
 

 

SETS AND BINARY OPERATIONS 
 

SET 

Set is a well-defined collection of objects. A set is represented by capital letter and the elements by 

small letters. 

EXAMPLES 

▪ ℕ of natural numbers 

▪ ℤ of integers 

▪ ℝ of real numbers 

BINARY OPERATION ON A SET 

• A binary operation ∗ on a set A is a mapping from A×A in to A.  

• For each (a, b) ∈ A×A we denote ∗ (a, b) =  a ∗ b 

• The number of binary operations on a set A of cardinality n is 𝑛𝑛2
. 

PROPERTIES 

COMMUTATIVE BINARY OPERATION 

A binary operation  ∗ on a set A is commutative if  a ∗ b = b ∗ a , ∀ a, b ∈  A. Total number of 

commutative binary operations on a set A of cardinality n is 𝑛
𝑛(𝑛+1)

2 . 

ASSOCIATIVE BINARY OPERATION 

A binary operation  ∗ on a set A is associative if a ∗ (b ∗ c) = (a ∗ b) ∗ c, ∀ a, b, c ∈  A. 

IDENTITY ELEMENT 

An element e of a set A is said to be an identity element if 𝑎 ∗ 𝑒 = 𝑎 = 𝑒 ∗ 𝑎 , ∀ 𝑎 ∈ 𝐴. 

INVERSE ELEMENT 

a ∈ A is said to have an inverse in A if ∃ b ∈ A such that 𝑎 ∗ 𝑏 = 𝑒 = 𝑏 ∗ 𝑎 , and we write 𝑎−1 = 𝑏. 

EXAMPLES FOR BINARY OPERATION 

▪ Usual addition ′+′ on the set ℝ 

▪ Usual multiplication ′ ∙ ′on the set ℝ 

ALGEBRAIC STRUCTURES 

QUASI GROUP 

Quasi-group is a set 𝐴 ≠ 𝜙 with a binary operation on it. 

Example: (ℤ, +), (ℝ, −)…etc 

SEMI GROUP 

Semi group is a quasi-group with associative binary operation on it.  



 

 

Example: (ℕ, +) 

MONOID 

Monoid is a semi group having identity element 

Example: (ℕ ∪ {0}, +), (𝑃(𝐴),∪), (𝑃(𝐴),∩),etc , where 𝑃(𝐴) is the power set of A. 

GROUP 

Group is a monoid in which the inverse element exists for all elements.ie,  

 

GROUP THEORY 
GROUP 

The set G together with a binary operation ∗ is said to be a group (𝐺, ∗ ) if it satisfies the following 

axioms. 

 

• Closure property: if 𝑥, 𝑦 ∈  𝐺 ⟹ 𝑥 ∗ 𝑦 ∈ 𝐺. 

• Associativity: For any a, b, c ∈ G, we have,   a ∗ (b ∗ c) = (a ∗ b) ∗ c 

• Identity: There exist an element 𝑒 ∈ 𝐺, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑎 ∈ 𝐺, 𝑤𝑒 ℎ𝑎𝑣𝑒,   𝑎 ∗ 𝑒 = 𝑎 =

𝑒 ∗ 𝑎 

• Inverse: for any element a ∈ G, there exist b ∈ G such that 

 𝑎 ∗ 𝑏 = 𝑒 = 𝑏 ∗ 𝑎   𝑎𝑛𝑑 𝑤𝑒 𝑑𝑒𝑛𝑜𝑡𝑒 𝑏 𝑎𝑠 𝑎−1 

EXAMPLES 

▪ 𝑴𝒏(ℝ) matrix addition 

▪ 𝑴𝒎×𝒏(ℝ) under matrix addition 

▪ F = {f | f: ℝ → ℝ} under function addition 

ABELIAN AND NON-ABELIAN GROUPS 

A group G is said to be abelian if 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝐺 . otherwise G is non-abelian. 

CANCELLATION LAW 

There are two types of cancellation laws 

▪ Right cancellation law: 𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐 ⇔ 𝑏 = 𝑐 ∀𝑎, 𝑏, 𝑐 ∈ 𝐺. 

▪ Left cancellation law:  𝑎 ∗ 𝑐 = 𝑏 ∗ 𝑐 ⇔  𝑎 = 𝑏, ∀𝑎, 𝑏, 𝑐 ∈ 𝐺. 

ORDER OF AN ELEMENT 

If (𝐺,∗)be a group then, order of an element a in G is the least positive integer r such that  

𝑎𝑟 = 𝑒 where e is the identity element of (𝐺,∗). If no such least positive integer exists for an 

element a in G then we say that a has infinite order. We write o(a) to denote order of an element a. 

SUBGROUP 

Let (𝐺,∗)be a group and a non-empty subset H of G is said to be a subgroup of G if H itself is a group 

under same binary compositions as that of G.  



 

 

EXAMPLE 

▪ (𝑛ℤ, +) is a subgroup of (ℤ, +) 

▪ (ℝ, +)is a subgroup of (ℂ, +) 

COSETS 

Let G be a group and 𝐻 ≤ 𝐺, then the subset 𝑎𝐻 = {𝑎ℎ: 𝑎 ∈ 𝐺, ℎ ∈ 𝐻} of G is known as the left 

coset of H containing ‘a’ and similarly the subset 𝐻𝑎 = {ℎ𝑎: 𝑎 ∈ 𝐺 , ℎ ∈ 𝐻} of G is known as the right 

coset of H containing ‘a’. 

• The number of left/right cosets of H in G is called the index of H in G, and is denoted by 

[𝐺: 𝐻]. 

 

SOME IMPORTANT THEOREMS 

LAGRAGE’S THEOREM 

Let g be a finite group, then 𝑂(𝑎) divides |𝐺| for all 𝑎 ∈ 𝐺 

 

LAGRANGE’S THEOREM FOR FINITE ORDER GROUPS 

Let G be a group of finite order, and 𝐻 ≤ 𝐺, then |𝐻| divides |𝐺|. 

 

THEOREM 

Let G be a group and 𝐻, 𝐾 ≤ 𝐺 such that 𝐾 ≤ 𝐻 ≤ 𝐺 and [𝐺: 𝐻], [𝐻: 𝐾] are finite, then  

[𝐺: 𝐾] = [𝐺: 𝐻][𝐻: 𝐾]. 

 

CYCLIC GROUPS 

A group G is said to be cyclic group if 𝐺 =< 𝑎 > for some 𝑎 ∈ 𝐺, here a is called Generator for G 

EXAMPLE 

Consider the group (ℤ, +), it is clear that < −1 >=< 1 >= {𝑛. 1|𝑛 ∈ ℤ} = ℤ. 

NOTE 

• (ℝ, +), (ℚ, +) has no generators. 

• Cyclic groups are always are always abelian. But converse is not true. 

Example: K4 is abelian but not cyclic. 

• Subgroups of cyclic groups are cyclic. Converse not true. 

Example: (ℤ, +) is cyclic but (ℚ, +) is not cyclic. 

 

GROUP HOMOMORPHISM 

Let (𝐺,∗), (𝐺′,∗′) be two group structures, then a map 𝜙: 𝐺 → 𝐺′ is said to be a group 

homomorphism if ∅(𝑎 ∗ 𝑏) = ∅(𝑎) ∗′ ∅(𝑏). 

 

PROPERTIES 

suppose that ∅: 𝐺 → 𝐺′ is a group homomorphism then, 

• 𝜙(𝑒) = 𝑒′ 

• 𝜙(𝑎−1) = 𝜙(𝑎)−1 

• 𝑂(𝜙(𝑎)) divides 𝑂(𝑎) 



 

 

• 𝐻 ≤ 𝐺 ⇒ 𝜙(𝐻) ≤ 𝐺′ 

• 𝐾 ≤ 𝐺′ ⇒ 𝜙−1(𝐾) ≤ 𝐺 

• ker(𝜙) = {𝑥 ∈ 𝐺: 𝜙(𝑥) = 𝑒′} 

• ker(𝜙) ≤ 𝐺 

• 𝜙(𝐺) ≤ 𝐺′ 

• 𝜙 is said to be a Monomorphism if it is injective. 

• 𝜙 is said to be a Epimorphism if it is surjective. 

• 𝜙 is said to be a Isomorphism if it is bijective. In this case we write 𝐺 ≅ 𝐺′ 

• 𝜙 is said to be a Automorphism on the group G if 𝜙 ∶ 𝐺 → 𝐺 is an isomorphism. 

 

NORMAL SUBGROUP 

Let G be a group and 𝐻 ≤ 𝐺, then H is said to be normal in G (denoted by 𝐻∆𝐺 or 𝐻 ⊴ 𝐺) if 𝑔𝐻 =

𝐻𝑔, ∀𝑔 ∈ 𝐺. 

 

NOTE 

Let G, G’ be two groups and 𝐻 ≤ 𝐺, then  

• 𝜙: 𝐺 → 𝐺′ is a group homo⇒ker (𝜙) ⊴ 𝐺. 

• 𝑍(𝐺) ⊴ 𝐺 

• 𝐶(𝑎) ⊴ 𝐺, ∀𝑎 ∈ 𝐺 

• [𝐺: 𝐻] = 2 ⇒ 𝐻 ⊴ 𝐺 

 

FIRST ISOMORPHISM THEOREM 

Let 𝜙: 𝐺 → 𝐺′ be a group homomorphism with ker(𝜙) = 𝐻. let 𝜇: 𝐺/𝐻 → 𝜙(𝐺) be a 

homomorphism defined by 𝜇(𝑔𝐻) = 𝜙(𝑔), then μ is an isomorphism. 

i.e 𝐺/𝐻 ≅ 𝜙(𝐺) 

• Equivalent necessary and sufficient conditions for 𝐻 ≤ 𝐺 to be normal in G 

(i) 𝑔ℎ𝑔−1 ∈ 𝐻, ∀𝑔 ∈ 𝐺 & ℎ ∈ 𝐻 

(ii) 𝑔𝐻𝑔−1 = 𝐻, ∀𝑔 ∈ 𝐺 

(iii) 𝑔𝐻 = 𝐻𝑔, ∀𝑔 ∈ 𝐺 

 

FINITELY GENERATED GROUPS 

Let G be a group, 𝑎𝑖 ∈ 𝐺, 𝑖 ∈ 𝐼 for some index set 𝐼, we know that the subgroup generated by 

{𝑎𝑖|𝑖 ∈ 𝐼} is the smallest subgroup containing {𝑎𝑖|𝑖 ∈ 𝐼} . If the referred subgroup is all of G, then G 

is said to be finitely generated by {𝑎𝑖|𝑖 ∈ 𝐼}. In this case 𝑎𝑖s are the generators of G. 

• Every cyclic group is finitely generated. 

 

MULTIPLICATIVE GROUP OF nth ROOT OF UNITY 

The set of all 𝑧 ∈ ℂ such that 𝑧𝑛 = 1 is given by 𝑈𝑛 = {𝑒
𝑖2𝜋𝑘

𝑛  |𝑘 = 0,1, … , 𝑛 − 1} 

 

Properties 

• |𝑈𝒏| = 𝑛. 

• 𝑈𝑛 is cyclic. 



 

 

• (𝑈𝑛 , . ) ≤ (ℂ∗, . ) 

• Generators of 𝑈𝑛 are called the primitive nth roots of unity. 

{𝑒
𝑖2𝜋𝑘

𝑛  |(𝑛, 𝑘) = 1}  

 

GROUP OF QUARTERNIONS 

Consider the set 𝑄8 = {±1, ±𝑖, ±𝑗, ±𝑘} with the following operational properties. 

    𝑖2 = 𝑗2 = 𝑘2 = −1 

  𝑖𝑗 = 𝑘 = −𝑗𝑖, 𝑗𝑘 = 𝑖 = −𝑘𝑗, 𝑘𝑖 = 𝑗 = −𝑖𝑘 

then Q8 form a multiplicative group known as Group of quaternions. 

Note 

• 𝑄8 is not abelian. 

• 𝑂(±𝑖) = 𝑂(±𝑗) = 𝑂(±𝑘) = 4 

 

THE GROUP 𝑮𝑳(𝒏, ℤ𝒑) 

Let 𝐴 ∈ 𝐺𝐿(𝑛, ℤ𝑝), then the number of choices of the entries in each row is given by 

𝐴 [

∗ ∗ ⋯ ∗
∗ ∗ … ∗
⋮ ⋮ ⋱ ⋮
∗ ∗ ⋯ ∗

]   

→ 𝑝𝑛 − 1 𝑐ℎ𝑜𝑖𝑐𝑒𝑠       

→ 𝑝𝑛 − 𝑝 𝑐ℎ𝑜𝑖𝑐𝑒𝑠       
 ⋮

→ 𝑝𝑛 − 𝑝𝑛−1 𝑐ℎ𝑜𝑖𝑐𝑒𝑠

 

Thus,  

• |𝐺𝐿(𝑛, ℤ𝑝)| = (𝑝𝑛 − 1)(𝑝𝑛 − 𝑝) … (𝑝𝑛 − 𝑝𝑛−1) 

 = 𝑝
𝑛(𝑛−1)

2 (𝑝𝑛 − 1)(𝑝𝑛−1 − 1)(𝑝𝑛−2 − 1) … (𝑝 − 1) 

 

• |𝐺𝐿(2, ℤ2)| = (22 − 1)(22 − 2) = 3 × 2 = 6 

 

SYLOW THEOREMS 
 

P-GROUP 

Let G be a group and p be a prime, then G is said to be a p-group if o(a) = 𝑝𝑛 , ∀a ∈ G and n ∈ ℕ. 

• G is a p-group ⟺ |𝐺| = 𝑝𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ∈ ℕ. 

• For every prime p there exist a p-group. 

• A finite group G is a p-group if and only if O(G)=𝑝𝑛. 

• Every subgroup of a p-group is again a p-group. 

• A non-p-group can have a p-subgroup. 

EXAMPLES 

▪ 𝑄8 is a 2 group of finite order. 

▪ 𝐾4 = {𝑒, 𝑎, 𝑏, 𝑐} is a 2 group of finite order. 

FIRST SYLOW THEOREM 

Let G be a group and p be a prime so that |𝐺| = 𝑝𝑛𝑚, 𝑛 ≥ 1, 𝑝 ∤ 𝑚, then 



 

 

1. ∃ 𝐻𝑘 ≤ 𝐺 such that |𝐻𝑘| = 𝑝𝑘 , ∀𝑘| 1 ≤ 𝑘 ≤ 𝑛. 

2. 𝐻𝑘−1 ⊴ 𝐻𝑘  

 

SECOND SYLOW THEOREM 

Let G be a group and p be a prime so that 𝑃1& 𝑃2 are two Sylow-p subgroups of G, then 𝑃1& 𝑃2 are 

two conjugates to each other. i.e ∃ 𝑔 ∈ 𝐺 such that 𝑔𝑃1 = 𝑃2𝑔, & 𝑃1 ∩ 𝑃2 = {𝑒}. 

 

THIRD SYLOW THEOREM 

Let G be a group and p be prime so that |𝐺| = 𝑝𝑛𝑚, then 𝑛𝑝 divides |𝐺|, where 𝑛𝑝 is the number of 

Sylow-p subgroups of G and also 𝑛𝑝 ≡ 1(𝑚𝑜𝑑𝑝). 

 

NOTES 

• Since 𝑛𝑝 ≡ 1(𝑚𝑜𝑑𝑝) and 𝑛𝑝|𝑝𝑛𝑚 then 𝑛𝑝 must be a divisor of m. 

• A sylow-p subgroup of G is normal in G⟺𝑛𝑝 = 1. 

• Let G be a group and p be a prime so that |𝐺| = 𝑛, n is composite, 𝑝|𝑛 & 𝑑 = 1 is the only 

divisor of n such that 𝑑 ≡ 1(𝑚𝑜𝑑𝑝),⇒ ∄ a simple group with order n. 

• Let G be a group with |𝐺| = 2𝑛, where 𝑛(> 1) is odd, then G cannot be simple. 

• Let 𝐺 be a group and 𝑝, 𝑞 be a prime so that |𝐺| = 𝑝𝑞, 𝑝 < 𝑞, then G is not simple 

 (ℎ𝑒𝑟𝑒 𝑛𝑞 = 1) also. |𝐺| = 𝑝𝑞𝑟, 𝑝 < 𝑞 < 𝑟 ⇒G is not simple. 

• Intersection of sylow-p with a sylow-q subgroup is trivial. 

• 𝐻, 𝐾 ⊴ 𝐺 ⇒ 𝐻𝐾 ⊴ 𝐺. 

• Let G be a group and p be a prime such that |𝐺| = 𝑝3, then G can be abelian (cyclic) and also 

non-abelian. 

 

 

RINGS AND IDEALS 
 

RING 

A ring (R, +, ∙) is a set together with ‘+’ and ‘∙’ as binary operations so that the following axioms are 

satisfied, 

1. (R, +) is abelian 

2. (R, ∙) is a semi group (holds associativity) 

3. ‘+’ is distributive(L/R) over ‘∙’ 

EXAMPLE 

(ℤ, +,⋅), (ℝ, +,⋅), (ℚ, +,⋅), (ℂ, +,⋅) (𝑴𝒏(ℝ), +,∙), (ℤ𝒏, +𝒏,×𝒏), (𝒏ℤ, +,∙)… 

 

 

NOTES 

• The requirements for (ℝ∗,∙) to become abelian group: 

1. Existence of identity (Unity 1) 

2. Existence of inverse, those having inverse (here multiplicative inverse) are known as Units. 



 

 

3. Commutativity (here R is said to be Commutative ring). 

CHARECTERISTIC OF A RING 

The least positive integer n such that 𝑛𝑎 = 0, ∀𝑎 ∈ 𝑅. 

• If there is no such integer then 𝑐ℎ𝑎𝑟 = 0. 

• Char of the ring (ℤ𝑛, +𝑛,×𝑛) is 𝑛. 

• Finite product of rings are again rings. 

• 𝐶ℎ𝑎𝑟(ℤ𝑚 × ℤ𝑛) = 𝑙. 𝑐. 𝑚{𝑚, 𝑛}. 

• 𝐶ℎ𝑎𝑟(ℝ) = 𝐶ℎ𝑎𝑟(ℚ) = 𝐶ℎ𝑎𝑟(ℤ) = 𝐶ℎ𝑎𝑟(ℤ × ℤ𝑛) = 0. 

• Let F be a field, then |𝐹| = 𝑝𝑛 ⇒ 𝐶ℎ𝑎𝑟(𝐹) = 𝑝. 

• 𝐶ℎ𝑎𝑟 (ℝ) = 0 𝑜𝑟 𝑝. 

• Ring R is infinite ⇒ 𝐶ℎ𝑎𝑟(𝑅) = 0, converse need not be true. ({0}) 

• Let S, R be finite rings and S is a quotient ring of R ⇒𝑐ℎ𝑎𝑟(𝑠)| 𝐶ℎ𝑎𝑟(𝑅). 

SUBRINGS  

Let R be a ring, 𝑆 ⊂ 𝑅 is said to be a ring if  

1.  ∀𝑎, 𝑏 ∈ 𝑆 

2. 𝑎𝑏 ∈ 𝑆 ∀𝑎, 𝑏 ∈ 𝑆 

EXAMPLE 

▪ Sub rings of ℤ are trivial and 𝑛ℤ. 

▪ ℤ[𝑖] = {𝑎 + 𝑖𝑏 |𝑎, 𝑏 ∈ ℤ}(Gaussian integers) is a sub ring of ℂ. 

▪ ℱ cannot be a ring under function addition and function composition, since by taking 𝑓(𝑥) =

𝑠𝑖𝑛𝑥, 𝑔(𝑥) = 𝑥 and ℎ(𝑥) = √𝑥, we are not able to conform the distributive laws. 

▪ 𝒮 = {𝑓 ∈ ℱ |𝑓(0) = 0} form a sub ring of ℱ. 

 

IDEAL 

TWO SIDED IDEALS 

Let R be a ring, A be a subring of R, then A is said to be a two sided ideal of R if 𝑎𝑟 ∈ 𝐴, ∀𝑎 ∈ 𝐴, & 𝑟 ∈

𝑅. 

• {0} is a trivial ideal. 

• Let F be a field, then F has no trivial proper Ideals, only ideals of F are trivial and F itself. 

 

IDEAL TEST 

Let 𝐴 ⊂ 𝑅 (ring) is said to be an ideal of R if  

1. 𝑎 − 𝑏 ∈ 𝐴 , ∀𝑎, 𝑏 ∈ 𝐴 

2. 𝑟𝑎 ⊂ 𝐴 & 𝐴𝑟 ⊂ 𝐴   ∀𝑟 ∈ 𝑅. 

• For a finite field F, the group (F*, ∙) is a cyclic group. 

 

PRINCIPAL IDEAL 

Let R be a commutative ring with unity, 𝑎 ∈ 𝑅, then the set, 

< 𝑎 >= {𝑟𝑎 |𝑟 ∈ 𝑅} is an ideal of R known as the Principal ideal of R generated by a 

• The ring 𝑛ℤ, 𝑛 > 1 has no principal ideals. 

• Ideals of R generated by 𝐚𝟏 & 𝐚𝟐 

                < 𝑎1, 𝑎2 >= {𝑟1𝑎1 + 𝑟2𝑎2| 𝑟1, 𝑟2 ∈ 𝑅} 



 

 

 

EXAMPLE 

Consider ℤ[𝑥], then the ideal 𝐼 of all polynomials with constant term even/zero, 

𝐼 =< 𝑥, 2 >= {𝑃1(𝑥)𝑥 + 2𝑃2(𝑥)|𝑃1(𝑥), 𝑃2(𝑥) ∈ ℤ[𝑥]} 

 

NOTE 

• Let R be a ring with unity 1 ≠ 0 and 𝐼 is an ideal of R, containing unity 1, then 𝐼 = 𝑅. 

• For a field F, every ideal of F[x] are principal. 

 

PRIME IDEAL 

An ideal A of R is said to be Prime if for 𝑎, 𝑏 ∈ 𝑅 & 𝑎𝑏 ∈ 𝐴 ⇒ 𝑎 ∈ 𝐴 𝑜𝑟 𝑏 ∈ 𝐴. 

EXAMPLE 

From the ideals 𝑛ℤ 𝑜𝑓 ℤ, prime ideals are 𝑝ℤ. 

 

MAXIMAL IDEAL 

Suppose A is a proper Ideal of R, then A is said to be Maximal ideal of R, if ∃ an ideal B such that 𝐴 ⊆

𝐵 ⊆ 𝑅 ⇒ 𝐵 = 𝐴 𝑜𝑟 𝐵 = 𝑅. 

• Let R be a finite commutative ring with unity, A is a non-trivial ideal of R, then A is maximal 

⇔ A is prime. 

 

Ring Ideals 

ℝ {0}, ℝ 

ℚ {0}, ℚ 

ℤ nℤ, ℤ 

ℤn, n is composite {0}, < 𝑑 >  𝑑|𝑛, ℤ𝑛 

ℤp {0}, ℤp 

ℤ × ℤ  

𝐹[𝑥]  

 

• Maximal ideals in z[x] are of the form (r(x),p), where r(x) is an irreducible polynomial 𝑍𝑡  

where t is a prime in Z. 

• < 𝑝(𝑥) > is a maximal ideal in F[x] ⇔< 𝑝(𝑥) > is irr. Over F. 

• Every maximal ideal in a commutative ring with unity is a prime ideal. 

 

 

FACTOR RING 

Let R be a ring, A be an ideal of R, then the set of all additive cosets  
𝑅

𝐴
= {𝑟 + 𝐴 |𝑟 ∈ 𝑅} form a ring 

with the binary operations defined by, 

(𝑎 + 𝐴) + (𝑏 + 𝐴) = (𝑎 + 𝑏) + 𝐴 and (a+A) (b+A)=(ab)+A 



 

 

 

EXAMPLE 

❖ < 2 + 𝑖 > is an ideal of ℤ[𝑖]. 

FIELDS 
 

FIELD 

a field is a set together with two binary operations + and . on F such that (F, +) is an abelian group 

and (𝐹∗,∙) is where 𝐹∗ = 𝐹\{0} is also an abelian group and distributive law holds.  

• If all nonzero elements of (𝑅, +, ∙) are units, then R is said to be Division Ring/Skew field 

(here, existence of unity trivially hold.) 

• A non-commutative division ring is called a Strictly skew field. 

• A Field is a commutative division ring. 

• Let F be a field, then |𝐹| = 𝑝𝑛 ⇒ 𝐶ℎ𝑎𝑟(𝐹) = 𝑝. 

• 𝐶ℎ𝑎𝑟 (ℝ) = 0 𝑜𝑟 𝑝. 

 

SUB FIELD 

A non-empty subset S of F is said to be a sub field of F if 

i. 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑆 ⇒ 𝑎 + 𝑏 ∈ 𝑆, 𝑎𝑏 ∈ 𝑆 

ii. S is a field under the induced addition and multiplication compositions. 

 

• Number of sub fields for F is d(n) (no. of divisors of n.ie, 𝑛 = 𝑝1
𝑟1𝑝2

𝑟2 … 𝑝𝑘
𝑟𝑘 ⇒ 𝑑(𝑛) =

(𝑟1 + 1)(𝑟2 + 1) … (𝑟𝑘 + 1)) 

ZERO DEVISORS 

Let R be a ring, 𝑎 ≠ 0, 𝑏 ≠ 0 ∈ 𝑅 such that (𝑎𝑏 = 0) then 𝑎 & 𝑏 are said to be zero devisors. 

• Number of zero divisors in ℤ𝑛 is 𝑛 − 𝜙(𝑛) − 1. 

• ℤ𝑝 has no zero divisors 

• 𝑀𝑛(ℝ) is a ring having zero divisors. 

(
0 1
0 0

) (
0 1
0 0

) = (
0 0
0 0

) 

• 𝐺𝐿𝑛(ℝ) is not a ring. 

• Cancellation law holds in a ring R, if it has no zero divisors 

(since, if 𝑎 ≠ 0, 𝑏 ≠ 0, & 𝑎𝑏 = 0 ∈ 𝑅, 𝑎. 0 = 𝑎𝑏 ⇒ 𝑏 = 0) i.e zero divisors are not units. 

 

INTEGRAL DOMAINS(ID) 

An integral domain is a commutative ring with unity having no zero divisors. 

 

EXAMPLE 

(ℤ, +,∙), (ℤ𝒑, +𝒑,×𝒑) 

 

PROPERTIES 



 

 

• Every field is an integral domain. 

• Every finite integral domain is a field. 

• (ℤ𝑝, +𝑝,×𝑝) is a field 

• Order of finite field is 𝑝𝑛. 

• Char of an integral domain is 0 or p(ℤ𝑝). 

• product of two I.D s is not an I.D, that’s why product fields (since (1,0)(0,1)=(0,0)) 

 

 

FIELD OF QUOTIENTS OF AN ID 

Let D be an I.D, take 𝐹 = {
𝑝

𝑞
 |p ∈ D, q(≠ 0) ∈ D}, then F is the smallest field containing D known as 

the quotient field of D. 

• ℚ is the Q.F of ℤ. 

EXTENSION FIELDS 
FIELD EXTENSION 

A field extension of a field F is a pair (𝐾, 𝜙) where K is a field and  𝜙is a monomorphism of F in to K. 

EXAMPLE 

▪ Let 𝐹 = ℚ 𝑎𝑛𝑑 𝐸 = ℝ 𝑜𝑟 𝐸 = ℂ. Then E/F is an extension. 

▪ Let E be any field and F be its prime subfield then, E/F is an extension. 

DEGREE OF A VECTOR SPACE OVER FIELD 

The dimension of K as a vector space over F is called the degree of K over F and is written as [K:F] or 

𝑑𝑖𝑚𝐹𝐾. 

FINITE/INFINITE EXTENSION 

K is said to be a finite or infinite extension according as the degree of K over F is finite or infinite. 

RESULT 

▪ If K is a finite field extension of F and L is a finite field extension of K, then L is a finite field 

extension of F and [L : F] = [L:K] [K : F] 

SIMPLE EXTENSION 

Let K be an extension of the field F and if the field K is generated by a single element 𝛼 over F, i.e,  

K = F ( 𝛼) then K is said to be a simple extension of F and the element 𝛼is called the primitive 

element. 

 

ALGEBRAIC EXTENSION 

An element a of K is said to be algebraic over F if a is a root of a non-zero polynomial f(x) in F(x). K is 

said to be an algebraic extension of F if every element of K is algebraic over F. 



 

 

EXAMPLE 

▪ √2 is algebraic over ℚ because it satisfies 𝑥2 − 2 𝑖𝑛 ℚ[𝑥]. 

NOTE 

• Every field extension of prime degree is simple. 

• Every finite extension of a field is an algebraic extension but converse is not true. 

• An element a of K is algebraic over F if and only if [ F(𝛼): F) is finite. 

MONIC POLYNOMIAL 

A non-zero polynomial f(x) in F[x] is said to be a monic polynomial over F if the coefficient of highest 

power of x in f(x) is equal to 1, the unity of F. 

MINIMAL POLYNOMIAL 

If any element a in K is algebraic over F then a monic polynomial of smallest degree over F satisfied 

by a is called the minimal polynomial of a over F. If the degree of the minimal polynomial of a is n, 

then a is said to be algebraic over F of degree n. 

SPLITTING FIELD 

Let f(x) be any polynomial of degree 𝑛 ≥ 1 over a field F. Then a field extension E of F is called 

splitting field of f(x) if 

i. f(x) can be factored in to n linear factors over E and 

ii. there does not exist any proper subfield E’ of E containing F such that f(x) if can be factored 

into n linear factors over E’. 

equivalently, one can say that E is a splitting field of f(x) if E contains all roots of f(x) and 

𝐸 =  𝐹(𝑎1, 𝑎2, . . . , 𝑎𝑛), the field generated by F and n roots 𝑎1, 𝑎2, . . . , 𝑎𝑛 of f(x) in E. 

 

RINGS OF POLYNOMIALS 
 

 

RING OF POLYNOMIAL 

Let R be a commutative ring, then 

 𝑅[𝑥] = {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 | 𝑎𝑖 ∈ 𝑅, 𝑛 ∈ ℕ} forms a ring under polynomial addition and 

polynomial multiplication, known as the ring of polynomials. 

• 𝑓 ∈ 𝑅[𝑥] ⇔ 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0,    𝑎𝑛 ≠ 0 

• 𝑎𝑛 = 1, then 𝑓(𝑥) is said to be monic. 

• 𝑓(𝑥) = 0, then deg (𝑓(𝑥)) is not defined (since an ≠ 0) 

• 𝑓(𝑥) = 𝑐, then deg(𝑓) = 0 



 

 

 

NOTE 

• deg(𝑓𝑔) = deg(𝑓) + deg(𝑔) ⟺ 𝑅𝑖𝑠 𝑎𝑛 𝐼. 𝐷 

• deg(𝑓 + 𝑔) ≤ max{deg(𝑓) , deg(𝑔)} 

• D is an I.D ⇒𝐷[𝑥] is an I.D. 

• F is a field ⇒ 𝐹[𝑥] is an I.D, (x−1 ∉ F[x]) 

 

DIVISION ALGORITHM 

Let F be a field, 𝑓, 𝑔 ∈ 𝐹[𝑥], then ∃ unique polynomial 𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹(𝑥) such that 

𝑓(𝑥) = 𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥), 𝑟(𝑥) = 0 𝑜𝑟 deg(𝑟) < deg (𝑔) 

 

REMAINDER THEOREM 

Let F be a field, 𝑎 ∈ 𝐹, then 𝑓(𝑎) is the remainder when 𝑓 is divided by 𝑥 − 𝑎. 

 

FACTOR THEOREM 

Let F be a field, 𝑎 ∈ 𝐹 such that 𝑓(𝑎) = 0, then 𝑥 − 𝑎 is a factor of 𝑓. 

 

CONTENT OF A POLYNOMIAL 

Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥], then 𝑔. 𝑐. 𝑑{𝑎𝑖} is known as the content of 𝑓. 

• Content of a monic polynomial is 1. 

• Polynomials with content 1 is known as primitive polynomials. 

• The product of two primitive polynomials is primitive. 

 

REDUCIBLE AND IRREDUCIBLE POLYNOMIAL 

Let 𝑓(𝑥) ∈ 𝐷[𝑥], where D is an I.D and 𝑓 ≠ 0 or a unit in 𝐷[𝑥], then f is said to be Irreducible over D 

if, whenever 𝑓(𝑥) can be expressed as 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥),   𝑔(𝑥), ℎ(𝑥) ∈ 𝐷[𝑥] then h or g is a unit in 

𝐷[𝑥]. 

• 𝑓(𝑥) ∈ 𝐹[𝑥], where F is a field and 𝑓 ≠ 𝑐 in F[x] then 𝑓 is said to be irreducible over 𝐹 if 𝑓(𝑥) 

cannot be expressed as 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥), 𝑔(𝑥), ℎ(𝑥) ∈ 𝐹[𝑥] with deg(𝑔) , deg(ℎ) < deg(𝑓) 

 

EXAMPLE 

▪ 𝑥2 + 4 ∈ ℤ[𝑥], 2𝑥2 + 4 = 2(𝑥2 + 2), neither 2 nor 𝑥2 + 2 is a unit in ℤ[𝑥], thus 2𝑥2 + 4 is               

reducible over ℤ. 

▪ 2𝑥2 + 4 ∈ ℚ[𝑥], 2𝑥2 + 4 = 2(𝑥2 + 2) but deg (𝑥2 + 2) ≮ deg (2𝑥2 + 4) in ℚ[x], thus 

2𝑥2 + 4 is irreducible over ℚ. 

 

REDUCIBILITY TEST IN FIELDS 

• 𝑓 ∈ 𝐹[𝑥], deg(𝑓) = 2 𝑜𝑟 3 , then 𝑓 is reducible over F⇔𝑓 has a zero in F. 

• 𝑓 ∈ ℝ[𝑥], deg (𝑓) ≥ 3⇒ 𝑓 is reducible over ℝ. 

• 𝑓 ∈ ℤ[𝑥] and 𝑓 is reducible over ℚ ⇒𝑓 is reducible over ℤ. 

• 𝑓 ∈ ℤ[𝑥] and 𝑓 is irreducible over ℤ ⇒ 𝑓 is irreducible over ℚ. 

 

mod p TEST 



 

 

Let 𝑓 ≠ 𝑐 ∈ ℤ[𝑥], 𝑓(𝑥) = 𝑓̅(𝑥) in ℤp[𝑥] & deg(𝑓) = deg (𝑓̅ ), if 𝑓 ̅is irreducible over ℤ𝑝⇒𝑓 is 

irreducible over ℚ. 

 

EINSTEIN’S CRITERION 

Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥], if ∃ a prime p such that 𝑝 ∤ 𝑎𝑛, 𝑝|𝑎𝑛−1, 

𝑝|𝑎𝑛−2,…𝑝|𝑎1and 𝑝2 ∤ 𝑎0, then 𝑓(𝑥) is irreducible over ℚ. 

GALOIS THEORY 
GALOIS EXTENSION 

An extension K of F is called Galois extension if K/F is finite extension and F is fixed field of a group of 

automorphisms of K denoted by Aut(K). 

FUNDAMENTAL THEOREM OF GALOIS THEORY 

Let K/F be a Galois extension and Gal(K/F) is a Galois group of K/F .i.e, the group of all F-

automorphisms of K. Then  

1) There is one-one correspondence between the set 𝐴 = 𝐸/𝐹 ⊆ 𝐸 ⊆ 𝐾𝑎𝑛𝑑 

𝐵 = {𝐻/𝐻 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝐺𝑎𝑙(𝐾/𝐹). 

2) If H is subgroup of (𝐾/𝐹) in B corresponding to field E in A, then O(H)= [K : E] and  

[𝐺𝑎𝑙(𝐾/𝐹): 𝐻] = [𝐸: 𝐹]. 

3) If 𝐻1, 𝐻2 ∈ 𝐵 corresponding to field 𝐸1, 𝐸2 ∈ 𝐴 respectively. Then 𝐸1, 𝐸2are conjugate under 

an automorphism 𝜎 ∈  𝐺𝑎𝑙(𝐾/𝐹) iff 𝜎−1𝐻1𝜎 = 𝐻2. 

4) If H ∈ 𝐵 corresponds to E ∈ 𝐴, then E/F is a normal extension iff H is normal subgroup of 

Gal(K/F) and moreover, 𝐺𝑎𝑙(𝐸/𝐹) ≅ 𝐺𝑎𝑙(𝐾/𝐹)/𝐻. 

 
 

 

 

 

 

 


