Banking Daily Quiz Blog - June 1

1. Direction: The following table gives the student data of a college.

There are a total of six departments in the college, namely, A, B, C, D, E and F, each comprising of three batches. The total number of students belonging to each department and the corresponding boy-girl ratio of each department is given in the table, but some of the information is missing. Study the table and answer the questions that follow.

Departments	No. of students	Boy : Girl
A	324	-
B	308	-
C	-	$35: 39$
D	-	-
E	216	$5: 4$
E	296	-

A. If the difference between the number of boys and girls in the department F is 4 more than $5 / 6$ of the difference between the number of boys and girls in the department E, then find the boy-girl ratio in department F.

A $25: 19$

B $20: 17$

```
(D) 15:11
```

E $12: 5$

Solution

Let the number of boys and girls in department F be ' x ' and ' y ' respectively

Total no. of students in department $\mathrm{F}=296$
$\Rightarrow x+y=296$
No. of boys in department $\mathrm{E}=\frac{5}{9} \times 216=120$
No. of girls in department $E=216-120=96$

Difference between no. of boys and girls in dept. $\mathrm{E}=120-96=24$

Hence,

Difference between no. of boys and girls in dept. $F=4+5 / 6 \times 24=4+20$
$=24$
$\Rightarrow x-y=24$

Adding (1) and (2),
$\Rightarrow x+y+x-y=296+24$

$\Rightarrow 2 \mathrm{x}=320$
$\Rightarrow \mathrm{x}=\frac{320}{2}=160$
Substituting in (1),
$\Rightarrow y=296-160=136$
\therefore Boy : girl in department $\mathrm{F}=\mathrm{x}: \mathrm{y}=160: 136=20: 17$
B. In department A, the number of students in the three batches are in the ratio $17: 18: 19$. If the number of boys in the three batches are in the ratio $18: 19: 19$ respectively, and the number of girls are in the ratio 16:17:19 respectively, then what is the boy-girl ratio in the whole department A ?

A $19: 18$
(B) $17: 16$

C $16: 15$

D $14: 13$
(E) $\quad 12: 11$

Solution

Let the number of students in the three batches of department A be ' 17 x ', ' $18 x$ ' and ' $19 x$ '

Total number of students in department $\mathrm{A}=17 \mathrm{x}+18 \mathrm{x}+19 \mathrm{x}=324$
$\Rightarrow 54 \mathrm{x}=324$
$\Rightarrow \mathrm{x}=\frac{324}{54}=6$
Now, let the no. of boys in the three batches be ' 18 y ', ' 19 y ' and ' 19 y '

Also, let the no. of girls in the three batches be ' 16 z ', ' 17 z ' and ' 19 z '

Total no. of students in first batch $=17 \mathrm{x}=17 \times 6=102$
$\Rightarrow 18 y+16 z=102$

Total no. of students in second batch $=18 x=18 \times 6=108$
$\Rightarrow 19 y+17 z=108$

Total no. of students in third batch $=19 x=19 \times 6=114$
$\Rightarrow 19 y+19 z=114$

Subtracting (2) from (3),
$\Rightarrow 19 y+19 z-19 y-17 z=114-108$
$\Rightarrow 2 \mathrm{z}=6$
$\Rightarrow \mathrm{z}=3$

Substituting in (3),
$\Rightarrow 19 y=114-57$
$\Rightarrow y=\frac{57}{19}=3$
Hence, total no. of boys in department $A=18 y+19 y+19 y=56 y=56 \times$ $3=168$

Total no. of girls in department $\mathrm{A}=16 \mathrm{z}+17 \mathrm{z}+19 \mathrm{z}=52 \mathrm{z}=52 \times 3=156$
\therefore Boy-girl ratio in department $\mathrm{A}=168: 156=14: 13$
C. The average number of students in the departments B and C is $\mathbf{3 0 2}$. If
the number of boys in department B is $\mathbf{2 5 \%}$ more than that in department C, then find the total number of girls in departments B and C ?

A 258

B 263

C 276

D $\mathbf{2 8 9}$

E 294

Solution
No. of students in department $B=308$
Average no. of students in departments B and $\mathrm{C}=302$
\Rightarrow No. of students in department C $+308=2 \times 302=604$
\Rightarrow No. of students in department $\mathrm{C}=604-308=296$
Now, boy : girl in department $\mathrm{C}=35: 39$
No. of boys in department $\mathrm{C}=\frac{35}{74} \times 296=140$
No. of girls in department C $=296-140=156$

No. of boys in department B $=(100+25) \%$ of $($ No. of boys in dept. $C)=$ $1.25 \times 140=175$

No. of girls in department $\mathrm{B}=308-175=133$
\therefore Total no. of girls in department B \& C $=156+133=289$
D. The total number of girls in the college is $\mathbf{8 9}$ more than $\mathbf{7 5 \%}$ of the total number of boys in the college. If the total number of students in the college is $\mathbf{3 0}$ less than $\mathbf{6}$ times the number of students belonging to department B, what is the difference between the total number of boys and girls in the college?
A
119

B $\quad 134$

C $\mathbf{1 5 8}$

D $\quad 171$

E 197

Solution

Let the total no. of boys and girls in the college be ' x ' and ' y ' respectively
\because Total no. of girls $=89+75 \%$ of (Total no. of boys)

$$
\begin{align*}
& \Rightarrow \mathrm{y}=89+\frac{75}{100} \mathrm{x} \\
& \Rightarrow \mathrm{y}=89+\frac{3 x}{4} \\
& \Rightarrow 4 \mathrm{y}=356+3 \mathrm{x} \\
& \Rightarrow 4 \mathrm{y}-3 \mathrm{x}=356 \tag{1}
\end{align*}
$$

Now, total no. of students $=6 \times($ No. of students in dept. B) -30
$\Rightarrow x+y=6 \times 308-30$
$\Rightarrow \mathrm{x}+\mathrm{y}=1848-30$
$\Rightarrow \mathrm{x}+\mathrm{y}=1818$
Multiplying (2) by 3 and adding to (1),
$\Rightarrow 4 y-3 x+3 x+3 y=356+5454$
$\Rightarrow 7 y=5810$
$\Rightarrow \mathrm{y}=\frac{5810}{7}=830$
Substituting in (2),
$\Rightarrow \mathrm{x}=1818-\mathrm{y}=1818-830=988$
\therefore Required difference $=\mathrm{x}-\mathrm{y}=988-830=158$
E. The number of students in department D is $\mathbf{4 0 \%}$ more than the average number of students in departments $A \& E$. If the number of girls in department D is 9 more than $\mathbf{1 5 0 \%}$ of the girls in department E, then the number of boys in department D is how much more than 185% of the boys in department E ?

C 4

D 5

E 6

Solution

Average no. of students in department A and $\mathrm{E}=\frac{324+216}{2}=\frac{540}{2}=270$
No. of students in department $\mathrm{D}=(100+40) \%$ of $270=1.4 \times 270=378$

Boy : girl in department $E=5: 4$
No. of girls in department $\mathrm{E}=\frac{4}{9} \times 216=96$
No. of girls in department $\mathrm{D}=9+150 \%$ of $96=9+144=153$

Hence,

No. of boys in department $\mathrm{E}=216-96=120$

No. of boys in department $\mathrm{D}=378-153=225$

Now, let the required number be ' x '
$\Rightarrow 225=x+185 \%$ of 120
$\Rightarrow 225=x+222$
$\Rightarrow \mathrm{x}=225-222=3$
\therefore The no. of boys in dept. D is 3 more than 185% of boys in dept. E

What approximate value will come in the place of the question mark '?' in the following question?
2. $434.68 \div 7.5-\mathbf{3 9 . 9 9 \%}$ of $\mathbf{1 2 9 . 8 7}=$?

A 6
B

C
5
(D) 16

E $\quad 15$

Solution

$434.68 \div 7.5-39.99 \%$ of $129.87=$?

Taking their approx. values
$\Rightarrow ?=435 \div 7.5-40 \%$ of 130
$\Rightarrow ?=\frac{4350}{75}-\frac{40}{100} \times 130$
$\Rightarrow ?=58-52$
$\Rightarrow ?=6$

What approximate value will come in the place of the question mark '?' in the following question?
3. $\mathbf{1 3 0 . 1 1 \%}$ of $\mathbf{1 1 0 . 0 4} \mathbf{- 2 2 0 . 2 4 \%}$ of $\mathbf{1 2 9 . 8 8}+\mathbf{2 4 . 8 8 \%}$ of ? $=\mathbf{4 4 . 0 7 \%}$ of $\mathbf{2 2 4 . 9 8}+\mathbf{1 4 5 . 1 \%}$ of $\mathbf{2 0 . 0 2}$

A 1074

B $\quad 1078$

C $\mathbf{1 0 8 0}$

D 1005

E $\mathbf{1 0 8 5}$

Solution

130.11% of $110.04-220.24 \%$ of $129.88+24.88 \%$ of $?=44.07 \%$ of $224.98+145.1 \%$ of 20.02

Taking their approx. values
$\Rightarrow 130 \%$ of $110-220 \%$ of $130+25 \%$ of $?=44 \%$ of $225+145 \%$ of 20
$\Rightarrow \frac{130}{100} \times 110-\frac{220}{100} \times 130+\frac{1}{4} \times ?=\frac{44}{100} \times 225+\frac{145}{100} \times 20$

$$
\begin{aligned}
& \Rightarrow 143-286+\frac{?}{4}=99+29 \\
& \Rightarrow \frac{?}{4}=128+286-143 \\
& \Rightarrow ?=271 \times 4 \\
& \Rightarrow ?=1084 \\
& \therefore ? \approx 1085
\end{aligned}
$$

What approximate value will come in the place of the question mark '?' in the following question?
4. $\mathbf{8 5 8 . 2 3 1} \div \mathbf{3 9 . 3 4 5} \times \mathbf{7 4 . 1 5 4 - 1 4 9 9 . 9 8}+\mathbf{3 1 . 7 9 8}=(2)^{?} \times \mathbf{9 . 8 7 9}$
A 2

B 3

C 4
(D) 5

E 7

Solution

$858.231 \div 39.345 \times 74.154-1499.98+31.798=(2)^{?} \times 9.879$

Taking their approx. values
$\Rightarrow \frac{858}{39} \times 74-1500+32=(2)^{?} \times 10$
$\Rightarrow 1628-1500+32=(2)^{?} \times 10$
$\Rightarrow 128+32=(2)^{?} \times 10$
$\Rightarrow \frac{160}{10}=(2)^{?}$

$$
\begin{aligned}
& \Rightarrow(2)^{?}=16 \\
& \Rightarrow(2)^{?}=16 \\
& \Rightarrow ?=4
\end{aligned}
$$

What approximate value will come in the place of the question mark '?' in the following question?
5. $31.992 \times \frac{28.196}{6.932}+677.993-320.898=? \times 4.889$
A
82

B 88

C $\quad 89$

D 97

E $\quad 78$

Solution

$31.992 \times \frac{28.196}{6.932}+677.993-320.898=? \times 4.889$
Taking their approx. values
$\Rightarrow 32 \times \frac{28}{7}+678-321=? \times 5$
$\Rightarrow 32 \times 4+678-321=? \times 5$
$\Rightarrow ? \times 5=128+678-321$
$\Rightarrow ?=\frac{485}{5}$
$\Rightarrow ?=97$

What approximate value will come in place of question mark (?) in the following question?
6. $?=8.97-4.05+9.02 \div 2.99 \times 4.04+(1.56)^{2}$

A $\quad 10$

B $\quad 20$

C 30
(D) 45

E $\quad 40$

Solution

$$
?=8.97-4.05+9.02 \div 2.99 \times 4.04+(1.56)^{2}
$$

Rewriting equation with approximate values:
$\Rightarrow ? \approx 9-4+9 \div 3 \times 4+(1.6)^{2}$
$\Rightarrow ?=9-4+3 \times 4+2.56$
$\Rightarrow ?=5+12+2.6$
$\Rightarrow ?=19.6 \approx 20$
$\therefore ?=20$

E. ENTRI

