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1 Introduction 

1 Introduction 
Conservation laws and symmetries have always been of considerable interest in 

science. They are important in the formulation and investigation of many 

mathematical models. They were used, e.g. for proving global existence theorems 

[1]–[3], in problems of stability [4], [5], in elasticity for studying cracks and 

dislocations [6], [7], in astrophysics [8]–[10], in designing new radio antennas [11] 

and so on (see also [12]). 
Let us look at the use of symmetries and conservation laws, e.g. in celestial 

mechanics. In 1609, J. Kepler formulated two important laws known as Kepler’s 

first and second laws. His first law states that the orbit of a planet is an ellipse with 

the Sun as its focus. The second law says that if we join the Sun and a planet by a 

straight line, the line will sweep out equal areas at equal times. 
What was important in these discoveries is that Kepler explained how the 

planets moved. The next step, the explanation why they moved in such a way, was 

given by I. Newton [13] in 1687. He formulated his law of gravity: 

  , (1.1) 

where F is the force of gravity between two particles, G is a gravitational constant, 

m1 and m2 are the masses of the particles and r is the distance between them. At 

the beginning Newton tried to use a formula with r3 instead of r2. However, he 

found out that it was not fruitful. When Newton used the force of gravity (1.1) in 

his second law of motion, he obtained that planets moved in ellipses. It proved to 

him that he was on the right track. Thus, his way of discovery was by trial and 

error. 
P.–S. Laplace showed that planets’ movement along ellipses followed from the 

conservation law calculated by him, i.e. the conservation law for the vector (see 

[14], Vol.1, Book II, Chap. III, Section 18): 

A = v × M + μ
x  

, (1.2) r 

where v is the velocity of a planet, M = m(x×v) is the angular momentum, m is the 

planet’s mass, x is a position-vector of the planet and r is the magnitude of x. 

Laplace used the formal definition of a conservation law for calculation of this 

conserved vector. 

In 1983, N. H. Ibragimov [15] showed that it was possible to calculate the vector 

(1.2) by using a certain symmetry of the Newton gravitational field, a Lie-

Bäcklund symmetry. This symmetry is more complicated than, e.g. rotations, it 
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depends not only on the position vector x but also on the velocity v. Thus, the idea 

of symmetry and the corresponding conservation law helps to explain the 

movement of planets in ellipses. 
Kepler’s second law, the conservation of areas, follows from the conservation 

of angular momentum. This was established [16] independently by L. Euler and 

D. Bernoulli. The angular momentum corresponds to the cental symmetry of 

Newton’s gravitational field. 

2 Conservation laws 

There are several ideas for constructing conservation laws. One of them is to use 

the direct method, when a conservation law for a differential equation is derived 

by using its definition. As mentioned earlier, Laplace was the first one who used 

this idea in 1798. 
Another idea, that certain conservation laws for differential equations obtained 

from a variational principle could appear from their symmetries, followed from 

the works of Jacobi, Klein and Noether. In 1884, Jacobi [17] showed a connection 

between conserved quantities and symmetries of the equations of a particle’s 

motion in classical mechanics. Similar result was obtained by Klein [18] for the 

equations of the general relativity. Klein predicted that a connection between 

conservation laws and symmetries could be found for any differential equation 

obtained from a variational principle. He suggested to Emmy Noether to 

investigate the possibility. She showed [19] in 1918 that the conservation laws 

were associated with invariance of variational integrals with respect to continuous 

transformation groups. Noether obtained the sufficient condition for existence of 

conservation laws. However, there are no explicit expressions for resulting 

conservation laws in Noether’s work. In 1921, following Noether’s oral remark, 

Bessel-Hagen [20] applied Noether’s theorem with the so-called "divergence" 

condition to the Maxwell equations and calculated their conservations laws. 
In 1951, Hill wrote a remarkable review paper [21] where he discussed 

Noether’s theorem and presented the explicit formula for conservation laws in the 

case of a first-order Lagrangian. The formula is written in terms of variations (see 

[21], Eq. (43)). In 1969, inspired by Hill’s article, Ibragimov [22] proved the 

generalized version of Noether’s theorem. In this theorem conservations laws are 

related to the invariance of the extremal values of variational integrals. He derived 

the necessary and sufficient condition for existence of conservation laws. He also 

presented the explicit expressions for calculating conservation laws in the case of 

a Lagrangian of any order. On the basis of these theorems many conservations 

laws for differential equations having a Lagrangian were calculated (see collected 

examples in 
[23]–[25]). 
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2.1 Concept of a conservation law 

Let us consider an ordinary differential equation 

 F(t,q,q,˙ q¨) = 0 (2.1) 

describing a motion of a dynamical system. Here t is time, q = (q1,...,qs) are the 

position coordinates, q = q(t), and v = q˙ ≡ dqdt is the velocity, 

. 
2 Conservation laws 

Definition 2.1. A function C = C(t,q,v) is called a conserved quantity for Eq. (2.1) if 

  (2.2) 
on every solution of Eq. (2.1). 

In other words, the conserved quantity C(t,q,v) is constant on each trajectory q 

= q(t) and therefore is called a constant of motion. In classical mechanics Eq. 

(2.1) has the form 

 mx¨ = 0 (2.3) 

and describes a free motion of a particle with the mass m and a position vector x = 

(x1,x2,x3). The equation has several conserved quantities, e.g. the energy

 and the linear momentum p = mv. 
Let us now consider a partial differential equation of p-th order 

 F(x,u,u(1),u(2),...,u(p)) = 0 (2.4) 

where the function F depends on n independent variables x, x = (x1,...,xn), m 

dependent variables u, u = (u1,...,um), and the first, second, ..., p-th order derivatives 

of u with respect to x denoted as u(1) = {uαi }, u(2) = 

respectively, α = 1,...,m and other indices 

change from 1 to n. 

Definition 2.2. A vector C = (C1,C2,...,Cn) where 

 Ci = Ci(x,u,u(1),...), i = 1,...,n, 

is called a conserved vector for Eq. (2.4) if 
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 divC = 0 (2.5) 

on every solution of Eq. (2.4). We can also say that Eq. (2.5) is a conservation law 

for Eq. (2.4). 

A conservation law for a system of partial differential equations can be defined 

similarly. 

Instead of dealing with functions uα = uα(x) and their derivatives, which are also 

functions of x, one can treat all variables, x,u and derivatives of u, as independent 

variables, called differential variables. Variables with the same set of subscripts 

will be symmetric, for example uij = uji and so on. Using the idea of differential 

variables [26] one can reformulate the definition of a conservation law by 

introducing the operator of total differentiation with respect to xi: 

  (2.6) 

where the usual convention of summation over repeated upper and lower indices is 

used. Hence 

 div  (2.7) 

where the notation  means that the relation holds on any solution of Eq. (2.4). 

If one of the variables, for example x1, is time t then the component C1 is called the 

density of the conservation law. 

Remark 2.1. In practical calculations the conservation law (2.7) can be rewritten to 

an equivalent form. If 

. 

then one obtains the following conservation law: 

 

where 

because  

I have used this in my calculations of conservation laws. 
By employing differential variables one can also rewrite Eq. (2.2) in the 

following form: 

 . (2.8) 
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Thus, conserved quantities and conserved 

vectors can be computed with the help of 

Eq. (2.8) and Eq. (2.7), respectively (see, e.g. [27]–[31]). 

2.2 Hamilton’s principle and the Euler-Lagrange equations 

Consider again a motion of a dynamical system with a kinetic energy T(t,q,q˙) and 

a potential energy U(t,q). The function 

L(t,q,v) = T(t,q,q˙) − U(t,q) 

is called the Lagrangian of the system. 
Hamilton’s principle, or the principle of least action, states that the true motion 

of the system between two chosen times t1 and t2 is described by the fact that the 

trajectories of the particles provide an extremum of the action functional 

  (2.9) 

This requirement is equivalent to the statement that the Euler-Lagrange equations: 

  (2.10) 

hold. They give a necessary condition for g(t) to provide an extremum of the 

integral (2.9). 
2 Conservation laws 

In the case of several independent variables x = (x1,...,xn) and dependent variables 

u = (u1,...,um) an action integral has the form 

  (2.11) 

where V is an arbitrary n-dimensional volume in the space of the variables x and 

the Lagrangian L is a function depending on a finite number of differential 

variables. The corresponding Euler-Lagrange equations have the form: 

  (2.12) 

where 
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is the variational derivative. 
In my first two articles I discuss conservation laws for the Euler-Lagrange 

equations. 

Definition 2.3. A conservation law is called a trivial conservation law if 

Di(Ci) ≡ 0 

or Ci are smooth functions of Two conservation laws which only 

differ by a trivial conservation law are regarded as equivalent. 

2.3 Lie group transformations and Noether’s theorem 

Assume that the Euler-Lagrange equations (2.12) admit a one-parameter 
Lie transformation group G, i.e. a local group of transformations 

x¯ = ϕ(x,u,a), 

where 

u¯ = ψ(x,u,a), 

ϕ = (ϕ1,...,ϕn), 

and 

ψ = (ψ1,...,ψm), 

ϕ(x,u,0) = x, ψ(x,u,a) = u. 
The infinitesimal generator of the group G has the form 

  , (2.14) 

where 

 . 

Definition 2.4. A variational integral (2.10) is invariant under the group G if 

 

The invariance condition is given by the following lemma. 

Lemma 2.1. An integral (2.11) is invariant under the group G if and only if [15] 

 X(L) + LDi(ξi) = 0. (2.15) 

Here X is a prolonged version of the generator (2.14): 
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  , (2.16) 

where 
ζiα = Di(ηα − ξjuαj ) + ξjuαji , 

ζiα1...is = Di1...Dis(ηα − ξjuαj ) + ξjuαji1...is. 

Noether proved her theorem by the application of the variational procedure to 

the integral of action. Using her idea Hill presented the explicit form of conserved 

quantities in the case of the first-order Lagrangians L(x,u,u(1)) (see [21], Eq. (43)). 

In my articles I have used the following generalized form of Noether’s theorem 

proved by Ibragimov [22], [32] on the basis of the group-theoretical approach. 

Theorem 2.1. Let the variational integral (2.11) be invariant with respect to a group 

G with generators (2.14). Then a vector C with components 

 Ci = Ni(L), i = 1,2,...,n, (2.17) 

is a conserved vector for the Euler-Lagrange equations (2.12), i.e. 

 . (2.18) 

Here Ni are Ibragimov’s operators [32], [15]: 

(2.19) 

, 

where Wα = ηα − ξjuαj . 

Corollary. If for some one-parameter transformation group the invariance condition 

(2.15) is not satisfied but the "divergence" condition 

 X(L) + LDi(ξi) = Di(Bi) (2.20) 

holds, then the components of the corresponding conserved vector have the form: 
 Ci = Ni(L) − Bi, i = 1,2,...,n. (2.21) 
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3 A basis of conservation laws 

Besides the operator X, we shall also use its equivalent canonical LieBäcklund 

operator [33], [34]: 

 

where 

, . 

Some conservation laws can be obtained more readily by using the com- 

 
mutativity of the generators X (or generators (2.14) with ξ1 = const., ..., ξn = const. ) 

and Di. 

 
Lemma 3.1. A canonical Lie–Bäcklund operator X and an operator of total 

differentiation Di are commutative [15]: 

XDi = DiX. 

Lemma 3.2. If C = (C1,...,Cn) satisfies a conservation law for some differential 

equation and a generator X is admitted by the equation in question then the vector 

with the components 

  (3.2) 

also satisfies a conservation law [15]. 

Hence lemmas 3.1 and 3.2 furnish the basis for another idea for calculating 

conservation laws. Moreover, conserved vectors can be computed for a differential 

equation without any Lagrangian if it has a known conservation law (see, e.g. [35] 

and [36]). 
The property (3.2) makes it possible to introduce the concept of a basis (with 

respect to the group G) of the conservation laws and thus reduce the number of 

vectors C that must be constructed by means of Noether’s theorem. 

Definition 3.1. Let {C} be a set of vectors satisfying the conservation law (2.18). A 

basis of the set {C} is its minimal subset from which {C} can be obtained by 

repeated application of (3.2) and by linear combinations. The conservation laws 

corresponding to the basis vectors form the basis of the conservation laws. 

Using an example of gasdynamics equations, it was conjectured in [32] that the 

following diagram is commutative: 
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and this statement can be used for construction of a basis of conserved vectors. The 

operators  and  in the diagram are given by (2.19) and X, X1, X2 by (2.14), the 

action adX is defined as follows: 

adX(X1) ≡ [X,X1] = XX1 − X1X. 

Hence the commutator [X,X1] has the form 

  (3.3) 

Following this idea I verified the validity of the statement by means of several 

examples [37], [38] and then proved the following general result [39]. 

Theorem 3.1. Let generators X, X1, X2 of the form (2.14) be admitted by the Euler-

Lagrange equations (2.12). Let the conserved vectors C1, C2 correspond (by 

Noether’s theorem) to the generators X1, X2 and let 

[X,X1] = X2. 

 

Then the vectors X(C1) and C2 define equivalent conserved vectors, i.e. 

 
X(C1) = C2. 

Remark 3.1. The theorem also holds when instead of the invariance condition (2.15) 

of a variational integral we have the "divergence" condition 
(2.20.) 

The proof of the theorem is given in [39]. Later this theorem was formulated in 

another form in [12]. Specific examples given in [37] were used by Tsujishita [40] 

as applications in modern formal differential geometry. 
Let us consider several examples. 

3.1 Classical mechanics 

Let Eq. (2.3), mx¨ = 0, x = (x1,x2,x3), 

describe the free motion of a particle of mass m. The equation has the Lagrangian 
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and admits a 10-parameter point transformation group containing space translations 

with the generators 

 , (3.4) 

translation of time with the generator 

 , (3.5) 

rotations of the vector x with the generators 

 , (3.6) 

and Galilean transformations with the generators 

 . (3.7) 

Hence according to Noether’s theorem Eq. (2.3) has 10 conservation laws of the 

form 
(3.8) 

defined by the following conserved quantities: the linear momentum 

p = mx˙, 

the energy 

 

the angular momentum 

M = p × x 

and the vector q = m(x − x˙t). 

From the table of commutators, Table 3.1, it is easy to notice that only X4 and one 

of generators Xμν can not be obtained by using adX. Thus, employing Theorem 3.1 

we can conclude the following: 
A basis of conservation laws consists of two conservation laws defined by the 

energy E and one of the components of the angular momentum M. 

Indeed, if we choose as a basis of conserved quantities E and, e.g. M1 we can 

obtain other conserved quantities by means of the generators Xμ4 and Xμν written in 

the prolonged form: 
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and 

 . (3.9) 

Then 

 Xμ4E = pμ, X24M1 = q3, 

 X12(M1) = M2, X13(M1) = M3. 

 X34M2 = q1, X14M3 = q2. 

Table 3.1: Table of commutators (Classical mechanics) 

 X1 X2 X3 X4 X12 X23 X13 X14 X24 X34 

X1 0 0 0 0 −X2 0 −X3 0 0 0 

X2  0 0 0 X1 −X3 0 0 0 0 

X3   0 0 0 X2 X1 0 0 0 

X4    0 0 0 0 X1 X2 X3 

X12     0 −X13 X23 X24 −X14 0 

X23      0 −X12 0 X34 −X24 

X13       0 X34 0 −X14 

X14        0 0 0 

X24         0 0 

X34          0 

3.2 Relativistic mechanics 

The equation of free motion of a relativistic particle in the Minkowski space with 

the metric 
ds2 = c2dt2 − dx2 − dy2 − dz2 

has the Lagrangian 

, 

where c is a constant equal to the light velocity in vacuum, 

x1 = x, x2 = y, x3 = z. 
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It admits the 10-parameter non-homogeneous Lorentz group with the generators 

(3.4)–(3.6) and the generators of the Lorentz transformations 

  (3.10) 

where x4 = t. 
The corresponding conservations laws have the form similar to (3.8). According 

to Noether’s theorem they are defined by the following conserved quantities: 

p0 = mcx˙, E0 = mc3x˙4, M0 = p0 × x, Q0 = mc(xx˙4 − x˙x4) (3.11) 

Table 3.2: Table of commutators (Relativistic mechanics) 

 X1 X2 X3 X4 X12 X23 X13 X14 X24 X34 

X1 0 0 0 0 −X2 0 −X3 1 X4 
c2 

0 0 

X2  0 0 0 X1 −X3 0 0 1 X4 
c2 

0 

X3   0 0 0 X2 X1 0 0 1 X4 
c2 

X4    0 0 0 0 X1 X2 X3 

X12     0 −X13 X23 X24 −X14 0 

X23      0 −X12 0 X34 −X24 

X13       0 X34 0 −X14 

X14        0 −c21X12 −c21X13 

X24         0 −c21X23 

X34          0 

where x = (x1,x2,x3) and the dot denotes differentiation with respect to the length of 

the arc s in the Minkowski space. Comparing Table 3.2 and Table 3.1, one can see 

a significant difference. Namely, in the case of relativistic mechanics the time 

translation generator X4 can be obtained from other operators by using adX. 

Therefore, employing Theorem 3.1 we can conclude that 
A basis of conserved quantities (3.11) (with respect to group G) is defined by one 

conserved quantity, e.g. any of the components of the angular momentum M0. 

Indeed, if we choose M01 as a basis of conserved quantities, under the action of 

the generators of the Lorentz transformations written in the prolonged form 
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and the generators of rotation (3.9) we obtain: 

. 

Then we have 

, 

E0 can be obtained from Q0 with the help of the translation generators Xμ, 
i.e. 

 

and the energy E0 transforms into the momentum p0, 

. 

Remark 3.2. On the other hand it is also possible to choose any component of the 

vector Q0 as a basis of conserved quantities. 

3.3 Motion in the de Sitter space 

Consider the space V4 with the metric 

  (3.13) 

where 

(3.14) 

and K = const. denotes the curvature of the Sitter space-time. 

As well as the equation of free motion of a particle in Minkowski space a similar 

equation in the de Sitter space has the Lagrangian 

, 

also admits 10-parameter group G with the generators of rotations and the 

generators of Lorentz transformations of the form 

 

but the generators of space translations (3.4) and translations of time (3.5) are 

replaced by the generators 

 . (3.16) 

Here the generators are written in the coordinates 

 x1 = x, x2 = y, x3 = z, x4 = ict 
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and δki is a Kronecker symbol. 
According to Noether’s theorem there are 10 conserved quantities similar to 

(3.11), the linear momentum pk,, the energy EK, the angular momentum 

MK and the vector QK. 
The structure of Lie algebra with the basis (3.15)–(3.16) is determined by the 

commutators 

, 

Hence, for the equation of free motion of a particle in the de Sitter space, we 

arrive at the following assertion: 
A basis of conserved quantities with respect to the group G is defined by one 

conserved quantity, e.g. any of the components of the angular momentum 

MK = M0/Φ2. 

Remark 3.3. In this case any conserved quantity, i.e the energy, or any component 

of the linear momentum or any component of the vector QK can also be chosen as a 

basis of the conserved quantities. 

3.4 Nonlinear wave equation 

The equation 

 utt − Δu + λu3 = 0 (3.17) 

has the Lagrangian 

 

where Δu = uxx + uyy + uzz, λ = const.. Eq. (3.17) describes string vibration immersed 

in nonlinear medium. Eq. (3.17) is also used in quantum nonlinear field theory. It 

admits the 15-dimensional group of conformal transformations in the Minkowski 

space and has, correspondingly, 15 conservation laws of the form 

Dt(C1) + Dx(C2) + Dy(C3) + Dz(C4) = 0. 

The basis of conserved vectors for the nonlinear wave equation also consists of one 

conserved vector [37], [38]. 

3.5 Lin–Reissner–Tsien equation 

The equation [41] 

−ϕxϕxx − 2ϕxt + ϕyy = 0 

describes the non-steady-state potential gas flow with transonic velocities. It has 

the Lagrangian 
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 const. 

and admits an infinite transformation group [42]. Accordingly, by Noether’s 

theorem, the family of conservation laws [43] is infinite. Meanwhile, employing 

Theorem 3.1 we can conclude the following: 

The basis of conservation laws consists of one conservation law [37], namely 

Dt(C1) + Dx(C2) + Dy(C3) = 0 

where 

. 

3.6 Transonic three-dimensional gas motion 

The equation 

−uxuxx − 2uxt + uyy + uzz = 0 

of transonic gas motion has the Lagrangian 

 

and admits an infinite group transformations (the generators [44], [45], [39] 

depends on arbitrary functions). 

The basis of conservation laws 

Dt(C1) + Dx(C2) + Dy(C3) + Dz(C4) = 0 

is defined by two vectors A1 and A4 where 

; 

, 

3.7 Short waves 

During first underwater nuclear and thermonuclear explosions near the arctic island 

Novaja Zemlja in the USSR it was discovered that weak waves were drastically 
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increasing the destructive force of a shock wave [46]. Rizhov and Khristianovich 

[47] presented the equations describing the behavior of these so-called "short 

waves". 
The equations of short waves 

 uy − 2vt − 2(v − x)vx − 2kv = 0, vy + ux = 0, k = const., 

admit an infinite-dimensional group [48]. They can be reduced by the substitution 

u = ϕy, v = −ϕx to the equation 

 ϕyy + 2ϕxt − 2(x + ϕx)ϕxx + 2kϕx = 0, (3.18) 

which has the Lagrangian 

. 

In [39] I calculated the following generators for Eq. (3.18): 

 , (3.19) 

(3.20) 

(3.21) 

(3.22) 

where μ,κ,λ,σ are arbitrary functions of t, the prime denotes differentiation with 

respect to t, dk = d2/dt2 + (k + 1)d/dt + k. 

Although the constant k in Eq. (3.18) takes only the values 0 and 1 in accordance 

with the physical content of the problem, it can be regarded as an arbitrary 

parameter. For k = 2;1/2 there is an extension of the group, the following 

generators are added: 
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The operator X0 does not satisfy the conditions of Noether’s theorem and the 

generators X4 and X5 give only trivial conservation laws. 

Among the commutation relations for X1, X2, X3, X6 we can distinguish 

 ad μ >, 

 ad κ >, ad  
Here the brackets < ... > mean that instead of the arbitrary function occurring in the 

coordinates of the generator (or conserved vector) it is necessary to substitute the 

expression in these brackets. 
Therefore, the basis of the conservation laws 

Dt(C1) + Dx(C2) + Dy(C3) = 0 

is determined by one vector corresponding to X1, i.e. A1 with coordinates 

 A11 = ¯η1Eϕx 
+ 9L, A21 = ¯η1E(ϕt − ϕx2 − 2xϕx

) − 4(k + 1)xL, 

A31 = ¯η1Eϕy−2(k+1)yL, η¯1 = −8(k+1)ϕ−9ϕt+4(k+1)xϕx+2(k+1)yϕy. 

3.8 Dirac equations 

The Dirac equations 

 , (3.23) 

are the relativistic quantum mechanical wave equations used for the description of 

fermions, i.e. elementary particles having half-integer spin number 

(say, ). Eqs (3.23) have the Lagrangian 

. 

Here the independent variables are 

x1 = x, x2 = y, x3 = z, x4 = ict, 

the dependent variables 

 ψ = (ψ1,...,ψ4) ψ 

are 4-dimensional complex vectors and and complex 

matrices. 
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The maximal group admitted by Eqs. (3.23) is obtained in [22]. The Dirac 

equations have an infinite number of conservation laws 

Dt(C1) + Dx(C2) + Dy(C3) + Dz(C4) = 0. 

Using Theorem 3.1 we obtain the following result [39]. 

For m = 0 the basis of conserved vectors is formed by 3 vectors, A12, A5, A8, and for

 by 2 vectors A12, A5. 
Their coordinates have the form 

, 
where 

, 

and  is a Kronecker’s symbol. 

4 Equations without Lagrangians 

4.1 Formal Lagrangian 

Many differential equations cannot be formulated as the Euler–Lagrange equations 

since they have no Lagrangians. Therefore, it is impossible to apply Noether’s 

theorem for calculating conservation laws. However, according to [49] and [50], it 

is possible to introduce a formal Lagrangian if any given system of equations is 

taken into consideration together with the adjoint system. In his recent paper [50] 

Ibragimov has proved that the adjoint system inherits symmetries of the given 

system and has suggested a new theorem on nonlocal conservation laws. 
Consider an arbitrary system of sth-order partial differential equations 

  (4.1) 

where the functions Fα(x,u,u(1),...,u(s)) depend on n independent variables x = 

(x1,...,xn), m dependent variables u = (u1,...,um), u = u(x), and their derivatives up to 

an arbitrary order s. 



 

 

4 Equations without Lagrangians 

Definition 4.1. The adjoint system to Eqs (4.1) is defined by [51] 

 

where v = (v1,...,vm) are new dependent variables, v = v(x), and  is the variational 

derivative (2.13). 

In the case of linear equations this definition is equivalent to the standard one. 

Remark 4.1. The variables v = (v1,...,vm) were called in [50] nonlocal variables in 

accordance with the general concept of nonlocal symmetries. Therefore, 

conservation laws involving v were named nonlocal conservation laws. 

Using the new definition of the adjoint system, it can be shown that any system 

of sth-order differential equations (4.1) considered together with its adjoint 

equation (4.2) has a Lagrangian. Namely, the Euler-Lagrange equations with the 

Lagrangian 

  (4.3) 

provide the simultaneous system of equations (4.1), (4.2) with 2m dependent 

variables u = (u1,...,um) and v = (v1,...,vm). 

Definition 4.2. The system (4.1) is called self-adjoint if the substitution v = u gives 

 F∗ = λ(x,u,u(1),...,u(s))F. (4.4) 

The system (4.1) is called quasi-self-adjoint [52] if there exists a function h(u) 

such that Eq (4.4) holds upon the substitution v = h(u). 

4.2 Maxwell-Dirac equations 

We have the system of equations 

, 

∂E 

 ∇ × B −  − σeE = 0, (4.5) 
∂t 

∇ · E − ρe = 0, 



 

 

∇ · B − ρm = 0, 

where σm, σe = const. The system (4.5) has eight equations for eight dependent 

variables: six coordinates of the electric and magnetic vector fields E = (E1,E2,E3) 

and B = (B1,B2,B3), respectively, and two scalar quantities ρe and ρm, the electric 

and magnetic monopole charge densities. 
Using (4.3) we write the Lagrangian (4.3) for Eqs. (4.5) in the following form 

[54] : 

 

 , (4.6) 

where V, W, Re, Rm are adjoint variables. With this Lagrangian the adjoint equations 

variables V, W, Re, Rm for the new dependent 

have the form [55] 

, 

(4.7) 

 Re = 0, Rm = 0. 

4.3 Conservation laws 

Each generator 

 , 

admitted by a first-order system 

 Fα(x,u,u(1)) = 0, α = 1,...,m 

leads to a conserved vector with the components 

  (4.8) 

where i = 1,...,n and vβ solve the adjoint system 

 Fα∗(x,u,u(1),v(1)) = 0, α = 1,...,m. 

The conservation law for Eqs (4.5) has the form 



 

 

 Dt(τ) + divχ = 0, (4.9) 

which holds on the solutions of Eqs (4.5) and (4.7). Here τ is the density of the 

conservation law (4.9), χ = (χ1,χ2,χ3), and 

divχ ≡ ∇ · χ = Dx(χ1) + Dy(χ2) + Dz(χ3). 

The Maxwell-Dirac equations are neither self-adjoint nor quasi-self-adjoint. 

Consequently, the conservation laws obtained by using Eqs (4.8) are nonlocal. 

5 Summary of thesis 

4.4 General magma equation 

The equation 

  (4.10) 

models the migration of melt through the Earth’s mantle. It follows from the 

equations 

  (4.11) 

where u is the vertical barometric flux of melt, f is the volume fraction of melt, z 

is a vertical space coordinate and t is time. All the variables are dimensionless. 

Eqs. (4.11) were proposed by Scott and Stevenson [56]. They suggested that 2 ≤ 

n ≤ 5 or even bigger and supposed that 0 ≤ m ≤ 1. 

Some authors discussed Eq. (4.10) for any values of n and m. 

I denote f by u in order to make Eq. (4.10) compatible with the general notation 

used above. It has the form 

  (4.12) 

The general magma equation does not have any Lagrangian and therefore the 

formal Lagrangian is introduced. Using the Lagrangian and employing 

infinitesimal symmetries of Eq. (4.10) nonlocal conservation laws are obtained in 

my articles [57]– [59]. The central part of these articles is the proof of the 

remarkable property of Eq. (4.12) to be quasi-self-adjoint for any values of the 

parameters m and n. This property allows us to obtain local conservation laws from 

nonlocal ones. They include the local conservation laws obtained by the direct 

method by Barcilon and Richter [27] and Harris [28] and later discussed in [36]. 


