SETS AND BINARY OPERATIONS

SET
Set is a well-defined collection of objects. A set is represented by capital letter and the elements by small letters.

EXAMPLES

- \mathbb{N} of natural numbers
- \mathbb{Z} of integers
- \mathbb{R} of real numbers

BINARY OPERATION ON A SET

- A binary operation $*$ on a set A is a mapping from $A \times A$ in to A.
- For each $(a, b) \in A \times A$ we denote $*(a, b)=a * b$
- The number of binary operations on a set A of cardinality n is $n^{n^{2}}$.

PROPERTIES

COMMUTATIVE BINARY OPERATION

A binary operation $*$ on a set A is commutative if $a * b=b * a, \forall a, b \in A$. Total number of commutative binary operations on a set A of cardinality n is $n^{\frac{n(n+1)}{2}}$.

ASSOCIATIVE BINARY OPERATION

A binary operation $*$ on a set A is associative if $a *(b * c)=(a * b) * c, \forall a, b, c \in A$.

IDENTITY ELEMENT

An element e of a set A is said to be an identity element if $a * e=a=e * a, \forall a \in A$.

INVERSE ELEMENT

$\mathrm{a} \in \mathrm{A}$ is said to have an inverse in A if $\exists \mathrm{b} \in \mathrm{A}$ such that $a * b=e=b * a$, and we write $a^{-1}=b$.

EXAMPLES FOR BINARY OPERATION

- Usual addition '+' on the set \mathbb{R}
- Usual multiplication ' ' 'on the set \mathbb{R}

ALGEBRAIC STRUCTURES

QUASI GROUP

Quasi-group is a set $A \neq \phi$ with a binary operation on it.
Example: $(\mathbb{Z},+),(\mathbb{R},-) \ldots$ etc
SEMI GROUP
Semi group is a quasi-group with associative binary operation on it.

Example: $(\mathbb{N},+)$
MONOID
Monoid is a semi group having identity element
Example: $(\mathbb{N} \cup\{0\},+),(P(A), \cup),(P(A), \cap)$, etc , where $P(A)$ is the power set of A .
GROUP
Group is a monoid in which the inverse element exists for all elements.ie,

GROUP THEORY

GROUP

The set G together with a binary operation $*$ is said to be a group $(G, *)$ if it satisfies the following axioms.

- Closure property: if $x, y \in G \Longrightarrow x * y \in G$.
- Associativity: For any $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{G}$, we have, $\mathrm{a} *(\mathrm{~b} * \mathrm{c})=(\mathrm{a} * \mathrm{~b}) * \mathrm{c}$
- Identity: There exist an element $e \in G$, such that for any $a \in G$, we have, $a * e=a=$ $e * a$
- Inverse: for any element $a \in G$, there exist $b \in G$ such that

$$
a * b=e=b * a \text { and we denote } b \text { as } a^{-1}
$$

EXAMPLES

- $\quad \boldsymbol{M}_{\boldsymbol{n}}(\mathbb{R})$ matrix addition
- $\boldsymbol{M}_{\boldsymbol{m} \times \boldsymbol{n}}(\mathbb{R})$ under matrix addition
- $F=\{f \mid f: \mathbb{R} \rightarrow \mathbb{R}\}$ under function addition

ABELIAN AND NON-ABELIAN GROUPS

A group G is said to be abelian if $a * b=b * a$ for all $a, b \in G$. otherwise G is non-abelian.

CANCELLATION LAW

There are two types of cancellation laws

- Right cancellation law: $a * b=a * c \Leftrightarrow b=c \forall a, b, c \in G$.
- Left cancellation law: $a * c=b * c \Leftrightarrow a=b, \forall a, b, c \in G$.

ORDER OF AN ELEMENT

If $(G, *)$ be a group then, order of an element a in G is the least positive integer r such that
$a^{r}=e$ where e is the identity element of $(G, *)$. If no such least positive integer exists for an element a in G then we say that a has infinite order. We write o(a) to denote order of an element a.

SUBGROUP

Let $(G, *)$ be a group and a non-empty subset H of G is said to be a subgroup of G if H itself is a group under same binary compositions as that of G.

E. ENTRI

EXAMPLE

- $\quad(n \mathbb{Z},+)$ is a subgroup of $(\mathbb{Z},+)$
- $\quad(\mathbb{R},+)$ is a subgroup of $(\mathbb{C},+)$

COSETS

Let G be a group and $H \leq G$, then the subset $a H=\{a h: a \in G, h \in H\}$ of G is known as the left coset of H containing 'a' and similarly the subset $H a=\{h a: a \in G, h \in H\}$ of G is known as the right coset of H containing ' a '.

- The number of left/right cosets of H in G is called the index of H in G , and is denoted by [G:H].

SOME IMPORTANT THEOREMS

LAGRAGE'S THEOREM

Let g be a finite group, then $O(a)$ divides $|G|$ for all $a \in G$

LAGRANGE'S THEOREM FOR FINITE ORDER GROUPS

Let G be a group of finite order, and $H \leq G$, then $|H|$ divides $|G|$.

THEOREM

Let G be a group and $H, K \leq G$ such that $K \leq H \leq G$ and $[G: H],[H: K]$ are finite, then $[G: K]=[G: H][H: K]$.

CYCLIC GROUPS

A group G is said to be cyclic group if $G=<a>$ for some $a \in G$, here a is called Generator for G EXAMPLE

Consider the group $(\mathbb{Z},+)$, it is clear that $<-1>=<1>=\{n .1 \mid n \in \mathbb{Z}\}=\mathbb{Z}$.
NOTE

- $(\mathbb{R},+),(\mathbb{Q},+)$ has no generators.
- Cyclic groups are always are always abelian. But converse is not true.

Example: K_{4} is abelian but not cyclic.

- Subgroups of cyclic groups are cyclic. Converse not true.

Example: $(\mathbb{Z},+)$ is cyclic but $(\mathbb{Q},+)$ is not cyclic.

GROUP HOMOMORPHISM

Let $(G, *),\left(G^{\prime}, *^{\prime}\right)$ be two group structures, then a map $\phi: G \rightarrow G^{\prime}$ is said to be a group homomorphism if $\emptyset(a * b)=\varnothing(a) *^{\prime} \emptyset(b)$.

PROPERTIES

suppose that $\emptyset: G \rightarrow G^{\prime}$ is a group homomorphism then,

- $\quad \phi(e)=e^{\prime}$
- $\phi\left(a^{-1}\right)=\phi(a)^{-1}$
- $\quad O(\phi(a))$ divides $O(a)$

E ENTRI

- $H \leq G \Rightarrow \phi(H) \leq G^{\prime}$
- $K \leq G^{\prime} \Rightarrow \phi^{-1}(K) \leq G$
- $\operatorname{ker}(\phi)=\left\{x \in G: \phi(x)=e^{\prime}\right\}$
- $\operatorname{ker}(\phi) \leq G$
- $\phi(G) \leq G^{\prime}$
- $\quad \phi$ is said to be a Monomorphism if it is injective.
- $\quad \phi$ is said to be a Epimorphism if it is surjective.
- $\quad \phi$ is said to be a Isomorphism if it is bijective. In this case we write $G \cong G^{\prime}$
- ϕ is said to be a Automorphism on the group G if $\phi: G \rightarrow G$ is an isomorphism.

NORMAL SUBGROUP

Let G be a group and $H \leq G$, then H is said to be normal in G (denoted by $H \Delta G$ or $H \unlhd G$) if $g H=$ $H g, \forall g \in G$.

NOTE

Let $\mathrm{G}, \mathrm{G}^{\prime}$ be two groups and $H \leq G$, then

- $\phi: G \rightarrow G^{\prime}$ is a group homo $\Rightarrow \operatorname{ker}(\phi) \unlhd G$.
- $Z(G) \unlhd G$
- $\quad C(a) \unlhd G, \forall a \in G$
- $[G: H]=2 \Rightarrow H \unlhd G$

FIRST ISOMORPHISM THEOREM

Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism with $\operatorname{ker}(\phi)=H$. let $\mu: G / H \rightarrow \phi(G)$ be a homomorphism defined by $\mu(g H)=\phi(g)$, then μ is an isomorphism.
i.e $G / H \cong \phi(G)$

- Equivalent necessary and sufficient conditions for $H \leq G$ to be normal in G
(i) $\quad g h g^{-1} \in H, \forall g \in G \& h \in H$
(ii) $g H g^{-1}=H, \forall g \in G$
(iii) $\quad g H=H g, \forall g \in G$

FINITELY GENERATED GROUPS

Let G be a group, $a_{i} \in G, i \in I$ for some index set I, we know that the subgroup generated by $\left\{a_{i} \mid i \in I\right\}$ is the smallest subgroup containing $\left\{a_{i} \mid i \in I\right\}$. If the referred subgroup is all of G , then G is said to be finitely generated by $\left\{a_{i} \mid i \in I\right\}$. In this case $a_{i} s$ are the generators of G .

- Every cyclic group is finitely generated.

MULTIPLICATIVE GROUP OF nth ROOT OF UNITY

The set of all $z \in \mathbb{C}$ such that $z^{n}=1$ is given by $U_{n}=\left\{\left.e^{\frac{i 2 \pi k}{n}} \right\rvert\, k=0,1, \ldots, n-1\right\}$

Properties

- $\left|U_{n}\right|=n$.
- U_{n} is cyclic.

E. ENTRI

- $(U n,) \leq.\left(\mathbb{C}^{*},.\right)$
- Generators of U_{n} are called the primitive $\mathrm{n}^{\text {th }}$ roots of unity.

$$
\left\{\left.e^{\frac{i 2 \pi k}{n}} \right\rvert\,(n, k)=1\right\}
$$

GROUP OF QUARTERNIONS

Consider the set $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ with the following operational properties.

$$
\begin{aligned}
& i^{2}=j^{2}=k^{2}=-1 \\
& i j=k=-j i, j k=i=-k j, k i=j=-i k
\end{aligned}
$$

then Q_{8} form a multiplicative group known as Group of quaternions.

Note

- Q_{8} is not abelian.
- $O(\pm i)=O(\pm j)=O(\pm k)=4$

THE GROUP $\operatorname{GL}\left(\boldsymbol{n}, \mathbb{Z}_{p}\right)$

Let $A \in G L\left(n, \mathbb{Z}_{p}\right)$, then the number of choices of the entries in each row is given by

$$
A\left[\begin{array}{cccc}
* & * & \cdots & * \\
* & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & *
\end{array}\right] \begin{gathered}
\rightarrow p^{n}-1 \text { choices } \\
\rightarrow p^{n}-p \text { choices } \\
\vdots \\
\rightarrow p^{n}-p^{n-1} \text { choices }
\end{gathered}
$$

Thus,

- $\left|G L\left(n, \mathbb{Z}_{p}\right)\right|=\left(p^{n}-1\right)\left(p^{n}-p\right) \ldots\left(p^{n}-p^{n-1}\right)$

$$
=p^{\frac{n(n-1)}{2}}\left(p^{n}-1\right)\left(p^{n-1}-1\right)\left(p^{n-2}-1\right) \ldots(p-1)
$$

- $\left|G L\left(2, \mathbb{Z}_{2}\right)\right|=\left(2^{2}-1\right)\left(2^{2}-2\right)=3 \times 2=6$

SYLOW THEOREMS

P-GROUP

Let G be a group and p be a prime, then G is said to be a p -group if $\mathrm{o}(\mathrm{a})=p^{n}, \forall \mathrm{a} \in \mathrm{G}$ and $\mathrm{n} \in \mathbb{N}$.

- $\quad \mathrm{G}$ is a p -group $\Leftrightarrow|G|=p^{n}$ for some $n \in \mathbb{N}$.
- For every prime p there exist a p -group.
- A finite group G is a p-group if and only if $\mathrm{O}(\mathrm{G})=p^{n}$.
- Every subgroup of a p-group is again a p-group.
- A non-p-group can have a p-subgroup.

EXAMPLES

- Q_{8} is a 2 group of finite order.
- $K_{4}=\{e, a, b, c\}$ is a 2 group of finite order.

FIRST SYLOW THEOREM

Let G be a group and p be a prime so that $|G|=p^{n} m, n \geq 1, p \nmid m$, then

E, ENTRI

1. $\exists H_{k} \leq G$ such that $\left|H_{k}\right|=p^{k}, \forall k \mid 1 \leq k \leq n$.
2. $H_{k-1} \unlhd H_{k}$

SECOND SYLOW THEOREM

Let G be a group and p be a prime so that $P_{1} \& P_{2}$ are two Sylow-p subgroups of G , then $P_{1} \& P_{2}$ are two conjugates to each other. i.e $\exists g \in G$ such that $g P_{1}=P_{2} g, \& P_{1} \cap P_{2}=\{e\}$.

THIRD SYLOW THEOREM

Let G be a group and p be prime so that $|G|=p^{n} m$, then n_{p} divides $|G|$, where n_{p} is the number of Sylow-p subgroups of G and also $n_{p} \equiv 1(\bmod p)$.

NOTES

- Since $n_{p} \equiv 1(\bmod p)$ and $n_{p} \mid p^{n} m$ then n_{p} must be a divisor of m.
- A sylow-p subgroup of G is normal in $\mathrm{G} \Leftrightarrow n_{p}=1$.
- Let G be a group and p be a prime so that $|G|=n, \mathrm{n}$ is composite, $p \mid n \& d=1$ is the only divisor of n such that $d \equiv 1(\bmod p), \Rightarrow \nexists$ a simple group with order n.
- Let G be a group with $|G|=2 n$, where $n(>1)$ is odd, then G cannot be simple.
- Let G be a group and p, q be a prime so that $|G|=p q, p<q$, then G is not simple (here $n_{q}=1$) also. $|G|=p q r, p<q<r \Rightarrow \mathrm{G}$ is not simple.
- Intersection of sylow-p with a sylow-q subgroup is trivial.
- $H, K \unlhd G \Rightarrow H K \unlhd G$.
- Let G be a group and p be a prime such that $|G|=p^{3}$, then G can be abelian (cyclic) and also non-abelian.

RINGS AND IDEALS

RING

A ring ($R,+, \cdot$) is a set together with ' + ' and ' \cdot ' as binary operations so that the following axioms are satisfied,

1. $(R,+)$ is abelian
2. ($R, \cdot \cdot$) is a semi group (holds associativity)
3. ' + ' is distributive (L/R) over '.'

EXAMPLE
$(\mathbb{Z},+, \cdot),(\mathbb{R},+, \cdot),(\mathbb{Q},+, \cdot),(\mathbb{C},+, \cdot)\left(\boldsymbol{M}_{\boldsymbol{n}}(\mathbb{R}),+, \cdot\right),\left(\mathbb{Z}_{\boldsymbol{n}},+_{n}, \times_{\boldsymbol{n}}\right),(\boldsymbol{n} \mathbb{Z},+, \cdot) \ldots$

NOTES

- The requirements for $\left(\mathbb{R}^{*}, \cdot\right)$ to become abelian group:

1. Existence of identity (Unity 1)
2. Existence of inverse, those having inverse (here multiplicative inverse) are known as Units.

E. ENTRI

3. Commutativity (here R is said to be Commutative ring).

CHARECTERISTIC OF A RING

The least positive integer n such that $n a=0, \forall a \in R$.

- If there is no such integer then char $=0$.
- Char of the ring $\left(\mathbb{Z}_{n},+_{n}, \times_{n}\right)$ is n.
- Finite product of rings are again rings.
- $\operatorname{Char}\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n}\right)=$ l.c. $m\{m, n\}$.
- $\operatorname{Char}(\mathbb{R})=\operatorname{Char}(\mathbb{Q})=\operatorname{Char}(\mathbb{Z})=\operatorname{Char}\left(\mathbb{Z} \times \mathbb{Z}_{n}\right)=0$.
- Let F be a field, then $|F|=p^{n} \Rightarrow \operatorname{Char}(F)=p$.
- $\quad \operatorname{Char}(\mathbb{R})=0$ or p.
- Ring R is infinite $\Rightarrow \operatorname{Char}(R)=0$, converse need not be true. (\{0\})
- Let S, R be finite rings and S is a quotient ring of $\mathrm{R} \Rightarrow \operatorname{char}(s) \mid \operatorname{Char}(R)$.

SUBRINGS

Let R be a ring, $S \subset R$ is said to be a ring if

1. $\forall a, b \in S$
2. $a b \in S \forall a, b \in S$

EXAMPLE

- Sub rings of \mathbb{Z} are trivial and $n \mathbb{Z}$.
- $\mathbb{Z}[i]=\{a+i b \mid a, b \in \mathbb{Z}\}$ (Gaussian integers) is a sub ring of \mathbb{C}.
- \mathcal{F} cannot be a ring under function addition and function composition, since by taking $f(x)=$ $\sin x, g(x)=x$ and $h(x)=\sqrt{x}$, we are not able to conform the distributive laws.
- $\quad \mathcal{S}=\{f \in \mathcal{F} \mid f(0)=0\}$ form a sub ring of \mathcal{F}.

IDEAL

TWO SIDED IDEALS

Let R be a ring, A be a subring of R , then A is said to be a two sided ideal of R if ar $\in A, \forall a \in A, \& r \in$ R.

- $\{0\}$ is a trivial ideal.
- Let F be a field, then F has no trivial proper Ideals, only ideals of F are trivial and F itself.

IDEAL TEST

Let $A \subset R$ (ring) is said to be an ideal of R if

1. $a-b \in A, \forall a, b \in A$
2. $r a \subset A \& A r \subset A \quad \forall r \in R$.

- For a finite field F, the group $\left(F^{*}, \cdot\right)$ is a cyclic group.

PRINCIPAL IDEAL

Let R be a commutative ring with unity, $a \in R$, then the set,
$<a>=\{r a \mid r \in R\}$ is an ideal of R known as the Principal ideal of R generated by a

- The ring $n \mathbb{Z}, n>1$ has no principal ideals.
- Ideals of R generated by $\mathbf{a}_{\mathbf{1}} \& \mathbf{a}_{2}$

$$
<a_{1}, a_{2}>=\left\{r_{1} a_{1}+r_{2} a_{2} \mid r_{1}, r_{2} \in R\right\}
$$

E. ENTRI

EXAMPLE

Consider $\mathbb{Z}[x]$, then the ideal I of all polynomials with constant term even/zero,
$I=<x, 2>=\left\{P_{1}(x) x+2 P_{2}(x) \mid P_{1}(x), P_{2}(x) \in \mathbb{Z}[x]\right\}$

NOTE

- Let R be a ring with unity $1 \neq 0$ and I is an ideal of R , containing unity 1 , then $I=R$.
- For a field F, every ideal of $F[x]$ are principal.

PRIME IDEAL

An ideal A of R is said to be Prime if for $a, b \in R \& a b \in A \Rightarrow a \in A$ or $b \in A$.
EXAMPLE
From the ideals $n \mathbb{Z}$ of \mathbb{Z}, prime ideals are $p \mathbb{Z}$.

MAXIMAL IDEAL

Suppose A is a proper Ideal of R , then A is said to be Maximal ideal of R , if \exists an ideal B such that $A \subseteq$ $B \subseteq R \Rightarrow B=A$ or $B=R$.

- Let R be a finite commutative ring with unity, A is a non-trivial ideal of R, then A is maximal $\Leftrightarrow A$ is prime.

Ring	Ideals
\mathbb{R}	$\{0\}, \mathbb{R}$
\mathbb{Q}	$\{0\}, \mathbb{Q}$
\mathbb{Z}	$\mathrm{n} \mathbb{Z}, \mathbb{Z}$
$\mathbb{Z}_{\mathrm{n}}, \mathrm{n}$ is composite	$\{0\},<d>d \mid n, \mathbb{Z}_{n}$
\mathbb{Z}_{p}	$\{0\}, \mathbb{Z}_{\mathrm{p}}$
$\mathbb{Z} \times \mathbb{Z}$	
$F[x]$	

- Maximal ideals in $\mathrm{z}[\mathrm{x}]$ are of the form $(\mathrm{r}(\mathrm{x}), \mathrm{p})$, where $\mathrm{r}(\mathrm{x})$ is an irreducible polynomial Z_{t} where t is a prime in Z.
- $\quad<p(x)>$ is a maximal ideal in $\mathrm{F}[\mathrm{x}] \Leftrightarrow<p(x)>$ is irr. Over F .
- Every maximal ideal in a commutative ring with unity is a prime ideal.

FACTOR RING

Let R be a ring, A be an ideal of R , then the set of all additive cosets $\frac{R}{A}=\{r+A \mid r \in R\}$ form a ring with the binary operations defined by, $(a+A)+(b+A)=(a+b)+A$ and $(a+A)(b+A)=(a b)+A$

E) ENTRI

EXAMPLE

* $<2+i>$ is an ideal of $\mathbb{Z}[i]$.

FIELDS

FIELD

a field is a set together with two binary operations + and . on F such that ($F,+$) is an abelian group and $\left(F^{*}, \cdot\right)$ is where $F^{*}=F \backslash\{0\}$ is also an abelian group and distributive law holds.

- If all nonzero elements of $(R,+, \cdot)$ are units, then R is said to be Division Ring/Skew field (here, existence of unity trivially hold.)
- A non-commutative division ring is called a Strictly skew field.
- A Field is a commutative division ring.
- Let F be a field, then $|F|=p^{n} \Rightarrow \operatorname{Char}(F)=p$.
- $\quad \operatorname{Char}(\mathbb{R})=0$ or p.

SUB FIELD

A non-empty subset S of F is said to be a sub field of F if
i. $\quad a \in S, b \in S \Rightarrow a+b \in S, a b \in S$
ii. $\quad S$ is a field under the induced addition and multiplication compositions.

- Number of sub fields for F is $\mathrm{d}(\mathrm{n})$ (no. of divisors of $\mathrm{n} . \mathrm{ie}, n=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{k}^{r_{k}} \Rightarrow d(n)=$ $\left.\left(r_{1}+1\right)\left(r_{2}+1\right) \ldots\left(r_{k}+1\right)\right)$

ZERO DEVISORS

Let R be a ring, $a \neq 0, b \neq 0 \in R$ such that $(a b=0)$ then $a \& b$ are said to be zero devisors.

- Number of zero divisors in \mathbb{Z}_{n} is $n-\phi(n)-1$.
- \mathbb{Z}_{p} has no zero divisors
- $\quad M_{n}(\mathbb{R})$ is a ring having zero divisors.
$\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
- $G L_{n}(\mathbb{R})$ is not a ring
- Cancellation law holds in a ring R, if it has no zero divisors (since, if $a \neq 0, b \neq 0, \& a b=0 \in R, a .0=a b \Rightarrow b=0$) i.e zero divisors are not units.

INTEGRAL DOMAINS(ID)

An integral domain is a commutative ring with unity having no zero divisors.

EXAMPLE

$(\mathbb{Z},+, \cdot),\left(\mathbb{Z}_{p},+_{p}, \times_{p}\right)$

E, ENTRI

- Every field is an integral domain.
- Every finite integral domain is a field.
- $\left(\mathbb{Z}_{p},+_{p}, \times_{p}\right)$ is a field
- Order of finite field is p^{n}.
- Char of an integral domain is 0 or $p\left(\mathbb{Z}_{p}\right)$.
- product of two I.D s is not an I.D, that's why product fields (since $(1,0)(0,1)=(0,0)$)

FIELD OF QUOTIENTS OF AN ID

Let D be an I.D, take $F=\left\{\left.\frac{p}{q} \right\rvert\, p \in D, q(\neq 0) \in D\right\}$, then F is the smallest field containing D known as the quotient field of D.

- \mathbb{Q} is the Q.F of \mathbb{Z}.

EXTENSION FIELDS

FIELD EXTENSION

A field extension of a field F is a pair (K, ϕ) where K is a field and ϕ is a monomorphism of F in to K . EXAMPLE

- Let $F=\mathbb{Q}$ and $E=\mathbb{R}$ or $E=\mathbb{C}$. Then E / F is an extension.
- Let E be any field and F be its prime subfield then, E / F is an extension.

DEGREE OF A VECTOR SPACE OVER FIELD

The dimension of K as a vector space over F is called the degree of K over F and is written as $[K: F]$ or $\operatorname{dim}_{F} K$.

FINITE/INFINITE EXTENSION

K is said to be a finite or infinite extension according as the degree of K over F is finite or infinite.

RESULT

- If K is a finite field extension of F and L is a finite field extension of K, then L is a finite field extension of F and $[L: F]=[L: K][K: F]$

SIMPLE EXTENSION

Let K be an extension of the field F and if the field K is generated by a single element α over F, i.e, $\mathrm{K}=\mathrm{F}(\alpha)$ then K is said to be a simple extension of F and the element α is called the primitive element.

ALGEBRAIC EXTENSION

An element a of K is said to be algebraic over F if a is a root of a non-zero polynomial $f(x)$ in $F(x)$. K is said to be an algebraic extension of F if every element of K is algebraic over F.

EXAMPLE

- $\sqrt{2}$ is algebraic over \mathbb{Q} because it satisfies $x^{2}-2$ in $\mathbb{Q}[x]$.

NOTE

- Every field extension of prime degree is simple.
- Every finite extension of a field is an algebraic extension but converse is not true.
- An element a of K is algebraic over F if and only if $[F(\alpha): F)$ is finite.

MONIC POLYNOMIAL

A non-zero polynomial $f(x)$ in $F[x]$ is said to be a monic polynomial over F if the coefficient of highest power of x in $f(x)$ is equal to 1 , the unity of F.

MINIMAL POLYNOMIAL

If any element a in K is algebraic over F then a monic polynomial of smallest degree over F satisfied by a is called the minimal polynomial of a over F. If the degree of the minimal polynomial of a is n, then a is said to be algebraic over F of degree n.

SPLITTING FIELD

Let $f(x)$ be any polynomial of degree $n \geq 1$ over a field F. Then a field extension E of F is called splitting field of $f(x)$ if
i. $\quad f(x)$ can be factored in to n linear factors over E and
ii. there does not exist any proper subfield E^{\prime} of E containing F such that $f(x)$ if can be factored into n linear factors over E^{\prime}.
equivalently, one can say that E is a splitting field of $f(x)$ if E contains all roots of $f(x)$ and
$E=F\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, the field generated by F and n roots $a_{1}, a_{2}, \ldots, a_{n}$ of $\mathrm{f}(\mathrm{x})$ in E .

RINGS OF POLYNOMIALS

RING OF POLYNOMIAL

Let R be a commutative ring, then
$R[x]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mid a_{i} \in R, n \in \mathbb{N}\right\}$ forms a ring under polynomial addition and polynomial multiplication, known as the ring of polynomials.

- $f \in R[x] \Leftrightarrow f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, \quad a_{n} \neq 0$
- $a_{n}=1$, then $f(x)$ is said to be monic.
- $f(x)=0$, then $\operatorname{deg}(f(x))$ is not defined (since $\mathrm{a}_{\mathrm{n}} \neq 0$)
- $f(x)=c$, then $\operatorname{deg}(f)=0$

E ENTRI

NOTE

- $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g) \Leftrightarrow$ Ris an I.D
- $\operatorname{deg}(f+g) \leq \max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$
- D is an I.D $\Rightarrow D[x]$ is an I.D.
- $\quad \mathrm{F}$ is a field $\Rightarrow F[x]$ is an I.D, $\left(\mathrm{x}^{-1} \notin \mathrm{~F}[\mathrm{x}]\right)$

DIVISION ALGORITHM

Let F be a field, $f, g \in F[x]$, then \exists unique polynomial $q(x), r(x) \in F(x)$ such that

$$
f(x)=q(x) g(x)+r(x), \quad r(x)=0 \text { or } \operatorname{deg}(r)<\operatorname{deg}(g)
$$

REMAINDER THEOREM

Let F be a field, $a \in F$, then $f(a)$ is the remainder when f is divided by $x-a$.

FACTOR THEOREM

Let F be a field, $a \in F$ such that $f(a)=0$, then $x-a$ is a factor of f.

CONTENT OF A POLYNOMIAL

Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$, then $g . c . d\left\{a_{i}\right\}$ is known as the content of f.

- Content of a monic polynomial is 1 .
- Polynomials with content 1 is known as primitive polynomials.
- The product of two primitive polynomials is primitive.

REDUCIBLE AND IRREDUCIBLE POLYNOMIAL

Let $f(x) \in D[x]$, where D is an I.D and $f \neq 0$ or a unit in $D[x]$, then f is said to be Irreducible over D if, whenever $f(x)$ can be expressed as $f(x)=g(x) h(x), g(x), h(x) \in D[x]$ then h or g is a unit in $D[x]$.

- $f(x) \in F[x]$, where F is a field and $f \neq c$ in $\mathrm{F}[\mathrm{x}]$ then f is said to be irreducible over F if $f(x)$ cannot be expressed as $f(x)=g(x) h(x), g(x), h(x) \in F[x]$ with $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$

EXAMPLE

- $x^{2}+4 \in \mathbb{Z}[x], 2 x^{2}+4=2\left(x^{2}+2\right)$, neither 2 nor $x^{2}+2$ is a unit in $\mathbb{Z}[x]$, thus $2 x^{2}+4$ is reducible over \mathbb{Z}.
- $2 x^{2}+4 \in \mathbb{Q}[x], 2 x^{2}+4=2\left(x^{2}+2\right)$ but deg $\left(x^{2}+2\right) \nless \operatorname{deg}\left(2 x^{2}+4\right)$ in $\mathbb{Q}[x]$, thus $2 x^{2}+4$ is irreducible over \mathbb{Q}.

REDUCIBILITY TEST IN FIELDS

- $f \in F[x], \operatorname{deg}(f)=2$ or 3 , then f is reducible over $\mathrm{F} \Leftrightarrow f$ has a zero in F .
- $f \in \mathbb{R}[x], \operatorname{deg}(f) \geq 3 \Rightarrow f$ is reducible over \mathbb{R}.
- $f \in \mathbb{Z}[x]$ and f is reducible over $\mathbb{Q} \Rightarrow f$ is reducible over \mathbb{Z}.
- $f \in \mathbb{Z}[x]$ and f is irreducible over $\mathbb{Z} \Rightarrow f$ is irreducible over \mathbb{Q}.
$\bmod p$ TEST

E. ENTRI

Let $f \neq c \in \mathbb{Z}[x], f(x)=\bar{f}(x)$ in $\mathbb{Z}_{\mathrm{p}}[x] \& \operatorname{deg}(f)=\operatorname{deg}(\bar{f})$, if \bar{f} is irreducible over $\mathbb{Z}_{p} \Rightarrow f$ is irreducible over \mathbb{Q}.

EINSTEIN'S CRITERION

Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$, if \exists a prime p such that $p \nmid a_{n}, p \mid a_{n-1}$, $p\left|a_{n-2}, \ldots p\right| a_{1}$ and $p^{2} \nmid a_{0}$, then $f(x)$ is irreducible over \mathbb{Q}.

GALOIS THEORY

GALOIS EXTENSION

An extension K of F is called Galois extension if K / F is finite extension and F is fixed field of a group of automorphisms of K denoted by $\operatorname{Aut}(\mathrm{K})$.

FUNDAMENTAL THEOREM OF GALOIS THEORY

Let K/F be a Galois extension and Gal(K/F) is a Galois group of K/F .i.e, the group of all Fautomorphisms of K . Then

1) There is one-one correspondence between the set $A=E / F \subseteq E \subseteq$ Kand $B=\{H / H$ subgroup of $\operatorname{Gal}(K / F)$.
2) If H is subgroup of (K / F) in B corresponding to field E in A , then $\mathrm{O}(\mathrm{H})=[\mathrm{K}: \mathrm{E}]$ and $[\operatorname{Gal}(K / F): H]=[E: F]$.
3) If $H_{1}, H_{2} \in B$ corresponding to field $E_{1}, E_{2} \in A$ respectively. Then E_{1}, E_{2} are conjugate under an automorphism $\sigma \in \operatorname{Gal}(K / F)$ iff $\sigma^{-1} H_{1} \sigma=H_{2}$.
4) If $\mathrm{H} \in B$ corresponds to $\mathrm{E} \in A$, then E / F is a normal extension iff H is normal subgroup of $\operatorname{Gal}(\mathrm{K} / \mathrm{F})$ and moreover, $\operatorname{Gal}(E / F) \cong \operatorname{Gal}(K / F) / H$.
