic T and rejection region R, 
as in 
Definition 9.1.5, the set S1 = {x :r(x) ∈ R} is the critical region from Definition 
9.1.4. 
Typically, the rejection region for a test based on a test statistic T will be 
some fixed interval or the outside of some fixed interval. For example, if 
the test rejects H0 
when T ≥ c, the rejection region is the interval [c, ∞). Once a test statistic 
is being used, it is simpler to express everything in terms of the test 
statistic rather than try 
to compute the critical region from Definition 9.1.4. All of the tests in the 
rest of this book will be based on test statistics. Indeed, most of the tests 
can be written in the 
form “reject H0 if T ≥ c.” (Example 9.1.7 is one of the rare exceptions.) 
In Example 9.1.3, the test statistic is T = |Xn − μ0|, and the rejection region 
is the interval [c, ∞). One can choose a test statistic using intuitive criteria, 
as in 
, or based on theoretical considerations. Some theoretical arguments 
are given in Sections 9.2–9.4 for choosing certain test statistics in a 
variety of problems involving a single parameter. Although these 
theoretical results provide optimal tests in the situations in which they 
apply, many practical problems do not satisfy the conditions required to 
apply these results. 

Type I/II Error.  
An erroneous decision to reject a true null hypothesis is a type I error, 
or an error of the first kind. An erroneous decision not to reject a false null 
hypothesis is called a type II error, or an error of the second kind. 



 

 

In terms of the power function, if θ ∈ 0, π(θ|δ) is the probability that the 
statistician will make a type I error. Similarly, if θ ∈ 1, 1 − π(θ|δ) is the 
probability of making a type II error. Of course, either θ ∈ 0 or θ ∈ 1, but not 
both.  
Hence, only one type of error is possible conditional on θ, but we never 
know which it is. 
If we have our choice between several tests, we would like to choose a 
test δ that has a small probability of error. That is, we would like the power 
function π(θ|δ) to be low for values of θ ∈ 0, and we would like π(θ|δ) to 
be high for θ ∈ 1. Generally, these two goals work against each other. That 
is, if we choose δ to make π(θ|δ) small for θ ∈ 0, we will usually find that 
π(θ|δ) is small for θ ∈ 1 as well. 
 For example, 
the test procedure δ0 that never rejects H0, regardless of what data are 

observed, will have π(θ|δ0) = 0 for all θ ∈ Ω0. However, for this procedure 
π(θ|δ0) = 0 for all 

θ ∈ Ω1 as well. Similarly, the test δ1 that always rejects H0 will have π(θ|δ1) 
= 1 for all 

θ ∈ Ω1, but it will also have π(θ|δ1) = 1 for all θ ∈ Ω0. Hence, there is a need 
to strike an appropriate balance between the two goals of low power in 
0 and high power in 1. 
The most popular method for striking a balance between the two goals 
is to choose a number α0 between 0 and 1 and require that 

π(θ|δ) ≤ α0, for all θ ∈ Ω0. (9.1.6) 
Then, among all tests that satisfy (9.1.6), the statistician seeks a test 
whose power function is as high as can be obtained for θ ∈ 1. This method 
is discussed in Sections 9.2 and 9.3. Another method of balancing the 
probabilities of type I and type 
II errors is to minimize a linear combination of the different probabilities 
of error. 

TESTING SIMPLE HYPOTHESIS 



 

 

The simplest hypothesis-testing situation is that in which there are only 
two possible 
values of the parameter. In such cases, it is possible to identify a 
collection of test procedures that have certain optimal properties. 
Introduction 
Service Times in a Queue. In Example 3.7.5, we modeled the service times 
X = 
(X1,...,Xn) of n customers in a queue as having the joint distribution with 
joint p.d.f. 

 

 
H0: θ = θ0, 
H1: θ = θ1. In this case, 0 = {θ0} and 1 = {θ1} are both singleton sets. 
For the special case in which X is a random sample from a distribution 
with 
univariate p.d.f. or p.f. f (x|θ ), we then have, for i = 0 or i = 1, 
fi(x) = f (x1|θi)f (x2|θi) ... f (xn|θi). 
The Two Types of Errors 
When a test of the hypotheses (9.2.3) is being carried out, we have 
special notation 



 

 

for the probabilities of type I and type II errors. For each test procedure δ, 
we shall let α(δ) denote the probability of an error of type I and shall let 
β(δ) denote the probability of an error of type II. Thus, 
α(δ) = Pr(Rejecting H0|θ = θ0), 
β(δ) = Pr(Not Rejecting H0|θ = θ1). 
 
 

 
           Power of the Test 

For each parameter vector θ = (μ1, μ2, σ2), the power function of the two-
sample 
t test can be computed using the noncentral t distribution introduced in 
Definition Almost identical reasoning to that which led to Theorem Proves 
the following. 
 
Power of Two-Sample t Test. Assume the conditions stated earlier in this 
section. Let U be defined in . Then U has the noncentral t distribution with 
m + n − 2 degrees of freedom and noncentrality parameter 

 
Level of significance 
 
Failure Times of Ball Bearings. In Example 5.6.9, we observed the failure 
times of 23 ball bearings, and we modeled the logarithms of these failure 
times as normal random variables. Suppose that we are not so confident 
that the normal distribution is a good model for the logarithms of the 
failure times. Is there a way to test the null hypothesis 



 

 

that a normal distribution is a good model against the alternative that 
no normal distribution is a good model? Is there a way to estimate 
features of the distribution of failure times (such as the median, variance, 
etc.) if we are unwilling to model the 
data as normal random variables? 
In each of the problems of estimation and testing hypotheses that we 
considered statistician come from distributions for which the exact form 
is known, even though 
the values of some parameters are unknown. For example, it might be 
assumed 
that the observations form a random sample from a Poisson distribution 
for which the mean is unknown, or it might be assumed that the 
observations come from 
two normal distributions for which the means and variances are 
unknown. In other words, we have assumed that the observations come 
from a certain parametric family 
of distributions, and a statistical inference must be made about the 
values of the parameters defining that family. 
In many of the problems to be discussed in this chapter, we shall not 
assume that the available observations come from a particular 
parametric family of distributions. 
Rather, we shall study inferences that can be made about the distribution 
from which the observations come, without making special assumptions 
about the form of that 
distribution.  
As one example, we might simply assume that the observations form 
a random sample from a continuous distribution, without specifying the 
form of this distribution any further, and we might then investigate the 
possibility that this distribution is a normal distribution. As a second 
example, we might be interested in making an inference about the value 



 

 

of the median of the distribution from which the sample was drawn, and 
we might assume only that this distribution is continuous. 
As a third example, we might be interested in investigating the possibility 
that two 
independent random samples actually come from the same distribution, 
and we might assume only that both distributions from which the 
samples are taken are continuous. 
Problems in which the possible distributions of the observations are not 
restricted to a specific parametric family are called nonparametric 
problems, and the statistical methods that are applicable in such 
problems are called nonparametric methods. 
Categorical Data 
Blood Types. In Example 5.9.3, we learned about a study of blood types 
among a sample of 6004 white Californians. Suppose that the actual 
counts of people with the four blood types are given in Table 10.1. We 
might be interested in whether or not 
These data are consistent with a theory that predicts a particular set of 
probabilities for the blood types. Table 10.2 gives theoretical probabilities 
for the four blood types. 
How can we go about testing the null hypothesis that the theoretical 
probabilities in Table 10.2 are the probabilities with which the data in 
Table 10.1 were sampled? 
In this section and the next four sections, we shall consider statistical 
problems based on data such that each observation can be classified 
as belonging to one of a finite number of possible categories or types. 
Observations of this type are called 
categorical data. Since there are only a finite number of possible 
categories in these problems, and since we are interested in making 
inferences about the probabilities of 
These categories, these problems actually involve just a finite number of 
parameters. However, as we shall see, methods based on categorical 



 

 

data can be usefully applied in both parametric and nonparametric 
problems. 

 
The χ2 Test 
Suppose that a large population consists of items of k different types, and 
let pi denote the probability that an item selected at random will be of 
type i (i = 1, . . . , k). 
Example 10.1.2 is of this type with k = 4. Of course, pi ≥ 0 for i = 1,...,k and k 
i=1 pi = 1. Let p0 
1,...,p0 k be specific numbers such that p0 
i > 0 for i = 1,...,k 
and k 
i=1 p0 

i = 1, and suppose that the following hypotheses are to be tested: 
H0: pi = p0 

i for i = 1, . . . , k, 
H1: pi  = p0 

i for at least one value of i. 
We shall assume that a random sample of size n is to be taken from the 
given population. That is, n independent observations are to be taken, 
and there is probability pi that each observation will be of type i (i = 1, . . . 
, k). On the basis of these 



 

 

In observations, the hypotheses (10.1.1) are to be tested. 
Fori = 1,...,k, we shall let Ni denote the number of observations in the 
random 
samples that are of type i. Thus, N1,...,Nk are nonnegative integers such 
that k 
i=1 Ni = n. Indeed, (N1,...,Nn) has the multinomial distribution (see Sec. 5.9) 
with parameters n and p = (p1,...,pk). When the null hypothesis H0 is true, 
the expected number of observations of type i is np0 

i (i = 1, . . . , k). The difference 
between the actual number of observations Ni and the expected number 
np0 

i will tend to be smaller when H0 is true than when H0 is not true. It seems 
reasonable, therefore, 
to base a test of the hypotheses (10.1.1) on values of the differences Ni − 
np0i for i = 1,...,k and reject H0 when the magnitudes of these differences 
are relatively Large 

 
The χ2 Test for Composite Null Hypotheses 
In order to carry out a χ2 test of goodness-of-fit of the hypotheses the 
statistic Q defined by Eq. (10.1.2) must be modified because the expected 
number np0

iof 
observations of type i in a random sample of n observations is no longer 
completely 
specified by the null hypothesis Ho. The modification that is used is simply 
to replace npo 



 

 

i by the M.L.E. of this expected number under the assumption that H0 is 
true. In other words, if θˆ denotes the M.L.E. of the parameter vector θ 
based on the observed 
numbers N1,...,Nk, then the statistic Q is defined as follows: 

 
The χ2 Test of Independence 
The χ2 tests described in Sec. 10.2 can be applied to the problem of 
testing the hypotheses (10.3.3). Each individual in the population from 
which the sample is taken must belong in one of the RC cells of the 
contingency table. Under the null hypothesis 
H0, the unknown probabilities pij of these cells have been expressed as 
functions 
of the unknown parameters pi+ and p+j . 

the actual number of unknown 
parameters to be estimated when H0 is true is s = 
(R − 1) + (C − 1), or s = R + C − 2. 
For i = 1,...,R, and j = 1,...,C, let Eˆ ij denote the M.L.E., when H0 is true, 
of the expected number of observations that will be classified in the ith 
row and thej th column of the table. In this problem, the statistic Q defined 
by will have the following form: 

 
 
 
 
Next, we shall consider the form of the   estimator Eˆij . 
 



 

 

 
Analysis of Variance techniques 
The One-Way Layout 
Example 
Calories in Hot Dogs. Moore and McCabe (1999) describe data gathered 
by Consumer 
Reports. The data comprise (among other things) calorie 
contents from 63 brands of hot dogs. (See Table 11.15.) The hot dogs come 
in four varieties: beef, “meat” (don’t ask), poultry, and “specialty.” 
(Specialty hot dogs include stuffing such as cheese or chili.) It is 
interesting to know whether, and to 
to what extent, the different varieties differ in their calorie contents. Data 
structures of the sort in this example, consisting of several groups of 
similar random variables, are 
the subject of this section. 
In this section and in the remainder of this chapter, we shall study a topic 
known as the analysis of variance, abbreviated ANOVA. Problems of 
ANOVA are actually problems of multiple regression in which the design 
matrix Z has a very special form. In other words, the study of ANOVA can 
be placed within the framework of the general linear model (Definition 
11.5.1), if we continue to make 

 
the basic assumptions for such a model: The observations that are 
obtained are 



 

 

independent and normally distributed; all these observations have the 
same variance σ2; and the mean of each observation can be 
represented as a linear combination of certain unknown parameters. The 
theory and methodology of ANOVA were mainly 
developed by R. A. Fisher during the 1920s. 
We shall begin our study of ANOVA by considering a problem known as 
the one-way layout. In this problem, it is assumed that random samples 
from p different normal distributions are available, each of these 
distributions has the same variance 
σ2, and the means of the p distributions are to be compared on the basis 
of the observed values in the samples. This problem was considered for 
two populations 
(p = 2) in Sec. 9.6, and the results to be presented here for an arbitrary 
value of p will generalize those presented in Sec. 9.6. Specifically, we shall 
now make the following assumption: For i = 1,...,p, the random variables 
Yi1,...,Yini , form a random sample of ni observations from the normal 
distribution with mean μi and variance σ2, and the values of μ1,...,μp and 
σ2 are unknown 

 
The Two-Way Layout  
Radioactive Isotope in Milk. Suppose that in an experiment to measure 
the concentration of a certain radioactive isotope in milk, specimens of 
milk are obtained from four 
different dairies, and the concentration of the isotope in each specimen 
is measured 



 

 

by three different methods. If we let Y denote the measurement that is 
made for the 
specimen from the ith dairy by using the j th method, for i = 1, 2, 3, 4 and j 
= 1, 2, 3, then in this example there will be a total of 12 measurements. 
There are two main questions of interest in this example. The first is 
whether the concentration of the isotope is the same in the milk of all four 
dairies. The second question is whether the 
three different methods produce concentration measurements that 
appear to differ. 
 
A problem of the type in Example 11.7.1, in which the value of the random 
a variable being observed is affected by two factors, called a two-way 
layout. In the general two-way layout, there are two factors, which we 
shall call A and B. We shall assume that there are I possible different 
values, or different levels, of factor A, and that there are J possible 
different values, or different levels, of factor B. 
For i = 1,...,I and j = 1,...,J , an observation Yij of the variable being studied 
is obtained when factor A has the value i and factor B has the value j . If 
the IJ observations are arranged in a matrix as in Table 11.20, then Yij is 
the observation in 
the (i, j ) cell of the matrix. 
We shall continue to make the assumptions of the general linear model 
for the two-way layout. Thus, we shall assume that all the observations 
Yij are independent, each observation has a normal distribution, and all 
the observations have the same 
variance σ2. In this section, we specialize the assumption about the mean 
E(Yij ) as 
follows: We shall assume not only that E(Yij ) depends on the values i and 
j of the 



 

 

two factors, but also that there exist numbers θ1,...,θI and ψ1,...,ψJ such that 

 

 

 

 
 
 
 
 

 
 



 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
  
 
  
 
 
 

 


