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Radiation by Moving Charges 

8.1 Introduction 

The problem of radiation of electromagnetic waves by a single charged particle moving at an arbitrary 

velocity had correctly been formulated independently by Lienard and Wiechert before the advent of the 

special relativity theory. This is because once emitted from a charged particle, electromagnetic waves 

propagate at the speed c irrespective of the velocity of the charged particle, just as sound waves 

propagate at a speed independent of the source velocity. (The major nding made by Einstein was that 

electromagnetic waves still propagate at the speed c regardless of the observer s velocity in contrast to 

the case of sound waves.) 

The scalar and vector potentials due to a moving charge can be found rigorously using the Green s 

function for the wave equation. Then radiation electromagnetic elds can readily be calculated. In 

nonrelativistic regime, the radiation power only depends on the acceleration of charged particles. As the 

velocity approaches c; however, signi cant increase in the radiation power occurs. Furthermore, in highly 

relativistic limit, radiation occurs primarily along the direction of velocity within an angular spread of order 

’ 1= about the velocity irrespective of the direction of ac- 

 

celeration. Here = 1=p1 2 is the relativity factor with = v=c: Hence radiation frequency is subject to strong 

Doppler shift. For example, in synchrotron radiation due to highly relativistic electron beam bent or 

undulated by a magnetic eld, radiation even in hard x-ray regime can be created. 

In material medium, radiation processes without acceleration on charged particles are possible. If the 

velocity of a charged particle exceeds the velocity of electromagnetic waves in the medium 

 

where " is the permittivity, Cherenkov radiation occurs. Furthermore, if a charged particle crosses a 

boundary of two dielectric media, the transition radiation occurs even if the condition for Cherenkov 

radiation is not met. Transition radiation is due to sudden change in the normalized velocity from 1 = vp"1 

0 to 2 = vp"2 0 which may be regarded as an e⁄ective acceleration even though the particle velicty v remains 

constant. 
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8.2 Lienard-Wiechert Potentials 

The charge and current densities of a moving point charge are singular and described by 

 (r;t) = e [r rp(t)]; (8.1) 

 J(r;t) = ev(t) [r rp(t)]; (8.2) 

where e is the charge, rp(t) is the instantaneous location of the charge and v(t) = drp(t)=dt is the 

instantaneous velocity of the charge which may be changing with time. Exploiting the Green s function for 

the wave equation, 

 G(r  (8.3) 

we can write down solutions for the inhomogeneous wave equations, 

  (8.4) 

  A = 0J; (8.5) 

in the form 

  (8.6) 

A  

where 

 : (8.7) 

The volume integrations can be carried out immediately with the results 

  (8.8) 

 A  (8.9) 

where f(t0) is now 

 : (8.10) 

The integral involving the delta function can be simpli ed as 
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  (8.11) 

where t0 is now understood as a solution for t0 satisfying f(t0) = 0 or 

 : (8.12) 

This is in general an implicit equation for t0: The time derivative of f(t0) is 

  (8.13) 

where n(t0) is the unit vector along the relative distance r rp(t0) and = v=c: The observing time t and time 

t0 are related through 

 [1 n(t0) (t0)]dt0 = dt; 

or 

: 

After performing time integration, we nally obtain 

  (8.14) 

A  

where 

1 

 

n(t0) (t0) jr 
v 

 rp(t )j 4 

v(t0) 

; 

(t0)jr rp(t0)j 

(8.15) 

 (t0) = 1 n(t0) (t0):  (8.16) 

These retarded potentials, called Lienard-Wiechert potentials, had been formulated in 1898. They are 

applicable to arbitrary velocity of the charged particle. Retarded nature of the potentials clearly appears 

in the condition that all time varying quantities, rp(t0);v(t0);n(t0); must be evaluated at t0; not at the 

observing time t because of nite propagation speed of electromagnetic disturbance. 

Having found the retarded potentials, we are now ready to calculate the electromagnetic elds 

due to a moving point charge. The electric eld is to be found from 

 E  (8.17) 
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where spatial and time derivatives pertain to r (the coordinates of the observing location) and t (observing 

time). Since the potentials and A are implicit functions of r and t; it is more convenient to use the original 

integral representations, Eqs. (8.8) and (8.9), respectively, for proper di⁄erentiation with respect to r and 

t: For example, the spatial derivative of the scalar potential can be performed as follows. Letting R(t0) = 

jr rp(t0)j; and introducing a unit vector in the direction r rp(t0); 

 r rp(t0) 

 n(t0) = ; (8.18) 

 jr rp(t0)j 

we nd 

  (8.19) 

where use is made of the integration by parts, 

(8.20) 

(8.21) 

(8.22) 

Similarly, 

  (8.23) 

and the electric eld becomes 

 E  : (8.24) 

To proceed further, we need concrete expressions for the derivatives, 

dn d 1  and : 

 dt0 dt0 R 
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The unit vector n along the distance vector R = r rp(t0) changes its direction only through the 

velocity component perpendicular to R; 

v 

 dn = ? dt0; (8.25) 

R 

as can be seen in Fig. 8-1. This yields 

 

Figure 8-1: The change in the unit vector n is caused by the perpendicular velocity v : ? 

 : (8.26) 

Also, 

  n )R] 

 (n _)R c(1 n )n i 

 n (n _) : (8.27) 

Substitution of Eqs. (8.26) and (8.27) to Eq. (8.24) gives 

 E(r;t) = 4"e 0 "n(R)2 n(R)2 2 n (n 

_) c  _2R# 
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 (n ) + n [(n ) _] :

 (8.28) 
f(t0)=0 

The rst term in the RHS, 

 ECoulomb (n )  (8.29) 

is the Coulomb eld corrected for relativistic e⁄ects. It is proportional to 1=R2 and thus does not contribute 

to radiation of energy. The second term, 

 Erad n [(n ) _]  (8.30) 

contains acceleration _ and is proportional to 1=R: This is the desired radiation electric eld due to a moving 

charged particle. 

 The magnetic eld can be calculated in a similar manner from 

 B = r A 

  [n E]
f(t0)=0 : (8.31) 

Derivation of this result is left for an exercise. 

8.3 Radiation from a Charge under Linear Acceleration 

If the acceleration is parallel (or anti-parallel) to the velocity, _ = 0; the radiation electric eld reduces to 

 Erad  : (8.32) 

The angular distribution of radiation power at the observing time t is 

  : (8.33) 

Denoting the angle between _ and n by ; we have [n (n _)]2 = _ 2 sin2 ; and thus 

  : (8.34) 
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However, the power P(t) in the above formulation is the rate of energy radiation at t; the observing time, 

which is not necessarily equal to the energy loss rate of the charge at the retarded time t0 determined 

from f(t0) = 0: To nd the radiation power at the retarded time P (t0); let us consider the amount of 

di⁄erential energy dE=d radiated during the time interval between t0 and t0+dt0: By de nition dE = 

P(t0)dt0: The radiation energy dE is sandwitched between two eccentric spherical surfaces with a volume 

dV = R2cdt0(1 cos ): 

Therefore, the di⁄erential radiation energy is 

 

and 

  (8.35) 

In nonrelativistic limit j j 1; the radiation occurs predominantly in the direction perpendicular to the 

acceleration = =2. The total radiation power in this case is 

 : (8.36) 

This is the well known Larmor s formula for radiation power due to a nonrelativistic charge. Since in 

nonrelativistic limit, 

 n [(n ) _] ’ n (n _); (8.37) 

Larmor s formula is applicable for acceleration in arbitrary direction relative to the velocity. 

For arbitrary magnitude of the velocity ; the radiation power can be found from 

  (8.38) 

where 
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1 

 =;

 (8.39) 

 1 2 

is the relativity factor and the following integral is used, 

 : (8.40) 

The angular dependence of the radiation intensity, 

  (8.41) 

peaks at angle 0 where 

 : (8.42) 

In highly relativistic limit 1; the angle 0 becomes of order 

1 

 0 ’  1; (8.43) 

which indicates a very sharp pencil or beam of radiation along the direction of the velocity : (This is also 

the case for acceleration perpendicular to the velocity as shown in the following section.) Angular 

distribution of radiation intensity I ( )) for = 0; 0:2; 0:9 and 0:999 is shown below for a 

common acceleration. Note that the radiation intensity rapidly increases with = 1=p1 2: 
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 Polar plot of I( ) for several factors but with common parallel acceleration. 

For linear acceleration, the momentum change of the charged particle is 

  (8.44) 

Therefore, the radiation power can be rewritten as 

  (8.45) 

where Eac is an external acceleration electric eld and 

 

is the energy gradient of a linear accelerator which is at most of the order of 100 MeV/m in practice. The 

radiation loss in linear accelerators is negligibly small compared with energy gain. This is one of the 

advantages of high energy linear accelerators. Note that the radiation power due to linear acceleration is 

independent of the particle energy or the relativity factor : 
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8.4 Radiation from a Charge in Circular Motion 

In circular motion, the acceleration is perpendicular to the velocity. Here we consider highly relativistic 

motion of a charged particle with ’ 1, for nonrelativistic case has already been discussed in Chapter 4. A 

geometry convenient for analysis to follow is shown in Fig.8-2. A particle undergoes circular motion with 

an orbit radius in the x z plane and it passes the origin at t0 = 0: At that instant, the acceleration is in the 

x direction while the velocity is in the z direction, 

 _ = _ ex; = ez: 

The radiation electric eld can then be written down in terms of cartesian components, 

 E n ) _] 

_ 

  e + (1 cos )sin e ]; (8.46) 

 

Figure 8-2: Particle undergoing circular motion in the x z plane with radius and frequency !0: At t = 0; the 

particle passes the origin. and the angular distribution of radiation power is given by 

2 

 dP(t0) 1 e2 _ 1 

 d = 4"0 4c (1 cos )5  (1:

 (8.47) 

The total radiation power is 
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 cos )2  sin2 cos2 

(8.48) 

Relevant integrals are: 

: 

In highly relativistic case, the acceleration may be approximated by 

 : (8.49) 

Then, the radiation power in terms of the orbit radius is 

 : (8.50) 

To maintain the radiation loss in a circular accelerator at a tolerable level, the orbit radius must be 

increased as the particle energy mc2 increases. Note that the radiation power is a sensitive function of the 

particle energy in contrast to the case of linear acceleration. 

As an example, let us consider the Betatron, the well known inductive electron accelerator invented 

by Kerst. In the Betatron, the electron cyclotron orbit is maintained constant, 

mc2 

 = ecB (t) = ecB0 sin!t ’ ecB0!t; 

where only the initial phase of the sinusoidal magnetic eld is useful for acceleration, !t 1. Then the rate of 

electron energy gain is 

 const. 

Equating this to the radiation energy loss, 

we nd 
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  (8.51) 

where 

  (8.52) 

is the classical radius of electron. If = 50 cm, ! = 2 60 rad/s, and B0 = 0:5 T (5 kG), the upper limit of is about 

400 and the maximum electron energy attainable is approximately 200 MeV. 

8.5 Fourier Spectrum of Radiation Fields 

The formulae such as Eqs. (8.45) and (8.50) only tell us the total radiation power integrated over the 

frequency. Radiation eld emitted by highly relativistic particle is hardly monochromatic but cnsists of 

broad frequency spectrum. Knowing such frequency spectrum of radiation is of practical importance for 

identifying radiation source. A typical example is synchrotron radiation due to highly relativistic electrons 

bent by, or trapped in, a magnetic eld. In nonrelativistic limit, the radiation elds all have a single frequency 

component corresponding to the classical electron cyclotron frequency !c = eB=m: However, as the 

relativity factor increases, the radiation elds consist of harmonics of the fundamental frequency !c = eB= 

m. In highly relativistic case 1; the frequency spectrum becomes almost continuous peaking at the 

frequency ! ’ 3!c = 2eB=m: 

Frequency spectrum of the radiation electric eld can be formulated by directly applying Fourier 

transformation on the eld in Eq. (8.24), 

E 

(8.53) 

Changing the variable from t to t0 and assuming r rp; we obtain 

 E(r;!) = 4"1 0 ec ei!r=cr Z11 n [(n 2 ) _] exp i! t0 1cn rp(t0) dt0: (8.54) 

The unit vector n(t0) may be regarded constant since r rp and thus approximated by n ’ r=r: 

Then, n [(n ) _] d n (n ) 

 ; (8.55) 

 2 ’ dt0 

and Eq. (8.53) can be integrated by parts, 
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 E  n (n )exp i! t0 1cn rp(t0) dt0: (8.56) 

Any time derivatives contained in the physical electric eld are merely multiplied by i! in the Fourier space 

and the disappearance of the acceleration _ is not surprising. Amazing fact about Eq. (8.56) is that it is 

applicable to radiation elds which do not require particle acceleration such as Cherenkov and transition 

radiation provided a proper velocity of electromagnetic waves in dielectrics is substituted for c: 

 The radiation energy (not power) associated with the electric eld is 

 c"0r2 Z Z jE(r;t)j2 dtd ; (J). (8.57) 

However, since the electric eld E(r;t) and its Fourier transform E(r;!) are related through 

 Parseval s theorem:  (8.58) 

the radiation energy can be written in terms of the Fourier transform E(r;!) as 

  (8.59) 



 

 

The quantity 

  (8.60) 

can therefore be identi ed as the radiation energy per unit solid angle per unit frequency. Substituting Eq. 

(8.56), we nd 

  (n )exp  n  (8.61) 

or 

 n (n )exp  : (8.62) 

Let us work on a few examples. 

8.6 Synchrotron Radiation I 

Synchrotron radiation is due to highly relativistic electrons trapped in a magnetic eld. The radiation beam 

rotates together with an electron and is directed along the direction of the velocity with an angular spread 

of order ’ 1= 1: If the orbiting frequency is !0 = eB= me; the radiation beam shines a detector for a duration 

  (8.63) 

as seen by the electron at the retarded time t0. Since 

  n = 1  (8.64) 

which is entirely due to Doppler e⁄ect, the pulse width detected is of order 

 : (8.65) 

Therefore, synchrotron radiation is dominated by frequency components in the range 

 ! : (8.66) 

In ultrarelativistic case, the frequency spectrum of synchrotron radiation can extend to very high 

frequencies even for a modest magnetic eld. 

We calculate the amount of energy radiated in one period of cyclotron motion T = 2=!0: Since the 

radiation power is constant, the radiated energy is 
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  (8.67) 

The time integration in the energy spectrum, 

 n (n )exp  n  (8.68) 

can be extended from 1 to 1 since the characteristic frequency of the radiation eld is much higher than the 

fundamental frequency ! !0; 

2 

 n (n )exp n rp(t0) dt0 ; 0 < ! < 1:

 (8.69) 

To perform the integration, we assume the trajectory shown in Fig. (8-2) in which an electron passes the 

origin at t = 0: The vector n is assumed to be in the y z plane since the radiation pro le is essentially 

symmetric about the z axis. The trajectory is described by 

and the velocity is 

rp t0 = 1 cos!0t0 ex + sin!0tez ; (8.70) 

 : (8.71) 

Then, 

 : (8.72) 

Since 

 n (n ) = ? = sin!0tex + cos!0tsin e?; (8.73) 

where 

 e?= n ex; (8.74) 

is a unit vector perpendicular to both n and x axis, and the radiation lasts for a very short time and is limited 

within a small angle ; Eq. (8.73) reduces to 

 ? ’ !0tex + e?: (8.75) 

Within the same order of accuracy, the phase function !(t n rp=c) can be approximated by 
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! t n rp = ! t

 sin!0tcos c

 c 

  (8.76) 

where v has been approximated by c but 1 by 

 1 : 

Then, 

  (8.77) 

The integrals reduce to the modi ed Bessel functions of fractional orders (or the Airy s functions), 

(8.78) 

(8.79) 

where 

(8.80) 

Then 

 

and for I (!)=d ; we obtain 

 

where = and !^ is the normalized frequency, 
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 !  : (8.81) 

The modi ed Bessel functions K2=3 (x) and K1=3 (x) both diverge at x ! 0: However, xK2=3 (x) and xK1=3 (x) are 

well behaving and vanish at small x: Fig. (8-3) shows  and  

which represent radiation intensities associated with electric eld polarization along ex (that is, in the 

particle orbit plane) and e ; respectively. 

? 

The energy spectrum I (!) emitted during one revolution (T = 2=!0) can be found by inte- 

 

Figure 8-3:  (solid line) and  (dotted line). The factor of 2 in assumes ’ 1= 

: 

grating dI (!)=d over the solid angle, 

(8.82) 
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where 0 = 2 is the polar angle from the axis of electron revolution (y axis), 0 is the azimuthal angle about 

the y axis, and the function f (!^) is de ned by 

 

and shown in Fig. (8-4) (linear scale) and Fig. (8-5) (log-log scale). In Fig. (8-5), the straight line in the low 

frequency regime ! 3!0 has a slope of 1=3; and indicates I (!) _ !1=3: f (!^) peaks at !^ ’ 0:14; or ! ’ 0:42 3!0; 

and its peak value is about 0.83. In high frequency regime ! 3!0; the spectrum decays exponentially. The 

energy radiated per revolution can be calculated as 

 

 Figure 8-4: The function f (x) = f !=3 3!0 plotted in linear scale. 

 !; (8.84) 

where the integral numerically evaluated is approximately 

: 

Then 

 

and the radiation power is 

  (8.85) 

which agrees reasonably well with Eq. (8.50), 
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The discrepancy may be attributed to the various approximations made in the analysis. 

8.7 Synchrotron Radiation II 

An alternative approach to nding the frequency spectrum of synchrotron radiation is to apply discrete 

Fourier analysis in terms of harmonics of the fundamental frequency !0 directly to radiation 

 

Figure 8-5: Log-log plot of the function f (x) = f !=3 3!0 : 

elds. If a charge e is in circular motion with a constant angular frequency !0, the radiation eld contains 

higher harmonics of !0 and can be Fourier decomposed as follows. Let us recall the Lienard-Wiechert vector 

potential, 

 A(r;t) = 0 ev(t
0
) ; (8.86) 

 4 (1 n )R(t0) f(t0)=0 

where R = jr rp(t0)j and the subscript f(t0) = 0 indicates that all time dependent quantities should be 

evaluated at the retarded time t0 determined from the implicit equation for t0, 

 r r (t
0
) 

 f(t0) = t0 t + j 

The vector potential can be Fourier decomposed as 

: 
(8.87) 
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 A  (8.88) 

where 

  (8.89) 

with T = 2=!0 being the period of the circular motion. Changing the integration variable from t to t0 by noting 

  n ; (8.90) 

leads to 

  (8.91) 

where kl = l!0=c. Note that the period T remains unchanged through the transformation. Let the particle 

trajectory be 

rp(t0) = (cos!0t0ex + sin!0t0ey); (8.92) v(t0) = !0( sin!0t0ex + 

cos!0t0ey): (8.93) 

Since all radiation elds rotate with the charge, the observing point can be chosen at arbitrary azimuthal 

angle and we choose = =2; so that n = (1; ; = =2): Then 

 n rp(t0) = sin 

The velocity in the spherical coordinates is 

sin!0t0: (8.94) 

v(t0) = !0(sin cos!0t0er + cos 

Thus, the component of Al(r) is given by 

cos!0t0e + sin!0t0e ): (8.95) 

 : (8.96) 

Letting  and noting = !0=c; we can rewrite this as 

  (8.97) 

The integral reduces to 

 

and thus nally, 

 : (8.98) 
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Similarly, 

  (8.99) 

where use has been made of the recurrence formula of the Bessel functions,  

 Jl 1(x) Jl+1(x) = 2Jl0(x): (8.100) 



 

 

The far- eld radiation magnetic eld can be found from 

  (8.101) 

which yields 

  (8.102) 

  cotJl(l sin ): (8.103) 

The radiation power associated with the l-th harmonic is 

  (8.104) 

Since Pl = P l, the total power is 

  (8.105) 

where Pl is now 

 : (8.106) 

In nonrelativistic limit 1; the l = 1 term is dominant. For x 1; 

 : (8.107) 

Then the lowest order radiation power agrees with the Larmor s formula, 

  (8.108) 

where a = v2= is the acceleration. 

The integral in Eq. (8.105) cannot be reduced to elementary functions. However, the total power given 

in Eq. (8.105) should reduce to Eq. (8.50), 

 : (8.109) 

To show this, we modify the integral by noting 

  (8.110) 
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  (8.111) 

Then 

 

Furthermore, 

  (8.113) 

and the power Pl reduces to 

  (8.114) 

Noting 

  (8.115) 

and 

  (8.116) 

the power Pl can be rewritten as 

  (8.117) 

and the total power is 

: 

Relevant sum formula of the Bessel functions is 

 : (8.118) 

Di⁄erentiating by x; 
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 : (8.119) 

Also, 

 : (8.120) 

This is one of Kapteyn series formulae. (See for example, Mathematical Formulae (in Japanese), (Iwanami, 

Tokyo, 1960), vol. 3, p. 212.) Then, nally, the total radiation power becomes 

  (8.121) 

which is consistent with the known radiation power from a charge undergoing circular motion. 

Analytic expression for the radiation power Pl can be found by exploiting following approximation, 

  (8.122) 

where Ai(x) is the Airy function de ned by 

  (8.123) 

For large x 1; the function takes the form 

 : (8.124) 

Also, Ai0(0) = 0:4587: Using these approximations, we nd the following approximate formulae, 

(8.125) 

3 
 :

 (8.126) 

Note that the radiation power increases with l in the manner Pl _ l1=3 up to l ’ 3 beyond which Pl 

decays exponentially. This is consistent with the analysis in the preceding section. 

8.8 Free Electron Laser 

In a synchrotron radiation source, many beamlines can be installed by bending an electron beam. 

In straight sections of race track, no radiation occurs. However, by inserting a device called wiggler, 
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Figure 8-6: In a wiggler, an electron beam is modulated by a periodic magnetic eld. Electrons acquire 

spatially oscillating perpendicular displacement x(z) and velocity vx(z) which together with the radiation 

magnetic eld BRy produces a ponderomotive force vx(z) BRy(z) directed in the z direction. The force acts 

to cause electron bunching required for ampli cation of coherent radiation. 

high intensity radiation can be extracted. A wiggler consists of periodically alternating magnets and gives 

an electron beam periodic kick perpendicular to both the beam velocity and magnetic eld. Electrons 

receive kicks at an interval 

  (8.127) 

where w is the wavelength of the periodic wiggler structure. Because of Doppler shift, this time 

1 ’ 2 for a stationary 

detector in front of the beam, interval is shortened by a factor 2 

1 

 : (8.128) 

Therefore, the wavelength of resultant radiation is approximately given by 

  (8.129) 

and the frequency by 

 ! : (8.130) 

The intensity of free electron laser can be orders of magnitude higher than that of synchrotron radiation 

because of coherent ampli cation through the periodic structure. Electrons tend to be bunched in the 

wiggler as the electron beam travels through the periodic structure. In contrast, no collective interaction 

between electrons and electromagnetic waves exists in synchrotron radiation. In electron bunching, the 

magnetic ponderomotive force plays a major role. Let us assume a periodic wiggler magnetic eld in y 

direction, 
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 : (8.131) 

The Lorentz force is 

 F = ev B; 

or 

 Fx = evzB0 coskwz: 

Then electron acquires a velocity vx in x direction, 

  (8.132) 

and a resultant ponderomotive force is   

evx BR; (8.133) 

where BR is the radiation magnetic eld propagating in the form ei(kz !t) along the beam. Since the 

acceleration due to the wiggler magnetic eld is in x direction, the radiation electric eld is predominantly 

in x direction and radiation magnetic eld BR is in y direction. Then the ponderomotive force directed in z 

direction is proportional to ei[(k+kw)z !t] and propagates at a velocity 

: 

When this propagation velocity matches the electron beam velocity c, strong interaction between the 

radiation eld and electron motion takes place and electrons tend to be bunched. This results in positive 

feedback for wave ampli cation. From the condition 

 or  

we readily recover 

 k = kw ’ 2 2kw: 

1 

8.9 Radiation Accompanying Decay 

Equation (8.61) for the angular distribution of radiation energy can be applied to cases in which particle 

acceleration is not involved explicitly. In decay, an energetic electron (or positron) is suddenly released 

from a nucleus together with neutrino. The situation is equivalent to sudden acceleration of an electron. 

The duration of acceleration t is limited by the uncertainty principle t mc2 &~: Therefore, the upper limit 

of the frequency spectrum should be of the order of 

 ! : (8.134) 
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In decay, the maximum value of is of order of 30. 

Let us assume that an electron suddenly acquires a velocity = v=c and then travels at a constant 

velocity. The integration in Eq. (8.61) is limited from t = 0 to 1; 

  (8.135) 

where is the angle between the velocity and the unit vector n: Integration over the solid angle 

yields 2 

  2 = const. ; !

 : (8.136) 

The frequency spectrum is at up to !max: Therefore, the total energy radiated through decay is 

approximately given by 

   (8.137) 

where the dimensionless quantity , 

  (8.138) 

is the ne structure constant. The energy emitted as radiation through decay is a small fraction of the 

electron energy. 

8.10 Cherenkov Radiation 

Cherenkov radiation occurs when a charged particle travels faster than electromagnetic waves in a 

material medium. It does not require acceleration of charges and the basic mechanism is very similar to 

that of sound shock waves in gases. As in the case of decay, we assume a charge travelling along a straight 

line at a velocity = v=c(!); where 

 
is the velocity of electromagnetic waves in a dielectric having a permittivity "(!): Eq. (8.61) should be modi 

ed as follows after taking into account the proper de nition of c(!); 

  : (8.139) 

Note that the integration limits are from 1 to 1: The time integral is singular, 
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  cos )]; 

and the condition for radiation is   

or 

cos 1 

=  < 1; 

 : (8.140) 

Then, 

  cos )]: (8.141) 

Square of a delta function is not integrable and the radiation energy simply diverges. This is merely due to 

the assumption that the charge is radiating forever from t = 1 to 1 which is of course unphysical. It is more 

appropriate to consider a radiation power rather than energy. For this purpose, we consider a thin slab of 

the dielectric of thickness dz. The transit time over the distance dz is T = dz=v and we calculate energy 

radiated during that time, 

  : (8.142) 

The integral can be carried out easily, 

   : 

Thus 

  (8.143) 

where 

 = (1 cos )! T: (8.144) 

In high frequency regime ! T 1; the function (sin=)2 may be approximated by a delta function ( ): 

Integration over the solid angle yields 

 
 (8.145) 

where c0 = 1=p"0 0 is the speed of light in vacuum. The rate of energy loss due to Cherenkov emission is 

given by 
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 : (8.146) 

The result obtained is meaningful only if 

 > 1; or  (8.147) 

which is the condition for Cherenkov radiation. The instantaneous radiation power can be estimated from 

  (8.148) 

In order to nd the eld pro les emitted through Cherenkov radiation, we start from the wave 

equations for the potentials in a material medium, 

  free; (8.149) 

  A(r;t) = 0J; (8.150) 

where ~" is the dielectric operator containing time derivative, 

  : (8.151) 

For a charged particle e travelling at a constant velocity v; the charge density and current density are 

described by 

= e (r vt); (8.152) 

J = ev (r vt): (8.153) 

Then, after Fourier-Laplace transformation, the Fourier potentials can readily be found, 

 ! k v); (8.154) 

 A ! k v); (8.155) 

where, as before, 

  (8.156) 

and the transformation 
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 ! k v); (8.157) 

is substituted. Since the physical electric eld is 

 E  (8.158) 

the Fourier component of the electric eld is given by 

E  

 k c 2 ! v 

 ! k v):

 (8.159) 

Similarly, the Fourier-Laplace component of the magnetic 

 B(k;!) = ik A(k;!) 

eld is 

 k v 

 ! k v): (8.160) 

The physical electromagnetic elds can then be found through inverse transformations, 

 E(r;t) = (2 1)4 Z d3k Z d!E(k;!)ei(kr !t); (8.161) 

 B(r;t) = (2 1)4 Z d3k Z d!B(k;!)ei(kr !t): (8.162) 

To proceed further, we assume that the charged particle is travelling along the z axis at a constant 

velocity v: The system is symmetric about the axis and we may assume an observing point in the x z plane 

without loss of generality. We denote the cylindrical coordinates of the 
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Figure 8-7: Geometry for Fourier inverse transform. 

observing point by (; = 0; z) and spherical Fourier coordinates by k =(k; ; ): Then, 

 k r = k(z cos + sin cos ): 

Because of the cylindrical symmetry, radiation of energy is expected in the radial direction ; and the 

relevant Poynting vector is 

 S = (E H ) 

 = Ez(r;t)H (r;t): (8.163) 

The energy radiated per unit length along the particle trajectory (z axis) can be calculated from 

 = (8.164) 

where Ez(r;!) is the Laplace transform of the electric eld,  

1 

 Ez(r;!) = 3 Z d3kEz(k;!)eikr; 

(2 ) 

and H (r;!) is the Laplace transform of the magnetic eld, 

(8.165) 

 : (8.166) 



 

 

The Laplace transform of the axial electric eld Ez(r;!) can be calculated as follows: 

 

where 

 : (8.168) 

Letting 

  (8.169) 

we nally obtain 

 

 ( );

 (8.170) 

where 

(8.171) 

and use is made of the integral representation of the modi ed Bessel function K0(ax); 

  (8.172) 

In the asymptotic regime j j 1; K0( ) approaches 

 e :

 (8.173) 

2 

For this to be propagating radially outward in the form eik ; we must choose 

r 
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 : (8.174) 

With this choice for ; the Laplace transform of the axial electric eld becomes proportional to 

  (8.175) 

and the radial and axial wavenumbers can be identi ed as 

  (8.176) 

respectively. Cherenkov radiation is con ned in a cone characterized by an angle ; 

  (8.177) 

as shown in Fig. 8-8. 

 

Figure 8-8: Cherenkov cone. Radiation elds are con ned in the cone. 

The Laplace transform of the azimuthal magnetic eld is given by 
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  (8.178) 

where the following integral 

  (8.179) 

is noted. (Calculation steps are left for an exercise.) Substituting Ez(r;!) and H (r;!) into Eq. (8.164), we nd 

  (8.180) 

In the asymptotic region j j 1; this reduces to 

  (8.181) 

in agreement with the earlier result, Eq. (8.146). Eq. (8.180) can be used even when Cherenkov condition 

is not satis ed. In this case, energy loss is through near eld Coulomb interaction between a charged particle 

and ions and electrons in molecules in the dielectric media. We will return to this problem in Section 8.12. 

8.11 Transition Radiation 

Transition radiation occurs when a charge crosses a boundary of two dielectric media. No acceleration is 

required, nor is it necessary for charge to move faster than the speed of light as in Cherenkov radiation. 

In this respect, transition radiation is a least demanding radiation mechanism. Radiation emitted from a 

charge approaching a conductor is an extreme case of transition radiation with an in nite permittivity, and 

may be regarded as the inverse process of radiation accompanying decay. Disappearance, rather than 

creation, of charge is responsible for transition radiation. 

We rst consider a simple case: a charge e approaching normally a conducting plate at a velocity v (> 

0). On impact, the charge is assumed to come to rest. A conducting plate is mathematically equivalent to 

an in nitely permissive dielectric plate. An image charge e moving in the opposite direction in the 

conducting plate can be introduced so that the current density is 

 Jz(r;t) = ev [ (z + vt) + (z vt)] (x) (y); 1 < t < 0; 

where at t = 0 (or z = 0) the particle is brought to rest. Its Laplace transform is 

(8.182) 

 : (8.183) 
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Let the observing point be at P located at (r; ): (The system is symmetric about the axis and thus 

 

Figure 8-9: Radiation from a charge impinging on a metal surface. Sudden deceleration at the metal 

surface is the inverse process of radiation accompanying beta decay. 

is ignorable.) The vector potential at P can be calculated in the usual manner, 

r0dV 0 

and the magnetic eld from 

 : (8.185) 

The angular distribution of radiation energy is thus given by 
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 : (8.186) 

Integration over the solid angle in the region z > 0 (0 < < =2) yields 

: 

Evidently, the radiation energy  diverges. This is due to the assumption of a perfect conductor. 

In practice, metals cannot be regarded as perfect conductor. The condition that the surface impedance of 

metal 

 

 
be su¢ ciently small compared with the free space impedance Z0 = p 0="0 imposes an upper limit of the 

frequency, !"0 and a cuto⁄ emerges in the integral  

 

Figure 8-10: Transition radiation emitted by a charge passing through a dielectric boundary. 

We now analyze the case of a dielectric slab having a relative permittivity "r = "="0: In this case, the 

particle continues to travel after passing the boundary and the current density is now 
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 Jz(r;t) = ev (x) (y) (z + vt); 1 < t < 1: (8.187) 

Its Laplace transform is 

 : (8.188) 

The contribution to the radiation elds from the region z > 0 consists of two parts, one directly from the 

charge (as in free space) and the other via re ection at the dielectric boundary. Denoting the magnetic re 

ection coe¢ cient by in the Fresnel s formulae, 

  (8.189) 

and following the same procedure as in the case of conductor plate, we nd 

 : (8.190) 

The contribution from the region z < 0 involves refraction at the boundary, and thus additional retardation 

because of the longer path length. In Fig.8-10, for z < 0, we observe 

 

and thus 

 kl + pkl  0 = kr kzp sin 2: (8.191) 

Then the contribution from the region z < 0 to the integral becomes 

  (8.192) 

Note that the factor 1 here indicates the eld amplitude transmitted into the air region. The total magnetic 

eld is H 1 + H 2; and the angular distribution of the radiation energy is given by 

  (8.193) 

where 

 : (8.194) 

In the case of ideal conductor "r ! 1; = 1; we recover 
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 . 

When "r = 1; = 0; radiation evidently disappears. 

The factor A in Eq. (8.194) does not fully agree with that in the original work by Frank and Ginzburg, 

  (8.195) 

although this too vanishes when "r ! 1 and reduces to the case of conducting medium when "r ! 1: 

8.12 Energy Loss of Charged Particles Moving in Dielectrics 

The formula derived in Eq. (8.180) yields a physically meaning energy loss rate even when the 

Cherenkov condition is not satis ed, < 1: A charged particle moving in a dielectric medium collides with 

atoms and lose its energy through Coulomb interaction with electrons in atoms. Electrons in an atom are 

bounded. However, they do respond to electromagnetic disturbance and absorb energy through the 

resonance "(!) = 0, where 

  : (8.196) 

Resonance of the type 

  (8.197) 

can be handled mathematically by introducing an imaginary part, 

  (8.198) 

where P stands for the principal part. This is justi able because the imaginary part of the function 

 (8.199) 

remains nite even in the limit " ! 0; 

  : (8.200) 

Physically, the resonance leads to absorption of wave energy by charged particles in a material medium 

dielectrics, plasmas, etc. 

The characteristic scale length of interaction between a charged particle and atoms in a dielectric is 

evidently of the order of atomic size which indicates that the interaction is of near- eld, nonradiating 

nature dominated by longitudinal (electrostatic) elds. As we will see, the major contribution to the energy 

loss occurs through the pole of the dielectric function, "(!) = 0: 

In the near- eld region 1; the modi ed Bessel functions K0( );K1( ) may be approximated by 
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(8.201) 

(8.202) 

where E = 0:5772 is the Euler s constant. The real part of Eq. (8.180) becomes 

  (8.203) 

with 

 : (8.204) 

The dielectric function "(!) is in the form 

 : 

Therefore, the integration can be carried out by evaluating the pole contribution at "(!) = 0; which occurs 

at 

 !  (8.205) 

and exploiting Plemelj s formula, 

! 

where P indicates the principal part of the singular function 1=(x a): The result is 

  : (8.206) 

As the minimum distance ; the intermolecular distance may be substituted because the shell electrons 

e⁄ectively shield the electric eld of the charge well inside the atom. 

In a plasma, !0 is evidently zero (because electrons in a plasma are free). Then, 

  (8.207) 

where 

 

is the average distance between ions. For a Maxwellian electron distribution with a temperature Te; the 

average energy loss rate may be estimated from 
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  (8.208) 

where 

  (8.209) 

is the Debye shielding length. 

8.13 Bremsstrahlung 

Whenever a charged particle collides with another charged particle, electromagnetic radiation occurs due 

to acceleration by Coulomb force. Collisions between like particles (e.g., electron-electron) emit 

quadrupole radiation while collisions between unlike particles (e.g., electron-ion) emit dipole radiation. 

Bremsstrahlung is due to collisions between electrons and ions and provides a basic mechanism for x-ray 

production. 

Let an electron approach an ion having a charge Ze with a velocity v ( c) and impact parameter b: The 

acceleration due to Coulomb force is of the order of 

  (8.210) 

and consequent radiation power can be estimated from the Larmor s formula, 

 : (8.211) 

The total energy radiated can in principle be found by integrating the power over time along the electron 

trajectory. However, in experiments, one is seldom interested in measuring radiation power or energy 

associated with a single electron. What is more relevant is the radiation associated with a beam of 

electrons impinging on an ion. In this case, some electrons have impact parameters vanishingly small. 

However, the impact parameter has a lower bound imposed by the uncertainty principle, 

  (8.212) 

where p is the electron momentum. For an impact parameter b; the time duration in which the 

acceleration is signi cant is 

 : (8.213) 

Therefore, energy radiated by a single electron is 

 : (8.214) 

For an electron beam having a density n; the radiation power can thus be estimated from 
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  :

 (8.215) 

If the ion density is ni; the quantity Pni de nes the power density, 

  (W/m3): (8.216) 

The frequency spectrum of radiation energy may qualitatively be found as follows. Since the 

characteristic time of acceleration 

  (8.217) 

is short, radiation occurs as an impulse and the spectrum is at in the region 0 < ! < v=b; and vanishes for ! 

> v=b: Since the minimum impact parameter is 

  (8.218) 

the upper limit of the frequency spectrum extends to 

 !  or ~! . mv2: (8.219) 

This is essentially a statement of energy conservation, that is, the maximum photon energy emitted during 

bremsstrahlung is limited by the incident electron kinetic energy, which is reasonable. Therefore, the 

frequency spectrum of bremsstrahlung is 

  (8.220) 

I(!;b) has dimensions of J/frequency. It is convenient to introduce a radiation cross-section (!) de 

ned by 

  : (8.221) 

The integral over the frequency,    
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 Z 
(!)d!; (8.222) 

evidently diverges at the lower end ! ! 0. To remedy this di¢ culty, Bethe and Heitler recognized that if 

the velocity v is understood as the mean value of the initial and nal velocities, i.e., before and after 

emission of a photon, 

initial + vnal) 

  (8.223) 

the integral remains nite, 

  (8.224) 

The integral in the intermediate step is unity. Multiplying by the ion density ni; we thus obtain the 

bremsstrahlung rate per unit length, 

  (8.225) 

and radiation power density, 

  (W m 3): (8.226) 

This agrees with the earlier qualitative estimate in Eq. (8.216). 

Relativistic correction to the classical bremsstrahlung formulae can be readily found if we move 

to the electron frame wherein the electron velocity is nonrelativistic. Since the energy and frequency are 

Lorentz transformed in the same manner, and the transverse dimensions are Lorentz invariant, it follows 

that the radiation cross-section (!) is Lorentz invariant, 

 lab(!lab) = 0(!0); 

where the primed quantities are those in the electron frame. The frequencies !lab and !0 are related through 

the relativistic Doppler shift, 
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 !0 = !lab(1 cos ); !lab = !0(1 + cos 0); (8.227) 

where and 0 are the angles with respect to the electron velocity in each frame. Since in the electron frame, 

the radiation is con ned in a small angle about 0 = =2; we have 

 !0 ’ !lab : (8.228) 

The collision time is shortened by the factor since the transverse eld is intensi ed by the same factor 

through Lorentz transformation. Therefore, the maximum impact parameter is modi ed as 

  (8.229) 
lab 

and the radiation cross-section in the laboratory frame becomes 

  : (8.230) 

It is noted that the minimum impact parameter remains unchanged through the transformation because 

it is essentially the Compton length based on the uncertainty principle. 

8.14 Radiation due to Electron-Electron Collision 

In this case the dipole radiation is absent because in the center of mass frame, two electrons stay at 

opposite positions, r1 = r2; and the dipole moment identically vanishes.. The lowest order radiation 

process is that due to electric quadrupole. (The magnetic dipole moment also vanishes.) The quadrupole 

moment tensor is 

  (8.231) 

where xi is the i-th component of the relative distance 2r: In Chapter 5, a general formula for the 

quadrupole radiation power has been derived. Noting 

  (8.232) 
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Figure 8-11: Colliding electrons in the center of mass frame. The impact parameter is b: 

(8.233) 

(8.234) 

we nd 

(8.235) 

(8.236) 

Substituting this into the quadrupole radiation power, 

  (8.237) 

we obtain, after somewhat lengthy calculations, 

  (8.238) 

where v is the component of the velocity related to the initial angular momentum bv0 = r(t)v (t) with v0 

the velocity at r ! 1: Energy conservation reads 

 : (8.239) 

Then 

  (8.240) 
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and the total radiation energy can be found by integrating the radiation power over time along the 

trajectory, 

  (8.241) 

This can be converted to an integral over the distance r by noting 

  (8.242) 

  (J)

 (8.243) 

where rmin is the distance of the closest approach, 

  : (8.244) 

However, the radiation energy by a single electron pair is of no practical interest. What is more relevant 

is the radiation power emitted by an electron beam impinging on a single electron which can be evaluated 

from 

 

The double integral reduces to 

  (8.246) 

Therefore, 

 (W). (8.247) 

This de nes a radiation cross-section, 
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  (8.248) 

where  is the energy ux density of the beam and 

 

is the classical radius of electron.
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