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SETS AND BINARY OPERATIONS

SET

Set is a well-defined collection of objects. A set is represented by capital letter and the elements by
small letters.

EXAMPLES

= N of natural numbers
= 7 ofintegers
= R of real numbers

BINARY OPERATION ON A SET

e A binary operation * on a set A is a mapping from AXA in to A.
e Foreach (a3, b) € AXA we denote * (a,b) = a*b

e The number of binary operations on a set A of cardinality n is n’.
PROPERTIES
COMMUTATIVE BINARY OPERATION
A binary operation * on a set A is commutativeif axb =b=*a,Va,b € A. Total number of

nn+1)
commutative binary operations on a set A of cardinalitynisn 2

ASSOCIATIVE BINARY OPERATION

A binary operation * on a set A is associativeifa * (b*xc) = (a*xb) *xc,Va,b,c € A.

IDENTITY ELEMENT

An element e of a set A is said to be an identity elementifaxe =a=exa,Va € A.

INVERSE ELEMENT

a € Ais said to have an inversein Aif 3 b € Asuchthata *b =e = b *a,and we writea™! = b.
EXAMPLES FOR BINARY OPERATION

= Usual addition '+’ on the set R
»  Usual multiplication ' - 'on the set R

ALGEBRAIC STRUCTURES

QUASI GROUP
Quasi-group is a set A # ¢ with a binary operation on it.
Example: (Z,+), (R, —)...etc

SEMI GROUP
Semi group is a quasi-group with associative binary operation on it.



Example: (N, +)

MONOID

Monoid is a semi group having identity element

Example: (N U {0}, +), (P(4),V), (P(A),n),etc, where P(A) is the power set of A.
GROUP

Group is a monoid in which the inverse element exists for all elements.ie,

GROUP THEORY

GROUP

The set G together with a binary operation * is said to be a group (G, *) if it satisfies the following

axioms.

e Closure property:ifx,y € G = x*y €G.
e Associativity: Forany a,b,c € G,we have, a*(b*c) = (a*b) *c

e Identity: There exist an element e € G, such that for any a € G,we have, a*e =a =

e*xa

o Inverse: for any element a € G, there existb € G such that

a*b=e=bx+a and we denotebasa™?!

EXAMPLES

= M, (R) matrix addition
" M,,n(R) under matrix addition
= F ={f|f: R - R} under function addition

ABELIAN AND NON-ABELIAN GROUPS

A group G is said to be abelianifa*b = b xa for all a,b € G . otherwise G is non-abelian.
CANCELLATION LAW

There are two types of cancellation laws

= Right cancellationlaw:a*b =a*xc < b =cVa,b,c €G.
= |eft cancellationlaw: a*xc=b*c & a=b,Va,b,c €QG.

ORDER OF AN ELEMENT
If (G,*)be a group then, order of an element a in G is the least positive integer r such that

a” = e where e is the identity element of (G,*). If no such least positive integer exists for an

element a in G then we say that a has infinite order. We write o(a) to denote order of an element a.

SUBGROUP

Let (G,*)be a group and a non-empty subset H of G is said to be a subgroup of G if H itself is a group

under same binary compositions as that of G.
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EXAMPLE

= (nZ,+)is a subgroup of (Z,+)
= (R, +)is a subgroup of (C,+)

COSETS

Let G be a group and H < G, then the subset aH = {ah:a € G,h € H} of G is known as the left
coset of H containing ‘a’ and similarly the subset Ha = {ha:a € G, h € H} of G is known as the right
coset of H containing ‘a’.

e The number of left/right cosets of H in G is called the index of H in G, and is denoted by
[G: H].

SOME IMPORTANT THEOREMS
LAGRAGE’S THEOREM
Let g be a finite group, then O(a) divides |G| foralla € G

LAGRANGE’S THEOREM FOR FINITE ORDER GROUPS
Let G be a group of finite order, and H < G, then |H| divides |G]|.

THEOREM
Let Gbeagroupand H,K < G suchthat K < H < G and [G: H], [H: K] are finite, then
[G:K] =[G:H][H:K].

CYCLIC GROUPS

A group G is said to be cyclic group if G =< a > for some a € G, here a is called Generator for G
EXAMPLE

Consider the group (Z, +), itisclearthat< —1 >=<1>={n.1ln € Z} = Z.

NOTE

o (R,+), (Q,+) has no generators.

e Cyclic groups are always are always abelian. But converse is not true.
Example: K, is abelian but not cyclic.

e Subgroups of cyclic groups are cyclic. Converse not true.
Example: (Z, +) is cyclic but (Q, +) is not cyclic.

GROUP HOMOMORPHISM
Let (G,*), (G',*") be two group structures, then amap ¢: G — G' is said to be a group
homomorphism if @(a * b) = @(a) =’ @(b).

PROPERTIES
suppose that @: G - G’ is a group homomorphism then,
o ¢(e)=¢

o ¢aH=¢@"
o 0(¢(a)) divides O(a)
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e HSG=¢(H)<G

e K<G' =>¢p Y K)<G

o ker(p)={x€G:p(x)=¢e'}

o Kker(p) <G

e ¢(G)<G’

e ¢ issaid to be a Epimorphism if it is surjective.

e ¢ is said to be a Isomorphism if it is bijective. In this case we write G = G’

e ¢ issaid to be a Automorphism on the group Gif ¢ : G = G is an isomorphism.

NORMAL SUBGROUP
Let G be a group and H < @, then H is said to be normal in G (denoted by HAG or H 2 G) if gH =
Hg,Vg € G.

NOTE
Let G, G’ be two groups and H < G, then

e ¢:G — G'isagroup homo=ker (¢) =2 G.
Z(G)=2G

Cla) 2G,VaeG

[G:H]=2=>H=2G

FIRST ISOMORPHISM THEOREM

Let ¢p: G — G’ be a group homomorphism with ker(¢) = H.let u: G/H - ¢(G) be a
homomorphism defined by u(gH) = ¢(g), then pis an isomorphism.

i.eG/H = ¢(G)

e Equivalent necessary and sufficient conditions for H < G to be normal in G
(i) ghg '€ H VgeEG&heEH
(ii) gHg '=HVgeaG
(iii) gH=Hg,Vg eG

FINITELY GENERATED GROUPS
Let G be a group, a; € G, i € I for some index set I, we know that the subgroup generated by
{a;|i € I} is the smallest subgroup containing {a;|i € I} . If the referred subgroup is all of G, then G
is said to be finitely generated by {a;|i € I}. In this case a;s are the generators of G.

e Every cyclic group is finitely generated.
MULTIPLICATIVE GROUP OF nth ROOT OF UNITY
i2mk
The setof all z € Csuch that z™" = 1isgivenbyU, ={e » |k=0,1,..,n—1}
Properties

o |Upl=n.
e U, iscyclic.
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. (Un,.) <(Cr )

e Generators of U, are called the primitive n™ roots of unity.
i2mk

{e n |(n,k) =1}

GROUP OF QUARTERNIONS

Consider the set Qg = {+1, +i, 1, £k} with the following operational properties.
i2=j2=k?=-1
ij=k=—ji,jk=i=—kj ki=j=—ik

then Qg form a multiplicative group known as Group of quaternions.

Note

e (g is not abelian.

e 0(x)=0()) =0(xk) =4

THE GROUP GL(n,Z,)
Let A € GL(n,Z,), then the number of choices of the entries in each row is given by

* % - % —p"—1choices
* * ... x| —p™—pchoices
A : . . : :
K Ok eee % - pn — pn_l choices
Thus,
o IGL(nZy) = @" - D@" —p)..(@" —p™ D)
n(n-1)

=p z "-DE"'-DE"*-1D..(p-1)

o |GL(2,Z,)|=(22-1)(22-2)=3%X2=6

SYLOW THEOREMS

P-GROUP
Let G be a group and p be a prime, then G is said to be a p-group if o(a) = p™,Va € Gand n € N.

e Gisap-group & |G| = p™ for somen € N.

e  For every prime p there exist a p-group.

e Afinite group G is a p-group if and only if O(G)=p™.
e  Every subgroup of a p-group is again a p-group.

e A non-p-group can have a p-subgroup.

EXAMPLES

= (g isa2group of finite order.
» K, ={e,a,b,c}isa?2group of finite order.

FIRST SYLOW THEOREM
Let G be a group and p be a prime so that |G| = p™m,n = 1, p + m, then



1. 3 H, <G suchthat |[H,| =p*, Vk|1 <k <n.
2. Hy_, 2 H,

SECOND SYLOW THEOREM
Let G be a group and p be a prime so that P, & P, are two Sylow-p subgroups of G, then P;& P, are
two conjugates to each other.i.e 3 g € G such that gP; = P,g, & P, N P, = {e}.

THIRD SYLOW THEOREM
Let G be a group and p be prime so that |G| = p™m, then n,, divides |G|, where n,, is the number of
Sylow-p subgroups of G and also n,, = 1(modp).

NOTES

e Sincen, = 1(modp) and n,|p"m then n, must be a divisor of m.

® Asylow-p subgroup of G is normal in G&ny, = 1.

e let G beagroupand p be aprime so that |G| = n, nis composite, p|n & d = 1 is the only
divisor of n such that d = 1(modp),= & a simple group with order n.

e Let G be agroup with |G| = 2n, where n(> 1) is odd, then G cannot be simple.

e Let G beagroupandp,q beaprimesothat |G| = pg,p < g, then G is not simple
(heren, = 1) also. |G| = pqr,p < q < r =G is not simple.

e Intersection of sylow-p with a sylow-q subgroup is trivial.

e HK=SG=HK=2G.

e Let G beagroup and p be a prime such that |G| = p3, then G can be abelian (cyclic) and also
non-abelian.

RINGS AND IDEALS

RING
Aring (R, +, +) is a set together with ‘+’ and ‘-’ as binary operations so that the following axioms are
satisfied,

1. (R, +)is abelian
2. (R, ‘) is a semi group (holds associativity)
3. ‘4’ is distributive(L/R) over ‘-’
EXAMPLE
(Z,+,), (R, +,), (Q +,-), (C,+,)) (Mp(R), +,), (Zy, +1,Xn)s (NZ, +,)...

NOTES
e The requirements for (R*,) to become abelian group:
1. Existence of identity (Unity 1)
2. Existence of inverse, those having inverse (here multiplicative inverse) are known as Units.



3. Commutativity (here R is said to be Commutative ring).
CHARECTERISTIC OF A RING
The least positive integer n such thatna = 0,Va € R.

e [f there is no such integer then char = 0.

e Charof thering (Zy, +,,%X5) isn.

e  Finite product of rings are again rings.

o Char(Zy, X Z,) = l.c.m{m,n}.

e Char(R) = Char(Q) = Char(Z) = Char(Z X Z,) = 0.

e Let Fbe afield, then |F| = p™ = Char(F) = p.

e Char (R) =0orp.

e RingRis infinite = Char(R) = 0, converse need not be true. ({0})

e LetS, R be finite rings and S is a quotient ring of R =char(s)| Char(R).

SUBRINGS
Let Rbe aring, S € R is said to be a ring if

1. VabesS
2. abeSvVabesS
EXAMPLE
=  Sub rings of Z are trivial and nZ.
» Z[i] = {a+ib|a,b € Z}(Gaussian integers) is a sub ring of C.
» F cannot be a ring under function addition and function composition, since by taking f(x) =
sinx, g(x) = x and h(x) = v/x, we are not able to conform the distributive laws.
» S={feF|f(0) = 0}formasub ring of F.

IDEAL

TWO SIDED IDEALS

Let R be aring, A be a subring of R, then A is said to be a two sided ideal of Rif ar € A,Va € A,&r €
R.

e {0} is a trivial ideal.
o Let F be afield, then F has no trivial proper Ideals, only ideals of F are trivial and F itself.

IDEAL TEST
Let A C R (ring) is said to be an ideal of R if

1. a—beA,VabeA
2. racA&Arc A Vr €R.
e For a finite field F, the group (F’, -) is a cyclic group.

PRINCIPAL IDEAL
Let R be a commutative ring with unity, a € R, then the set,
< a >= {ra|r € R}is an ideal of R known as the Principal ideal of R generated by a

e TheringnZ, n > 1 has no principal ideals.
o |deals of R generated by a; & a,
<ay,a; >={ra; + ra;|r, 1, ER}



EXAMPLE
Consider Z[x], then the ideal I of all polynomials with constant term even/zero,
I =<x,2>={P;(x)x + 2P,(x)|P;(x), P,(x) € Z[x]}

NOTE

e LetRbearing with unity 1 # 0 and [ is an ideal of R, containing unity 1, then I = R.
e Forafield F, every ideal of F[x] are principal.

PRIME IDEAL

An ideal A of R is said to be Prime iffora,b E R&ab e A=>a € Aor b € A.
EXAMPLE

From the ideals nZ of Z, prime ideals are pZ.

MAXIMAL IDEAL
Suppose A is a proper Ideal of R, then A is said to be Maximal ideal of R, if 3 an ideal B such that 4 S
BSR=B=AorB=R.

e Let R be a finite commutative ring with unity, A is a non-trivial ideal of R, then A is maximal

& Alis prime.

Ring Ideals
R {0}, R
Q {0}, Q
Z nZ, Z

Zy,, n is composite {0},<d > d|n,Z,

Z, {0}, 7,

Z X7

F[x]

e Maximal ideals in z[x] are of the form (r(x),p), where r(x) is an irreducible polynomial Z;
where t is a prime in Z.

o < p(x) >isamaximalidealin F[x] ©< p(x) > isirr. Over F.

e Every maximal ideal in a commutative ring with unity is a prime ideal.

FACTOR RING
Let R be aring, A be an ideal of R, then the set of all additive cosets % ={r+A|r € R} formaring

with the binary operations defined by,
(a+A)+ (b+A) =(a+b)+ Aand (a+A) (b+A)=(ab)+A



EXAMPLE

% < 2+i>isanideal of Z[i].

FIELDS

FIELD

afield is a set together with two binary operations + and . on F such that (F, +) is an abelian group

and (F*,") is where F* = F\{0} is also an abelian group and distributive law holds.

e If all nonzero elements of (R, +, -) are units, then R is said to be Division Ring/Skew field
(here, existence of unity trivially hold.)

e A non-commutative division ring is called a Strictly skew field.

e AField is a commutative division ring.

e LetF be afield, then |F| = p™ = Char(F) = p.

e Char (R) =0orp.

SUB FIELD
A non-empty subset S of F is said to be a sub field of F if
i a€eS,beS=>a+b €S,abe s
ii. Sis a field under the induced addition and multiplication compositions.

e Number of sub fields for F is d(n) (no. of divisors of n.ie, n = pflpgz p,:" =d(n) =
rn+Dr+1)..(p+1)
ZERO DEVISORS
LetRbearing, a # 0,b # 0 € R such that (ab = 0) then a & b are said to be zero devisors.

e Number of zero divisors in Z,, isn — ¢p(n) — 1.

® Zyp has no zero divisors

e M, (R)is a ring having zero divisors.
HEBRHE

e GL,(R)isnotaring.

e Cancellation law holds in a ring R, if it has no zero divisors

(since,ifa # 0,b # 0,&ab =0 € R,a.0 = ab = b = 0) i.e zero divisors are not units.

INTEGRAL DOMAINS(ID)
An integral domain is a commutative ring with unity having no zero divisors.

EXAMPLE
(T, +,), Ty, +p,%p)

PROPERTIES
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e Every field is an integral domain.

e Every finite integral domain is a field.

o (Zp,+p,Xyp)isafield

e Order of finite field is p™.

e Char of an integral domain is 0 or p(Z,).

e product of two I.D s is not an I.D, that’s why product fields (since (1,0)(0,1)=(0,0))

FIELD OF QUOTIENTS OF AN ID
Let D be an|.D, take F = {S |p € D,q(# 0) € D}, then F is the smallest field containing D known as

the quotient field of D.
o QistheQ.Fof Z.

EXTENSION FIELDS

FIELD EXTENSION
A field extension of a field F is a pair (K, ¢) where K is a field and ¢is a monomorphism of F in to K.
EXAMPLE

= letF =QandE = Ror E = C.Then E/F is an extension.
= Let E be any field and F be its prime subfield then, E/F is an extension.

DEGREE OF A VECTOR SPACE OVER FIELD

The dimension of K as a vector space over F is called the degree of K over F and is written as [K:F] or
dimgK.

FINITE/INFINITE EXTENSION
K is said to be a finite or infinite extension according as the degree of K over F is finite or infinite.
RESULT

= |fKis afinite field extension of F and L is a finite field extension of K, then L is a finite field
extension of Fand [L: F] = [L:K] [K: F]

SIMPLE EXTENSION
Let K be an extension of the field F and if the field K is generated by a single element a over F, i.e,

K =F ( a) then K is said to be a simple extension of F and the element «ais called the primitive
element.

ALGEBRAIC EXTENSION

An element a of K is said to be algebraic over F if a is a root of a non-zero polynomial f(x) in F(x). K is
said to be an algebraic extension of F if every element of K is algebraic over F.
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EXAMPLE

= /2 is algebraic over Q because it satisfies x> — 2 in Q[x].
NOTE

e Every field extension of prime degree is simple.
e Every finite extension of a field is an algebraic extension but converse is not true.
e Anelement a of K is algebraic over F if and only if [ F(«): F) is finite.

MONIC POLYNOMIAL

A non-zero polynomial f(x) in F[x] is said to be a monic polynomial over F if the coefficient of highest
power of x in f(x) is equal to 1, the unity of F.

MINIMAL POLYNOMIAL

If any element a in K is algebraic over F then a monic polynomial of smallest degree over F satisfied
by a is called the minimal polynomial of a over F. If the degree of the minimal polynomial of aiis n,
then a is said to be algebraic over F of degree n.

SPLITTING FIELD

Let f(x) be any polynomial of degree n = 1 over a field F. Then a field extension E of F is called
splitting field of f(x) if

i.  f(x) can be factored in to n linear factors over E and
ii.  there does not exist any proper subfield E’ of E containing F such that f(x) if can be factored
into n linear factors over E’.

equivalently, one can say that E is a splitting field of f(x) if E contains all roots of f(x) and

E = F(ay,a,,...,a,), the field generated by F and n roots a4, as, ..., a, of f(x) in E.

RINGS OF POLYNOMIALS

RING OF POLYNOMIAL
Let R be a commutative ring, then
R[x] = {ap + a;x + azx? + - + a,x™ | a; € R,n € N} forms a ring under polynomial addition and
polynomial multiplication, known as the ring of polynomials.
e fER[x]E f(x)=apx"+ap1x" 1+ -+ax+ay a, #0
e a, =1,then f(x) is said to be monic.
e f(x) =0,thendeg (f(x)) is not defined (since a,, # 0)
e f(x)=c,thendeg(f) =0



o deg(fg) = deg(f) + deg(g) © Risanl.D

o deg(f +g) < max{deg(f),deg(g)}
e Disanl.D=D[x]isan.D.

e Fisafield= F[x]isanl.D, (x"1 ¢ F[x])

DIVISION ALGORITHM
Let F be a field, f, g € F[x], then 3 unique polynomial q(x),r(x) € F(x) such that
f) =qx)gx) +rx),  r(x)=0or deg(r) <deg(g)

REMAINDER THEOREM
Let F be a field, a € F, then f(a) is the remainder when f is divided by x — a.

FACTOR THEOREM
Let F be a field, a € F such that f(a) = 0, then x — a is a factor of f.

CONTENT OF A POLYNOMIAL
Let f(x) = ap + a;x + azx? + - + a,x™ € Z[x], then g.c.d{a;} is known as the content of f.

e Content of a monic polynomial is 1.
e Polynomials with content 1 is known as primitive polynomials.
e The product of two primitive polynomials is primitive.

REDUCIBLE AND IRREDUCIBLE POLYNOMIAL
Let f(x) € D[x], where Disan I.D and f # 0 or a unit in D[x], then f is said to be Irreducible over D
if, whenever f(x) can be expressed as f(x) = g(x)h(x), g(x),h(x) € D[x] then h or gis a unitin
DJ[x].
e f(x) € F[x], where Fisafield and f # c in F[x] then f is said to be irreducible over F if f(x)
cannot be expressed as f(x) = g(x)h(x), g(x), h(x) € F[x] with deg(g),deg(h) < deg(f)

EXAMPLE
» x%+4+4€7Z[x],2x* + 4 = 2(x? + 2), neither 2 nor x? + 2 is a unit in Z[x], thus 2x% + 4 is
reducible over Z.
* 2x2+4€Q[x], 2x% + 4 = 2(x?*+ 2) but deg (x? + 2) <« deg (2x2 + 4) in Q[x], thus
2x% + 4 is irreducible over Q.

REDUCIBILITY TEST IN FIELDS

e f €F[x],deg(f) = 2or 3,then f is reducible over F&f has a zero in F.
e f € R[x],deg(f) = 3= fisreducible over R.

e f €Z[x]and f is reducible over Q =f is reducible over Z.

e f €Z[x]and f isirreducible over Z = f is irreducible over Q.

mod p TEST



Let f # ¢ € Z[x], f(x) = f(x) in Zy[x] & deg(f) = deg (f), if f isirreducible over L,=>fis
irreducible over Q.

EINSTEIN’S CRITERION
Let f(x) = ap + a;x + azx? + -+ + a,x™ € Z[x], if 3 a prime p such that p  a,,, p|an_1,
plan_z,..pla;and p? t ag, then f(x) is irreducible over Q.

GALOIS THEORY

GALOIS EXTENSION

An extension K of F is called Galois extension if K/F is finite extension and F is fixed field of a group of
automorphisms of K denoted by Aut(K).

FUNDAMENTAL THEOREM OF GALOIS THEORY
Let K/F be a Galois extension and Gal(K/F) is a Galois group of K/F .i.e, the group of all F-
automorphisms of K. Then
1) There is one-one correspondence between theset A = E/F € E € Kand
B = {H/H subgroup of Gal(K/F).
2) If His subgroup of (K/F) in B corresponding to field E in A, then O(H)= [K : E] and
[Gal(K/F):H] = [E: F].
3) If Hy,H, € B corresponding to field E;, E;, € A respectively. Then E;, E;are conjugate under
an automorphism o € Gal(K/F) iffc™'H,0 = H,.
4) If H € B corresponds to E € A4, then E/F is a normal extension iff H is normal subgroup of
Gal(K/F) and moreover, Gal(E/F) = Gal(K/F)/H.



