

Equipartition theorem

- The theorem of equipartition of energy states that for every degree of freedom in a system in thermal equilibrium at temperature T, the average energy of the system is 1/2KT, where k is the boltzmann's constant.
- A monoatomic gas molecule has three degrees of freedom (corresponding to three translatory motions) and possesses average energy of $\frac{3}{2}$ kT.
- Thus to each degree of freedom we can associate ¹/₂KT energy. This is true for every system.
- A diatomic gas 5 degrees of freedom (three translatory and two rotatory motions) and hence possesses an average kinetic energy of $\frac{5}{2}$ kT.
- Another classic example is one dimensional harmonic oscillator. It has two degrees of freedom one corresponds to kinetic energy $\left(\frac{P^2}{2m}\right)$ and other one corresponds to potential energy $\left(\frac{1}{2}x^2\right)$. Thus a one dimensional harmonic oscillator has a total average energy of $2\frac{1}{2}kT = kT$.
- Thus solid which consists of atoms which behaves like harmonic oscillators possesses an average energy of KT.