Electrodynamics

Vector Analysis Part 1

Vector

- Tensors of rank 1
- They have direction as well as magnitude.
- Examples : Displacement, Velocity, Acceleration, Force, Momentum

Vector Operations

- Four vector operations : Addition and three kinds of multiplication

1. Addition of two vectors : Place the tail of B at the head of A; the sum, $A+B$, is the vector from the tail of A to the head of B.

- Addition is commutative: $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
- To subtract a vector, add its opposite: $\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B})$

$$
\vec{R}=\vec{A}+\vec{B}
$$

2. Multiplication by a Scalar:

- Multiplication of a vector by a positive scalar a multiplies the magnitude but leaves the direction unchanged.
- If \mathbf{a} is negative, the direction is reversed.
- Scalar multiplication is distributive: $\mathbf{a}(\mathbf{A}+\mathbf{B})=\mathbf{a A}+\mathbf{a B}$

3. Dot product of two vectors

- If \mathbf{A} and \mathbf{B} are two vectors then $\mathbf{A} \cdot \mathbf{B}=\mathbf{A B} \cos \boldsymbol{\theta}$; Where θ is the angle they form when placed tail to tail.
- Note that A.B is itself scalar (so the name scalar product).
- The dot product is commutative : $\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A}$
- The dot product is distributive, $\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}$

E, ENTRI

- If the two vectors are parallel, then $\mathbf{A} \cdot \mathbf{B}=\mathbf{A B}$
- In particular, for any vector A, A.A = \boldsymbol{A}^{2}
- If A and B are perpendicular, then $\mathbf{A} \cdot \mathbf{B}=\mathbf{0}$

4. Cross product of two vectors

- The cross product of two vectors is defined by $\mathbf{A} \times \mathbf{B}=\mathbf{A B} \boldsymbol{\operatorname { S i n }} \boldsymbol{\theta} \mathbf{n}$
- Right - hand rule : let your fingers point in the direction of the first vector and curl around (via the smaller angle) towards the second; then your thumb indicates the direction of n
- Note that $\mathrm{A} \times \mathrm{B}$ is itself a vector (hence the name vector product).
- Cross product is distributive, $\mathbf{A} \times(\mathbf{B}+\mathbf{C})=(\mathbf{A} \times \mathbf{B})+(\mathbf{A} \times \mathbf{C})^{\hat{\mathbf{n}}} \hat{\mathbf{n}}$
- But not commutative; $(\mathbf{B} \times \mathbf{A})=-(\mathbf{A} \times \mathbf{B})$
- Geometrically, $[\mathbf{A} \times \mathbf{B}$] is the area of the parallelogram generated by \mathbf{A} and \mathbf{B}.

- If two vectors are parallel, their cross product is Zero. In particular, $\mathbf{A} \times \mathbf{A}=\mathbf{0}$ for any vector \mathbf{A}

Vector Resolution

- The splitting of a single vector into two or more vectors in different directions which together produce a similar effect as is produced by a single vector itself. The vectors formed after splitting are called components vectors.

E. ENTRI

Vector Algebra: Component Form

$$
\mathrm{A}=A_{x} \hat{x}+A_{y} \widehat{y}+A_{z} \hat{z}
$$

- The numbers $\boldsymbol{A}_{\boldsymbol{x}}, \boldsymbol{A}_{\boldsymbol{y}}$ and $\boldsymbol{A}_{\boldsymbol{z}}$ are the components of \mathbf{A}
- We can now reformulate each of the four vector operations as a rule for manipulating components ;

$$
\begin{aligned}
\mathrm{A}+\mathrm{B} & =\left(A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \mathrm{Z}\right)+\left(B_{x} \hat{x}+B_{y} \hat{y}+B_{z} \hat{z}\right) \\
& =\left(A_{x}+B_{x}\right) \hat{x}+\left(A_{y}+B_{y}\right) \hat{y}+\left(A_{z}+B_{z}\right) \hat{z}
\end{aligned}
$$

- Rule (i) : To add vectors, add like components.

$$
\mathrm{aA}=\left(\mathrm{a} A_{x}\right) \hat{x}+\left(\mathrm{a} A_{y}\right) \hat{y}+\left(\mathrm{a} A_{z}\right) \hat{z}
$$

- Rule (ii) : To multiply with a scalar, multiply each component
- Because, $\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}}$ and $\hat{\boldsymbol{z}}$ are mutually perpendicular unit vectors,

$$
\widehat{x} \cdot \widehat{x}=\widehat{y} \cdot \hat{y} \cdot \hat{z} \cdot \hat{z}=1 \quad \widehat{x} \cdot \hat{y}=\cdot \hat{x} \cdot \hat{z}=\hat{Y} \cdot \hat{z}=0
$$

$$
\text { Accordingly, } \begin{aligned}
\mathrm{A} \cdot \mathrm{~B} & =\left(A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}\right) \cdot\left(B_{x} \widehat{x}+B_{y} \hat{y}+B_{z} \hat{z}\right) \\
& =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

- Rule (iii) : To calculate the dot product, multiply like components, and add
- In particular A. $\mathrm{A}=A_{x}^{2}+A_{y}^{2}+A_{z}^{2}$

$$
\begin{gathered}
\text { So } \quad \mathrm{A}=\sqrt{=A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \\
\hat{x} \times \widehat{x}=\hat{\mathrm{Y}} \times \hat{\mathrm{Y}}=\hat{\mathrm{z}} \times \hat{\mathrm{z}}=0 \\
\widehat{x} \times \hat{\mathrm{Y}}=-\hat{\mathrm{Y}} \times \widehat{x}=\hat{\mathrm{z}} \\
\hat{\mathrm{Y}} \times \hat{\mathrm{z}}=-\hat{\mathrm{z}} \times \hat{\mathrm{Y}}=\widehat{x} \\
\hat{\mathrm{z}} \times \widehat{x}=-\widehat{x} \times \hat{\mathrm{z}}=\hat{\mathrm{Y}} \\
\mathrm{~A} \times \mathrm{B}=\left(A_{x} \widehat{x}+A_{y} \hat{y}+A_{z} \hat{z}\right) \times\left(B_{x} \widehat{x}+B_{y} \hat{y}+B_{z} \hat{z}\right)
\end{gathered}
$$

This can be find using determinant

$$
\begin{aligned}
& \mathrm{A} \times \mathrm{B}=\left|\begin{array}{ccc}
\hat{x} & \hat{\mathrm{Y}} & \hat{\mathrm{z}} \\
A x & A y & A z \\
B x & B y & B z
\end{array}\right| \\
& =\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\mathrm{Y}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{z}
\end{aligned}
$$

- Rule (iv); To calculate the cross product, form the determinant whose first row is $\widehat{x}, \widehat{\boldsymbol{y}}, \hat{z}$ whose second row is A in component from and third row is B

E, ENTRI

Problems

1. Find the angle between the face diagonals of a cube of side 1

The face diagonals A and B are
$A=1 \widehat{\boldsymbol{x}}+0 \hat{Y}+1 \hat{\mathbf{z}} \quad B=0 \hat{\boldsymbol{x}}+1 \hat{Y}+1 \hat{\mathbf{z}}$
So in component form

$$
\text { A.B }=1.0+0.1+1.1=1
$$

On other hand, in " abstract " form,

$$
\mathrm{A} \cdot \mathrm{~B}=\mathrm{AB} \cos \theta=\sqrt{2} \sqrt{2} \operatorname{Cos} \theta=2 \operatorname{Cos} \theta
$$

Therefore $\operatorname{Cos} \theta=1 / 2$ or $\theta=60^{\circ}$
$\hat{\boldsymbol{z}} \widehat{\boldsymbol{y}}$

