

# **SETS AND BINARY OPERATIONS**

## SET

Set is a well-defined collection of objects. A set is represented by capital letter and the elements by small letters.

#### **EXAMPLES**

- N of natural numbers
- Z of integers
- ℝ of real numbers

#### **BINARY OPERATION ON A SET**

- A binary operation \* on a set A is a mapping from A×A in to A.
- For each  $(a, b) \in A \times A$  we denote \* (a, b) = a \* b
- The number of binary operations on a set A of cardinality n is  $n^{n^2}$ .

#### **PROPERTIES**

#### **COMMUTATIVE BINARY OPERATION**

A binary operation \* on a set A is commutative if a \* b = b \* a,  $\forall a, b \in A$ . Total number of commutative binary operations on a set A of cardinality n is  $n^{\frac{n(n+1)}{2}}$ .

#### **ASSOCIATIVE BINARY OPERATION**

A binary operation \* on a set A is associative if  $a * (b * c) = (a * b) * c, \forall a, b, c \in A$ .

#### **IDENTITY ELEMENT**

An element e of a set A is said to be an identity element if a \* e = a = e \* a,  $\forall a \in A$ .

#### **INVERSE ELEMENT**

 $a \in A$  is said to have an inverse in A if  $\exists b \in A$  such that a \* b = e = b \* a, and we write  $a^{-1} = b$ .

#### **EXAMPLES FOR BINARY OPERATION**

- Usual addition '+' on the set  $\mathbb{R}$
- Usual multiplication  $' \cdot '$  on the set  $\mathbb{R}$

#### **ALGEBRAIC STRUCTURES**

#### **QUASI GROUP**

Quasi-group is a set  $A \neq \phi$  with a binary operation on it. Example:  $(\mathbb{Z}, +), (\mathbb{R}, -)$ ...etc

#### **SEMI GROUP**

Semi group is a quasi-group with associative binary operation on it.



#### MONOID

Monoid is a semi group having identity element **Example:**  $(\mathbb{N} \cup \{0\}, +), (P(A), \cup), (P(A), \cap), \text{etc}$ , where P(A) is the power set of A. **GROUP** 

Group is a monoid in which the inverse element exists for all elements.ie,

# **GROUP THEORY**

## GROUP

The set G together with a binary operation \* is said to be a group (G, \*) if it satisfies the following axioms.

- **Closure property:** if  $x, y \in G \implies x * y \in G$ .
- Associativity: For any  $a, b, c \in G$ , we have, a \* (b \* c) = (a \* b) \* c
- Identity: There exist an element e ∈ G, such that for any a ∈ G, we have, a \* e = a = e \* a
- **Inverse:** for any element  $a \in G$ , there exist  $b \in G$  such that

a \* b = e = b \* a and we denote  $b as a^{-1}$ 

#### **EXAMPLES**

- $M_n(\mathbb{R})$  matrix addition
- $M_{m \times n}(\mathbb{R})$  under matrix addition
- $F = \{f \mid f: \mathbb{R} \to \mathbb{R}\}$  under function addition

## **ABELIAN AND NON-ABELIAN GROUPS**

A group G is said to be abelian if a \* b = b \* a for all  $a, b \in G$ . otherwise G is non-abelian.

## **CANCELLATION LAW**

There are two types of cancellation laws

- Right cancellation law:  $a * b = a * c \Leftrightarrow b = c \forall a, b, c \in G$ .
- Left cancellation law:  $a * c = b * c \Leftrightarrow a = b, \forall a, b, c \in G$ .

## ORDER OF AN ELEMENT

If (G,\*) be a group then, order of an element a in G is the least positive integer r such that

 $a^r = e$  where e is the identity element of (G,\*). If no such least positive integer exists for an element a in G then we say that a has infinite order. We write o(a) to denote order of an element a.

## SUBGROUP

Let (G,\*) be a group and a non-empty subset H of G is said to be a subgroup of G if H itself is a group under same binary compositions as that of G.



- $(n\mathbb{Z}, +)$  is a subgroup of  $(\mathbb{Z}, +)$
- $(\mathbb{R}, +)$  is a subgroup of  $(\mathbb{C}, +)$

## COSETS

Let G be a group and  $H \le G$ , then the subset  $aH = \{ah: a \in G, h \in H\}$  of G is known as the left coset of H containing 'a' and similarly the subset  $Ha = \{ha: a \in G, h \in H\}$  of G is known as the right coset of H containing 'a'.

• The number of left/right cosets of H in G is called the index of H in G, and is denoted by [G: H].

#### SOME IMPORTANT THEOREMS

#### LAGRAGE'S THEOREM

Let g be a finite group, then O(a) divides |G| for all  $a \in G$ 

#### LAGRANGE'S THEOREM FOR FINITE ORDER GROUPS

Let G be a group of finite order, and  $H \leq G$ , then |H| divides |G|.

#### THEOREM

Let G be a group and  $H, K \leq G$  such that  $K \leq H \leq G$  and [G:H], [H:K] are finite, then [G:K] = [G:H][H:K].

## **CYCLIC GROUPS**

A group G is said to be cyclic group if  $G = \langle a \rangle$  for some  $a \in G$ , here a is called Generator for G **EXAMPLE** 

Consider the group  $(\mathbb{Z}, +)$ , it is clear that  $\langle -1 \rangle = \langle 1 \rangle = \{n, 1 | n \in \mathbb{Z}\} = \mathbb{Z}$ .

## NOTE

- $(\mathbb{R}, +), (\mathbb{Q}, +)$  has no generators.
- Cyclic groups are always are always abelian. But converse is not true. Example:  $K_4$  is abelian but not cyclic.
- Subgroups of cyclic groups are cyclic. Converse not true.
  Example: (ℤ, +) is cyclic but (ℚ, +) is not cyclic.

## **GROUP HOMOMORPHISM**

Let (G,\*), (G',\*') be two group structures, then a map  $\phi: G \to G'$  is said to be a group homomorphism if  $\phi(a * b) = \phi(a) *' \phi(b)$ .

## PROPERTIES

suppose that  $\emptyset: G \to G'$  is a group homomorphism then,

- $\phi(e) = e'$
- $\phi(a^{-1}) = \phi(a)^{-1}$
- $O(\phi(a))$  divides O(a)



- $H \le G \Rightarrow \phi(H) \le G'$
- $K \le G' \Rightarrow \phi^{-1}(K) \le G$
- $\ker(\phi) = \{x \in G : \phi(x) = e'\}$
- $\ker(\phi) \leq G$
- $\phi(G) \leq G'$
- $\phi$  is said to be a Monomorphism if it is injective.
- $\phi$  is said to be a Epimorphism if it is surjective.
- $\phi$  is said to be a Isomorphism if it is bijective. In this case we write  $G \cong G'$
- $\phi$  is said to be a Automorphism on the group G if  $\phi : G \to G$  is an isomorphism.

## NORMAL SUBGROUP

Let G be a group and  $H \leq G$ , then H is said to be normal in G (denoted by  $H\Delta G$  or  $H \leq G$ ) if  $gH = Hg, \forall g \in G$ .

## NOTE

Let G, G' be two groups and  $H \leq G$ , then

- $\phi: G \to G'$  is a group homo $\Rightarrow$ ker  $(\phi) \trianglelefteq G$ .
- $Z(G) \trianglelefteq G$
- $C(a) \trianglelefteq G, \forall a \in G$
- $[G:H] = 2 \Rightarrow H \trianglelefteq G$

## FIRST ISOMORPHISM THEOREM

Let  $\phi: G \to G'$  be a group homomorphism with  $\ker(\phi) = H$ . let  $\mu: G/H \to \phi(G)$  be a homomorphism defined by  $\mu(gH) = \phi(g)$ , then  $\mu$  is an isomorphism. i.e  $G/H \cong \phi(G)$ 

- Equivalent necessary and sufficient conditions for *H* ≤ *G* to be normal in G
  - (i)  $ghg^{-1} \in H, \forall g \in G \& h \in H$
  - (ii)  $gHg^{-1} = H, \forall g \in G$
  - (iii)  $gH = Hg, \forall g \in G$

## **FINITELY GENERATED GROUPS**

Let G be a group,  $a_i \in G$ ,  $i \in I$  for some index set I, we know that the subgroup generated by  $\{a_i | i \in I\}$  is the smallest subgroup containing  $\{a_i | i \in I\}$ . If the referred subgroup is all of G, then G is said to be finitely generated by  $\{a_i | i \in I\}$ . In this case  $a_i$ s are the generators of G.

• Every cyclic group is finitely generated.

#### **MULTIPLICATIVE GROUP OF nth ROOT OF UNITY**

The set of all  $z \in \mathbb{C}$  such that  $z^n = 1$  is given by  $U_n = \{e^{\frac{i2\pi k}{n}} | k = 0, 1, ..., n - 1\}$ 

## Properties

- $|U_n| = n$ .
- $U_n$  is cyclic.



- $(Un, .) \leq (\mathbb{C}^*, .)$
- Generators of  $U_n$  are called the primitive n<sup>th</sup> roots of unity.  $\{e^{\frac{i2\pi k}{n}} | (n,k) = 1\}$

## **GROUP OF QUARTERNIONS**

Consider the set  $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$  with the following operational properties.

$$i^{2} = j^{2} = k^{2} = -1$$
  
 $ij = k = -ji, jk = i = -kj, ki = j = -ik$ 

then  $Q_{\mbox{\scriptsize 8}}$  form a multiplicative group known as Group of quaternions. Note

- $Q_8$  is not abelian.
- $O(\pm i) = O(\pm j) = O(\pm k) = 4$

## THE GROUP $GL(n, \mathbb{Z}_p)$

Let  $A \in GL(n, \mathbb{Z}_p)$ , then the number of choices of the entries in each row is given by

$$A\begin{bmatrix} * & * & \cdots & * \\ * & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \cdots & * \end{bmatrix} \xrightarrow{\rightarrow} p^{n} - 1 \text{ choices}$$
$$\xrightarrow{\rightarrow} p^{n} - p \text{ choices}$$
$$\vdots$$
$$\rightarrow p^{n} - p^{n-1} \text{ choices}$$

Thus,

• 
$$|GL(n, \mathbb{Z}_p)| = (p^n - 1)(p^n - p) \dots (p^n - p^{n-1})$$
  
=  $p^{\frac{n(n-1)}{2}}(p^n - 1)(p^{n-1} - 1)(p^{n-2} - 1) \dots (p-1)$ 

• 
$$|GL(2,\mathbb{Z}_2)| = (2^2 - 1)(2^2 - 2) = 3 \times 2 = 6$$

# **SYLOW THEOREMS**

## **P-GROUP**

Let G be a group and p be a prime, then G is said to be a p-group if  $o(a) = p^n$ ,  $\forall a \in G$  and  $n \in \mathbb{N}$ .

- G is a p-group  $\Leftrightarrow |G| = p^n$  for some  $n \in \mathbb{N}$ .
- For every prime p there exist a p-group.
- A finite group G is a p-group if and only if  $O(G)=p^n$ .
- Every subgroup of a p-group is again a p-group.
- A non-p-group can have a p-subgroup.

#### **EXAMPLES**

- $Q_8$  is a 2 group of finite order.
- $K_4 = \{e, a, b, c\}$  is a 2 group of finite order.

## FIRST SYLOW THEOREM

Let G be a group and p be a prime so that  $|G| = p^n m$ ,  $n \ge 1$ ,  $p \nmid m$ , then



- 1.  $\exists H_k \leq G$  such that  $|H_k| = p^k$ ,  $\forall k \mid 1 \leq k \leq n$ .
- 2.  $H_{k-1} \trianglelefteq H_k$

## SECOND SYLOW THEOREM

Let G be a group and p be a prime so that  $P_1 \& P_2$  are two Sylow-p subgroups of G, then  $P_1 \& P_2$  are two conjugates to each other. i.e  $\exists g \in G$  such that  $gP_1 = P_2g$ ,  $\& P_1 \cap P_2 = \{e\}$ .

## THIRD SYLOW THEOREM

Let G be a group and p be prime so that  $|G| = p^n m$ , then  $n_p$  divides |G|, where  $n_p$  is the number of Sylow-p subgroups of G and also  $n_p \equiv 1(modp)$ .

# NOTES

- Since  $n_p \equiv 1 (modp)$  and  $n_p | p^n m$  then  $n_p$  must be a divisor of m.
- A sylow-p subgroup of G is normal in  $G \Leftrightarrow n_p = 1$ .
- Let G be a group and p be a prime so that |G| = n, n is composite, p|n & d = 1 is the only divisor of n such that  $d \equiv 1 \pmod{p}$ ,  $\Rightarrow \nexists$  a simple group with order n.
- Let G be a group with |G| = 2n, where n(> 1) is odd, then G cannot be simple.
- Let G be a group and p, q be a prime so that |G| = pq, p < q, then G is not simple (here  $n_q = 1$ ) also.  $|G| = pqr, p < q < r \Rightarrow G$  is not simple.
- Intersection of sylow-p with a sylow-q subgroup is trivial.
- $H, K \trianglelefteq G \Rightarrow HK \trianglelefteq G$ .
- Let G be a group and p be a prime such that  $|G| = p^3$ , then G can be abelian (cyclic) and also non-abelian.

# **RINGS AND IDEALS**

## RING

A ring (R, +,  $\cdot$ ) is a set together with '+' and '.' as binary operations so that the following axioms are satisfied,

- 1. (R, +) is abelian
- 2. (R,  $\cdot$ ) is a semi group (holds associativity)
- 3. '+' is distributive(L/R) over '.'

## EXAMPLE

 $(\mathbb{Z},+,\cdot),(\mathbb{R},+,\cdot),(\mathbb{Q},+,\cdot),(\mathbb{C},+,\cdot),(M_n(\mathbb{R}),+,\cdot),(\mathbb{Z}_n,+_n\times_n),(n\mathbb{Z},+,\cdot)...$ 

## NOTES

- The requirements for  $(\mathbb{R}^*, \cdot)$  to become abelian group:
- 1. Existence of identity (Unity 1)
- 2. Existence of inverse, those having inverse (here multiplicative inverse) are known as Units.



3. Commutativity (here R is said to be Commutative ring).

# **CHARECTERISTIC OF A RING**

The least positive integer n such that  $na = 0, \forall a \in R$ .

- If there is no such integer then char = 0.
- Char of the ring  $(\mathbb{Z}_n, +_n, \times_n)$  is n.
- Finite product of rings are again rings.
- $Char(\mathbb{Z}_m \times \mathbb{Z}_n) = l.c.m\{m,n\}.$
- $Char(\mathbb{R}) = Char(\mathbb{Q}) = Char(\mathbb{Z}) = Char(\mathbb{Z} \times \mathbb{Z}_n) = 0.$
- Let F be a field, then  $|F| = p^n \Rightarrow Char(F) = p$ .
- Char  $(\mathbb{R}) = 0$  or p.
- Ring R is infinite  $\Rightarrow$  Char(R) = 0, converse need not be true. ({0})
- Let S, R be finite rings and S is a quotient ring of  $R \Rightarrow char(s) | Char(R)$ .

## **SUBRINGS**

Let R be a ring,  $S \subset R$  is said to be a ring if

- 1.  $\forall a, b \in S$
- 2.  $ab \in S \forall a, b \in S$

## EXAMPLE

- Sub rings of  $\mathbb{Z}$  are trivial and  $n\mathbb{Z}$ .
- $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$ (Gaussian integers) is a sub ring of  $\mathbb{C}$ .
- $\mathcal{F}$  cannot be a ring under function addition and function composition, since by taking f(x) = sinx, g(x) = x and  $h(x) = \sqrt{x}$ , we are not able to conform the distributive laws.
- $S = \{f \in \mathcal{F} | f(0) = 0\}$  form a sub ring of  $\mathcal{F}$ .

## IDEAL

## **TWO SIDED IDEALS**

Let R be a ring, A be a subring of R, then A is said to be a two sided ideal of R if  $ar \in A, \forall a \in A, \& r \in R$ .

- {0} is a trivial ideal.
- Let F be a field, then F has no trivial proper Ideals, only ideals of F are trivial and F itself.

# **IDEAL TEST**

Let  $A \subset R$  (ring) is said to be an ideal of R if

- 1.  $a b \in A$  ,  $\forall a, b \in A$
- 2.  $ra \subset A \& Ar \subset A \quad \forall r \in R.$
- For a finite field F, the group  $(F^*, \cdot)$  is a cyclic group.

# **PRINCIPAL IDEAL**

Let R be a commutative ring with unity,  $a \in R$ , then the set,

 $\langle a \rangle = \{ra | r \in R\}$  is an ideal of R known as the Principal ideal of R generated by a

- The ring  $n\mathbb{Z}$ , n > 1 has no principal ideals.
- Ideals of R generated by  $\mathbf{a_1} \& \mathbf{a_2}$ <  $a_1, a_2 >= \{r_1a_1 + r_2a_2 | r_1, r_2 \in R\}$



## EXAMPLE

Consider  $\mathbb{Z}[x]$ , then the ideal I of all polynomials with constant term even/zero,  $I = \langle x, 2 \rangle = \{P_1(x)x + 2P_2(x)|P_1(x), P_2(x) \in \mathbb{Z}[x]\}$ 

#### NOTE

- Let R be a ring with unity  $1 \neq 0$  and I is an ideal of R, containing unity 1, then I = R.
- For a field F, every ideal of F[x] are principal.

#### **PRIME IDEAL**

An ideal A of R is said to be Prime if for  $a, b \in R \& ab \in A \Rightarrow a \in A \text{ or } b \in A$ . EXAMPLE

From the ideals  $n\mathbb{Z}$  of  $\mathbb{Z}$ , prime ideals are  $p\mathbb{Z}$ .

#### **MAXIMAL IDEAL**

Suppose A is a proper Ideal of R, then A is said to be Maximal ideal of R, if  $\exists$  an ideal B such that  $A \subseteq B \subseteq R \Rightarrow B = A$  or B = R.

Let R be a finite commutative ring with unity, A is a non-trivial ideal of R, then A is maximal
 ⇔ A is prime.

|                                            | Ring                      | Ideals                             |
|--------------------------------------------|---------------------------|------------------------------------|
|                                            | $\mathbb{R}$              | <b>{0},</b> ℝ                      |
|                                            | Q                         | {0}, Q                             |
|                                            | Z                         | nZ, Z                              |
| $\mathbb{Z}_{\mathrm{n}}$ , n is composite |                           | $\{0\}, < d > d   n, \mathbb{Z}_n$ |
|                                            | $\mathbb{Z}_{\mathrm{p}}$ | {0}, ℤ <sub>p</sub>                |
| $\mathbb{Z} \times \mathbb{Z}$             |                           |                                    |
|                                            | F[x]                      |                                    |
|                                            |                           |                                    |

- Maximal ideals in z[x] are of the form (r(x),p), where r(x) is an irreducible polynomial  $Z_t$  where t is a prime in Z.
- < p(x) > is a maximal ideal in F[x]  $\Leftrightarrow < p(x) >$  is irr. Over F.
- Every maximal ideal in a commutative ring with unity is a prime ideal.

## **FACTOR RING**

Let R be a ring, A be an ideal of R, then the set of all additive cosets  $\frac{R}{A} = \{r + A \mid r \in R\}$  form a ring with the binary operations defined by,

(a + A) + (b + A) = (a + b) + A and (a+A) (b+A)=(ab)+A



#### **EXAMPLE**

♦ < 2 + i > is an ideal of  $\mathbb{Z}[i]$ .

# FIELDS

#### **FIELD**

a field is a set together with two binary operations + and . on F such that (F, +) is an abelian group and  $(F^*, \cdot)$  is where  $F^* = F \setminus \{0\}$  is also an abelian group and distributive law holds.

- If all nonzero elements of  $(R, +, \cdot)$  are units, then R is said to be Division Ring/Skew field ٠ (here, existence of unity trivially hold.)
- A non-commutative division ring is called a Strictly skew field.
- A Field is a commutative division ring.
- Let F be a field, then  $|F| = p^n \Rightarrow Char(F) = p$ .
- Char  $(\mathbb{R}) = 0$  or p.

#### **SUB FIELD**

A non-empty subset S of F is said to be a sub field of F if

- $a \in S, b \in S \Rightarrow a + b \in S, ab \in S$ i.
- ii. S is a field under the induced addition and multiplication compositions.
  - Number of sub fields for F is d(n) (no. of divisors of n.ie,  $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k} \Rightarrow d(n) =$  $(r_1 + 1)(r_2 + 1) \dots (r_k + 1))$

#### **ZERO DEVISORS**

Let R be a ring,  $a \neq 0, b \neq 0 \in R$  such that (ab = 0) then a & b are said to be zero devisors.

- Number of zero divisors in  $\mathbb{Z}_n$  is  $n \phi(n) 1$ . •
- $\mathbb{Z}_p$  has no zero divisors
- $M_n(\mathbb{R})$  is a ring having zero divisors.
  - $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$  $\begin{pmatrix} 0\\ 0 \end{pmatrix}$
- $GL_n(\mathbb{R})$  is not a ring.
- Cancellation law holds in a ring R, if it has no zero divisors • (since, if  $a \neq 0, b \neq 0, \& ab = 0 \in R, a.0 = ab \Rightarrow b = 0$ ) i.e zero divisors are not units.

## **INTEGRAL DOMAINS(ID)**

An integral domain is a commutative ring with unity having no zero divisors.

**EXAMPLE**  $(\mathbb{Z}, +, \cdot), (\mathbb{Z}_p, +_p, \times_p)$ 

#### **PROPERTIES**



- Every field is an integral domain.
- Every finite integral domain is a field.
- $(\mathbb{Z}_p, +_p, \times_p)$  is a field
- Order of finite field is  $p^n$ .
- Char of an integral domain is 0 or  $p(\mathbb{Z}_p)$ .
- product of two I.D s is not an I.D, that's why product fields (since (1,0)(0,1)=(0,0))

## FIELD OF QUOTIENTS OF AN ID

Let D be an I.D, take  $F = \{\frac{p}{q} | p \in D, q(\neq 0) \in D\}$ , then F is the smallest field containing D known as the quotient field of D.

•  $\mathbb{Q}$  is the Q.F of  $\mathbb{Z}$ .

# **EXTENSION FIELDS**

## **FIELD EXTENSION**

A field extension of a field F is a pair  $(K, \phi)$  where K is a field and  $\phi$  is a monomorphism of F in to K.

#### EXAMPLE

- Let  $F = \mathbb{Q}$  and  $E = \mathbb{R}$  or  $E = \mathbb{C}$ . Then E/F is an extension.
- Let E be any field and F be its prime subfield then, E/F is an extension.

## **DEGREE OF A VECTOR SPACE OVER FIELD**

The dimension of K as a vector space over F is called the degree of K over F and is written as [K:F] or  $dim_F K$ .

## **FINITE/INFINITE EXTENSION**

K is said to be a finite or infinite extension according as the degree of K over F is finite or infinite.

#### RESULT

 If K is a finite field extension of F and L is a finite field extension of K, then L is a finite field extension of F and [L : F] = [L:K] [K : F]

#### SIMPLE EXTENSION

Let K be an extension of the field F and if the field K is generated by a single element  $\alpha$  over F, i.e,

K = F ( $\alpha$ ) then K is said to be a simple extension of F and the element  $\alpha$  is called the primitive element.

## **ALGEBRAIC EXTENSION**

An element a of K is said to be algebraic over F if a is a root of a non-zero polynomial f(x) in F(x). K is said to be an algebraic extension of F if every element of K is algebraic over F.



•  $\sqrt{2}$  is algebraic over  $\mathbb{Q}$  because it satisfies  $x^2 - 2$  in  $\mathbb{Q}[x]$ .

## NOTE

- Every field extension of prime degree is simple.
- Every finite extension of a field is an algebraic extension but converse is not true.
- An element a of K is algebraic over F if and only if [ $F(\alpha)$ : F) is finite.

## **MONIC POLYNOMIAL**

A non-zero polynomial f(x) in F[x] is said to be a monic polynomial over F if the coefficient of highest power of x in f(x) is equal to 1, the unity of F.

## MINIMAL POLYNOMIAL

If any element a in K is algebraic over F then a monic polynomial of smallest degree over F satisfied by a is called the minimal polynomial of a over F. If the degree of the minimal polynomial of a is n, then a is said to be algebraic over F of degree n.

## **SPLITTING FIELD**

Let f(x) be any polynomial of degree  $n \ge 1$  over a field F. Then a field extension E of F is called splitting field of f(x) if

- i. f(x) can be factored in to n linear factors over E and
- ii. there does not exist any proper subfield E' of E containing F such that f(x) if can be factored into n linear factors over E'.

equivalently, one can say that E is a splitting field of f(x) if E contains all roots of f(x) and

 $E = F(a_1, a_2, \dots, a_n)$ , the field generated by F and n roots  $a_1, a_2, \dots, a_n$  of f(x) in E.

# **RINGS OF POLYNOMIALS**

## **RING OF POLYNOMIAL**

Let R be a commutative ring, then

 $R[x] = \{a_0 + a_1x + a_2x^2 + \dots + a_nx^n \mid a_i \in R, n \in \mathbb{N}\}$  forms a ring under polynomial addition and polynomial multiplication, known as the ring of polynomials.

- $f \in R[x] \Leftrightarrow f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_n \neq 0$
- $a_n = 1$ , then f(x) is said to be monic.
- f(x) = 0, then deg (f(x)) is not defined (since  $a_n \neq 0$ )
- f(x) = c, then  $\deg(f) = 0$



#### NOTE

- $\deg(fg) = \deg(f) + \deg(g) \Leftrightarrow Ris \ an \ I.D$
- $\deg(f + g) \le \max\{\deg(f), \deg(g)\}$
- D is an I.D  $\Rightarrow D[x]$  is an I.D.
- F is a field  $\Rightarrow$  F[x] is an I.D,  $(x^{-1} \notin F[x])$

#### **DIVISION ALGORITHM**

Let F be a field,  $f, g \in F[x]$ , then  $\exists$  unique polynomial  $q(x), r(x) \in F(x)$  such that  $f(x) = q(x)g(x) + r(x), \qquad r(x) = 0 \text{ or } \deg(r) < \deg(g)$ 

#### **REMAINDER THEOREM**

Let F be a field,  $a \in F$ , then f(a) is the remainder when f is divided by x - a.

#### **FACTOR THEOREM**

Let F be a field,  $a \in F$  such that f(a) = 0, then x - a is a factor of f.

## **CONTENT OF A POLYNOMIAL**

Let  $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \in \mathbb{Z}[x]$ , then  $g.c.d\{a_i\}$  is known as the content of f.

- Content of a monic polynomial is 1.
- Polynomials with content 1 is known as primitive polynomials.
- The product of two primitive polynomials is primitive.

## **REDUCIBLE AND IRREDUCIBLE POLYNOMIAL**

Let  $f(x) \in D[x]$ , where D is an I.D and  $f \neq 0$  or a unit in D[x], then f is said to be Irreducible over D if, whenever f(x) can be expressed as f(x) = g(x)h(x),  $g(x), h(x) \in D[x]$  then h or g is a unit in D[x].

•  $f(x) \in F[x]$ , where F is a field and  $f \neq c$  in F[x] then f is said to be irreducible over F if f(x) cannot be expressed as f(x) = g(x)h(x),  $g(x), h(x) \in F[x]$  with  $\deg(g), \deg(h) < \deg(f)$ 

#### EXAMPLE

- $x^2 + 4 \in \mathbb{Z}[x], 2x^2 + 4 = 2(x^2 + 2)$ , neither 2 nor  $x^2 + 2$  is a unit in  $\mathbb{Z}[x]$ , thus  $2x^2 + 4$  is reducible over  $\mathbb{Z}$ .
- $2x^2 + 4 \in \mathbb{Q}[x], 2x^2 + 4 = 2(x^2 + 2)$  but deg  $(x^2 + 2) \not\leq \text{deg}(2x^2 + 4)$  in  $\mathbb{Q}[x]$ , thus  $2x^2 + 4$  is irreducible over  $\mathbb{Q}$ .

## **REDUCIBILITY TEST IN FIELDS**

- $f \in F[x]$ , deg(f) = 2 or 3, then f is reducible over  $F \Leftrightarrow f$  has a zero in F.
- $f \in \mathbb{R}[x]$ , deg  $(f) \ge 3 \Rightarrow f$  is reducible over  $\mathbb{R}$ .
- $f \in \mathbb{Z}[x]$  and f is reducible over  $\mathbb{Q} \Rightarrow f$  is reducible over  $\mathbb{Z}$ .
- $f \in \mathbb{Z}[x]$  and f is irreducible over  $\mathbb{Z} \Rightarrow f$  is irreducible over  $\mathbb{Q}$ .

#### mod p TEST



Let  $f \neq c \in \mathbb{Z}[x]$ ,  $f(x) = \overline{f}(x)$  in  $\mathbb{Z}_p[x] \& \deg(f) = \deg(\overline{f})$ , if  $\overline{f}$  is irreducible over  $\mathbb{Z}_p \Rightarrow f$  is irreducible over  $\mathbb{Q}$ .

#### **EINSTEIN'S CRITERION**

Let  $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \in \mathbb{Z}[x]$ , if  $\exists$  a prime p such that  $p \nmid a_n, p \mid a_{n-1}, p \mid a_{n-2}, \dots p \mid a_1 \text{ and } p^2 \nmid a_0$ , then f(x) is irreducible over  $\mathbb{Q}$ .

# **GALOIS THEORY**

#### **GALOIS EXTENSION**

An extension K of F is called Galois extension if K/F is finite extension and F is fixed field of a group of automorphisms of K denoted by *Aut*(K).

#### FUNDAMENTAL THEOREM OF GALOIS THEORY

Let K/F be a Galois extension and Gal(K/F) is a Galois group of K/F .i.e, the group of all Fautomorphisms of K. Then

- 1) There is one-one correspondence between the set  $A = E/F \subseteq E \subseteq K$  and  $B = \{H/H \ subgroup \ of \ Gal(K/F).$
- 2) If H is subgroup of (K/F) in B corresponding to field E in A, then O(H)= [K : E] and [Gal(K/F): H] = [E:F].
- 3) If  $H_1, H_2 \in B$  corresponding to field  $E_1, E_2 \in A$  respectively. Then  $E_1, E_2$  are conjugate under an automorphism  $\sigma \in Gal(K/F)$  iff  $\sigma^{-1}H_1\sigma = H_2$ .
- 4) If  $H \in B$  corresponds to  $E \in A$ , then E/F is a normal extension iff H is normal subgroup of Gal(K/F) and moreover,  $Gal(E/F) \cong Gal(K/F)/H$ .