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 Two-Dimensional Collisions in Center-of-Mass Reference Frame  
  

15.7.1 Two-Dimensional Collision in Center-of-Mass Reference Frame  

  

Consider the elastic collision between two particles in the laboratory reference frame  

(Figure 15.9). Particle  1  
of mass 

 m1  is initially moving with 
velocity 

 
v 
1, i and collides  

elastically with a particle particle  1  moves with velocity  2  of mass  
v

1, f  m2  that is 

initially at rest. After the collision the   . In section  

    and particle  2  moves with velocity  v2, f  

15.7.1 we determined how to find  
v

1, f ,  
v

2, f , and  θ2, f  in terms of  
v

1, i  and  θ2, f . We shall 

now analyze the collision in the center-of-mass reference frame, which is boosted form the 

laboratory frame by the velocity of center-of-mass given by  

  

 

 


=  m1 1, v i .  (15.5.36)    

  
v

cm  m1 + m2  

  
  

Because we assumed that there are no external forces acting on the system, the center-ofmass 

velocity remains constant during the interaction.   
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Figure 15.13 Two-dimensional elastic collision in center-of-mass reference frame  

  

Recall the velocities of particles  1  and  2  in the center-of-mass frame are given by 

(Eq.,(15.2.9) and (15.2.10)). In the center-of-mass reference frame the velocities of the two 

incoming particles are in opposite directions, as are the velocities of the two outgoing 

particles after the collision (Figure 15.13). The angle  Θ cm  between the incoming and 

outgoing velocities is called the center-of-mass scattering angle.   

  

  

  

  

15.7.2 Scattering in the Center-of-Mass Reference Frame  

  

Consider a collision between particle  1  of mass m1  and velocity  
v
1,i  and particle  2  of 

mass m2  at rest in the laboratory frame. Particle 1 is scattered elastically through a 

scattering angle Θ  in the center-of-mass frame. The center-of-mass velocity is given by  

  

 

 
 

= m1v 1,i .  (15.5.37)  

   
v 

cm  m1 + m2  

  

In the center-of-mass frame, the momentum of the system of two particles is zero   
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  0 = m1v1′ , i + m2v′2 ,i = m1v 1′ , f + m2v′2 , f  .  

  
Therefore   

  v 1′ , i = − m2 v ′2 ,i .  

 m1  

   v 1′ , f = − mm12  v ′2 , f   

  

The energy condition in the center-of-mass frame is   

  

1 

   m1v1′,  2i + 12  m2v2′ , 2i = 12 m1v1′,  2f + 12  m2v2′ , 2f .  

2 

  

Substituting Eqs. (15.5.39) and (15.5.40) into Eq. (15.5.41) yields  

   v1′,  i = v1′,  f .  

  

  

(we are only considering magnitudes). Therefore  

  

  v2′ , i = v2′ , f .  

(15.5.3

8)  

(15.5.3

9)  
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Because the magnitude of the velocity of a particle in the center-of-mass reference frame 

is proportional to the relative velocity of the two particles, Eqs. (15.5.42) and (15.5.43) 

imply that the magnitude of the relative velocity also does not change   

  

   v 1′ , 2, i = v 1′ , 2, f ,  (15.5.44)  

 
  

verifying our earlier result that for an elastic collision the relative speed remains the same, 

(Eq. (15.2.20)). However the direction of the relative velocity is rotated by the center-of-

mass scattering angle  Θ cm . This generalizes the energy-momentum principle to two 

dimensions. Recall that the relative velocity is independent of the reference frame,  

  

   v1, i − v 2, i = v1′ , i − v ′2 , i    (15.5.45)  

 In the laboratory reference frame  v2,i = 0  , hence the initial relative velocity is v′ , 2, i = 

v1, 2, i = v 1, i , and the velocities in the center-of-mass frame of the particles are then  

1 

  
  

 ′ , i = mµ1  v 1, i   (15.5.46)   v1 

  

  v ′2 , i = − mµ2  v 1, i  . 

 (15.5.47)  

  
  

Therefore the magnitudes of the final velocities in the center-of-mass frame are  

  

  v1′,  f = =v1′,  i mµ1 v1′, 2,  i = mµ1 v1, 2, i = mµ1 v1, i .  (15.5.48)  
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= v′ = µ v′ = µ v = µ v .  (15.5.49)   v′  

  2, f 2, i m2  1, 2, i m2  1, 2, i m2  1, i  

  

  

Example 15.8 Scattering in the Lab and CM Frames  

  

 

Particle  1  of mass m1  and velocity  v1,i  by a particle of mass  m2  at rest in the laboratory 

frame is scattered elastically through a scattering angle Θ  in the center of mass frame, 

(Figure 15.14). Find (i) the scattering angle of the incoming particle in the laboratory frame, 

(ii) the magnitude of the final velocity of the incoming particle in the laboratory reference 

frame, and (iii) the fractional loss of kinetic energy of the incoming particle.  

 2, f          

  

Figure 15.14 Scattering in the laboratory and center-of-mass reference frames  

  

  

Solution:   

  

i) In order to determine the center-of-mass scattering angle we use the transformation law for 

velocities   

   v1′ , f = v 1, f − v  cm  .  (15.5.50)  

  

 In Figure 15.15 we show the collision in the center-of-mass frame along with the laboratory 

frame final velocities and scattering angles.   
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Figure 15.15 Final velocities of colliding particles  

  

Vector decomposition of Eq. (15.5.50) yields    

  

  v1, f cosθ1, i = v1′,  f cosΘcm − v cm ,  

  

  v1, f sinθ1, i = v1′,  f sinΘ cm  .  

(15.5.51)  

(15.5.52)  

  

 where we choose as our directions the horizontal and vertical Divide Eq. (15.5.52) by 

(15.5.51) yields  

 v sinθ v′ sinΘ 

   v1′,  i cosΘcm − v cm  

  

We now substitute Eqs. (15.5.48) and  v cm = m1v1, i / (m1 + m2 )  into Eq. (15.5.54) yielding  

  

  tanθ1, i = v11, , f f cosθ11, , i i = v1′,  f cos1, f Θcm −cm  v cm    

  

  

Because v1′,  i = v1′,  f , we can rewrite Eq. (15.5.53) as  

   

v′ sinΘ  

  tanθ1, i = 1, i  cm     

(15.5.53)  

(15.5.54)  
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m sinΘ 

   tanθ1, i = cosΘ2 cm  − m 1cm / m2  .  

  

Thus in the laboratory frame particle  1  scatters by an angle   

  

  θ1, i = tan−1 ⎝⎜  cosmΘ2 cm  

sin− Θm 1cm / m2 ⎞⎟⎠   . ⎛ 

  

  

ii) We can calculate the square of the final velocity in the laboratory frame   

  

(15.5.5

5)  

(15.5.5

6)  

  
v

  

1, f )  . (15.5.57)   which becomes  

  

   v1, f  vcm 2 .  (15.5.58)  

  

We use the fact that  v1′,  f = =v1′,  i  (µ / m1)v1,2, i = (µ / m1)v1, i = (m2 / m1 + m2 )v1, i  to rewrite Eq. 

(15.5.58) as  

  

 2 = ⎛⎜ m+2 m 2 ⎞⎠⎟ 2 v1, i 2 + 2 (m1m m1 

+2 mm12 )2 v1, i cosΘ cm + (m1 m+1 m2 
2 )2 v1, i 2  . (15.5.59)   v1, f  

⎝ 

Thus   

(m22 + 2m2m1 cosΘ cm + m12 )1/2  

  v1, f = m1 + m2  v1, i . 

 (15.5.60)  

  

  

(iii) The fractional change in the kinetic energy of particle  1  in the laboratory frame is given 

by  
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  K1, f − K1, i = v1, f 2 − v1, i2 = m 2 + 2m m cosΘ + m12 −1 = 

2m2m1(cosΘ cm −1)  .(15.5.61)  

    K1, i v1, i  1  m2 ) (m1 + m2 )2 

 2  (m + 

  

We can also determine the scattering angle  Θ cm  in the center-of-mass reference frame from 

the scattering angle  θ1, i  of particle  1  in the laboratory. We now rewrite the momentum 

relations as   

  v1, f cosθ1, i + v cm = v1′,  f cosΘ cm , (15.5.62)   v1, f sinθ1, i = v1′,  f sinΘ cm  . (15.5.63)  

  

In a similar fashion to the above argument, we have that  

  

    

v1, f sinθ1, f 

   tanΘ cm = v1, f cosθ1, f + v cm .  (15.5.64)  

  

Recall from our analysis of the collision in the laboratory frame that if we specify one of 

the four parameters  v1, f 
, 

 v2, f 
, 

 θ1, f 
, or 

 v1, f , then we can solve for the other three in terms 

of the initial parameters  
v

1, i and  
v

2, i . With that caveat, we can use Eq. (15.5.64) to 

determine  Θ cm .  



 

 

 


