
 

 

DIGITAL SYSTEMS 

 
● Number System (binary, hexa, octal, complements) codes (ASCII, UNICODE, 

BCD, GRAY), Error detecting and correcting code – parity and Hamming codes, 

Boolean algebra & Laws. 
● Combinational circuits - SOP & POS form K-Map - encoders, Decoders, 

multiplexers, demultiplexers - sequential circuits - flip-flops, registers & counters. 
● Integer representation (signed & unsigned). Half and full adder, sequential 

multiplier, Booth algorithm - floating point representation  
 

 

 DIGITAL SYSTEMS 
 

● Digital systems are designed to store, process, and communicate information in digital 

form.  
● They are found in a wide range of applications, including process control, 

communication systems, digital instruments, and consumer products.  
● The digital computer, more commonly called the computer, is an example of a typical 

digital system. 
● A computer manipulates information in digital, or more precisely, binary form.  
● A binary number has only two discrete values — zero or one.  
● Each of these discrete values is represented by the OFF and ON status of an electronic 

switch called a transistor. 
●  All computers, therefore, only understand binary numbers.  
● Any decimal number (base 10, with ten digits from 0 to 9) can be represented by a 

binary number (base 2, with digits 0 and 1). 
● Number system is important from the viewpoint of understanding how data are 

represented before they can be processed by any digital system including a digital 

computer.  
● There are two basic ways of representing the numerical values of the various physical 

quantities with which we constantly deal in our day to day lives.  
● The arithmetic value which is used for representing the quantity and used in making 

calculations is defined as NUMBERS.  
● A symbol like “4, 5, 6” which represents a number is known as numerals. 
●  Without numbers, counting things is not possible, date, time, money, etc. these 

numbers are also used for measurement and used for labeling. 
●  The properties of numbers make them helpful in performing arithmetic operations on 

them.   
● These numbers can be written in numeric forms and also in words. 

 

For example, 

● 3 is written as three in words, 35 is written as thirty-five in words, etc. 
●  Students can write the numbers from 1 to 100 in words to learn more. 
●  There are different types of numbers, which we can learn.  
● They are whole and natural numbers, odd and even numbers, rational and irrational 

numbers, etc. 
 

 

 



 

 

NUMBER AND ITS TYPES 

 
● Numbers used in mathematics are mostly decimal number systems.  
● In the decimal number system, digits used are from 0 to 9 and base 10 is used.  

 

There are many types of numbers in decimal number system, below are some of the types 

of numbers mentioned, 

 

❖ Numbers that are represented on the right side of the zero are termed Positive Numbers. 

The value of these numbers increases on moving towards the right. Positive numbers 

are used for Addition between numbers. Example: 1, 2, 3, 4. 
 

❖ Numbers that are represented on the left side of the zero are termed Negative Numbers. 

The value of these numbers decreases on moving towards the left. Negative numbers 

are used for Subtraction between numbers. Example: -1, -2, -3, -4. 
 

❖ Natural Numbers are the most basic type of Numbers that range from 1 to infinity. 

These numbers are also called Positive Numbers or Counting Numbers. Natural 

Numbers are represented by the symbol N. 
 

❖ Whole Numbers are basically the Natural Numbers, but they also include ‘zero’. 

Whole numbers are represented by the symbol W. 
 

❖ Integers are the collection of Whole Numbers plus the negative values of the Natural 

Numbers. Integers do not include fraction numbers i.e. they can’t be written in a/b form. 

The range of Integers is from the Infinity at the Negative end and Infinity at the Positive 

end, including zero. Integers are represented by the symbol Z. 
 

❖ Rational numbers are the numbers that can be represented in the fraction form i.e. a/b. 

Here, a and b both are integers and b≠0. All the fractions are rational numbers but not 

all the rational numbers are fractions. 
 

❖ Irrational numbers are the numbers that can’t be represented in the form of fractions 

i.e. they cannot be written as a/b. 
 

❖ Numbers that do not have any factors other than 1 and the number itself are termed as 

Prime Numbers. All the numbers other than Prime Numbers are termed as Composite 

Numbers except 0. Zero is neither prime nor a composite number. 
 

 

NUMBER SYSTEM 

 
● A Number system is a method of showing numbers by writing, which is a mathematical 

way of representing the numbers of a given set, by using the numbers or symbols in a 

mathematical manner.  
● The writing system for denoting numbers using digits or symbols in a logical manner is 

defined as a Number system. 



 

 

●  The numeral system Represents a useful set of numbers, reflects the arithmetic and 

algebraic structure of a number, and Provides standard representation.  
● The digits from 0 to 9 can be used to form all the numbers.  
● With these digits, anyone can create infinite numbers.  
● For example, 156, 3907, 3456, 1298, 784859 etc. 

 

TYPES OF NUMBER SYSTEMS 

 
● Based on the base value and the number of allowed digits, number systems are of many 

types.  
● The four common types of Number System are: 

 

✔ Decimal Number System 

✔ Binary Number System 

✔ Octal Number System 

✔ Hexadecimal Number System 
 

⮚ Decimal Number System  
 

● Number system with a base value of 10 is termed a Decimal number system. 
●  It uses 10 digits i.e. 0-9 for the creation of numbers.  
● Here, each digit in the number is at a specific place with place value a product of 

different powers of 10. 
●  Here, the place value is termed from right to left as first place value called units, second 

to the left as Tens, so on Hundreds, Thousands, etc 
● . Here, units have the place value as 100, tens have the place value as 101, hundreds as 

102, thousands as 103, and so on. 
 
 

For example, 10264 has place values as, 

 

(1 × 104) + (0 × 103) + (2 × 102) + (6 × 101) + (4 × 100) 

 

= 1 × 10000 + 0 × 1000 + 2 × 100 + 6 × 10 + 4 × 1 

 

= 10000 + 0 + 200 + 60 + 4 

 

= 10264 

 

 

⮚ Binary Number System  
 

● Number System with base value 2 is termed as Binary number system. 
●  It uses 2 digits i.e. 0 and 1 for the creation of numbers.  
● The numbers formed using these two digits are termed Binary Numbers.  
● The binary number system is very useful in electronic devices and computer systems 

because it can be easily performed using just two states ON and OFF i.e. 0 and 1. 
 



 

 

● Decimal Numbers 0-9 are represented in binary as: 0, 1, 10, 11, 100, 101, 110, 111, 

1000, and 1001 
 

● For example, 14 can be written as 1110, 19 can be written as 10011, 50 can be written 

as 110010. 
 

Example of 19 in the binary system 

 
 

  Here 19 can be written as 10011 

 

 

ADVANTAGES 

 

● Logic operations are the backbone of any digital computer, although solving a problem 

on computer could involve an arithmetic operation too. 
●  The introduction of the mathematics of logic by George Boole laid the foundation for 

the modern digital computer.  
● He reduced the mathematics of logic to a binary notation of ‘0’ and ‘1’. 

 

● Another advantage of this number system was that all kind of data could be 

conveniently represented in terms of 0s and 1s. 
 

● Also basic electronic devices used for hardware implementation could be conveniently 

and efficiently operated in two distinctly different modes. 
 

⮚ Octal Number System  
 

● Octal Number System is one in which the base value is 8. 
●  It uses 8 digits i.e. 0-7 for the creation of Octal Numbers.  
● Octal Numbers can be converted to Decimal values by multiplying each digit with the 

place value and then adding the result. 
●  Here the place values are 80, 81, and 82.  
● Octal Numbers are useful for the representation of UTF8 Numbers. 

 

 Example, 

 
(135)10 can be written as (207)8 
 
(215)10 can be written as (327)8 



 

 

 

 

⮚ Hexadecimal Number System  
 

● Number System with base value 16 is termed as Hexadecimal Number System.  
● It uses 16 digits for the creation of its numbers.  
● Digits from 0-9 are taken like the digits in the decimal number system but the digits 

from 10-15 are represented as A-F i.e.  
● 10 is represented as A, 11 as B, 12 as C, 13 as D, 14 as E, and 15 as F. 
● Hexadecimal Numbers are useful for handling memory address locations. 
● The hexadecimal number system provides a condensed way of representing large binary 

numbers stored and processed.  
 

Examples, 

 
 (255)10 can be written as (FF)16 

 

(1096)10 can be written as (448)16 

 

(4090)10 can be written as (FFA)16 

 

 

 

Sample Problems   

 
Question 1: Convert (18)10 as a binary number? 

 

Solution: 

 

 Question 2: 

Convert 3258 into a 

decimal? 

 

Solution: 

 

3258 = 3 × 82 + 2 

× 81 + 5 × 80  

 

= 3 × 64 + 2 × 8 + 

5 × 1 

 

= 192 + 16 + 5 

 

= 21310 

Question 3: Convert (2056)16 into an octal number?  

 



 

 

Solution: 

Here (2056)16 is in hexadecimal form  

 

First we will convert into decimal form from hexadecimal. 

 

(2056)16 = 2 × 163 + 0 × 162 + 5 × 161 + 6 × 160 

 

= 2 × 4096 + 0 + 80 + 6 

 

= 8192 + 0 + 80 + 6 

 

= (8278)10 

 

Now convert this decimal number into octal number by dividing it by 8 

 

 
 

 

So will take the value of remainder from 20126 

 

(8278)10 = (20126)8 

 

Therefore, (2056)16 = (20126)8 

 

Question 4: Convert (101110)2 into octal number. 

 

Solution: 

 

Given (101110)2 a binary number, to convert it into octal number 

 

 

OCTAL NUMBER       BINARY NUMBER 

           0                                           000 

           1                                     001 

           2                                       010 

           3                                       011 

           4                                       100 

           5                                       101 

           6                                       110 

           7                                       111 

Using the above table we can write given number as, 

 



 

 

101 110 i.e.  

 

101 = 5 

 

110 = 6  

 

So (101110)2 in octal number is (56)8 

 

 

BINARY REPRESENTATION 

 
● Binary is a base-2 number system that uses two states 0 and 1 to represent a number.  
● We can also call it to be a true state and a false state.  
● A binary number is built the same way as we build the normal decimal number.  

 

● For example, a decimal number 45 can be represented as 4*10^1+5*10^0 = 40+5  
 

● Now in binary 45 is represented as 101101.  
 

● As we have powers of 10 in decimal number similarly there are powers of 2 in binary 

numbers.  
 

● Hence 45 which is 101101 in binary can be represented as: 
 

2^0*1+2^1*0+2^2*1+2^3*1+2^4*0+2^5*1 = 45 

  

● The binary number is traversed from left to right. 
 

Sign and Magnitude representation –  

 
● There are many ways for representing negative integers. 
●  One of the ways is sign-magnitude.  
● This system uses one bit to indicate the sign.  
● Mathematical numbers are generally made up of a sign and a value.  
● The sign indicates whether the number is positive, (+) or negative, (–) while the value 

indicates the size of the number.  
● For example 13, +256 or -574.  
● Presenting numbers in this way is called sign-magnitude representation since the left 

most digits can be used to indicate the sign and the remaining digits the magnitude or 

value of the number.  
 

● Sign-magnitude notation is the simplest and one of the most common methods of 

representing positive and negative numbers. 
●  Thus negative numbers are obtained simply by changing the sign of the corresponding 

positive number, for example, +2 and -2, +10 and -10, etc.  
● Similarly adding a 1 to the front of a binary number is negative and a 0 makes it positive.  

 

● For example 0101101 represent +45 and 1101101 represents -45 if 6 digits of a binary 

number are considered and the leftmost digit represents the sign.  



 

 

 

● But a problem with the sign-magnitude method is that it can result in the possibility of 

two different bit patterns having the same binary value.  
 

● For example, +0 and -0 would be 0000 and 1000 respectively as a signed 4-bit binary 

number. 
 

●  So using this method there can be two representations for zero, a positive zero 0000 

and also a negative zero 1000 which can cause big complications for computers and 

digital systems.  
 

The two complement notations used to represent signed magnitude numbers are: 

 

✔ One’s complement  

✔ Two’s complement 
 

✔ One’s complement  
 

● The 1's complement of a number is found by changing all 1's to 0's and all 0's to 1's. 
●  This is called as taking complement or 1's complement.  
● Example of 1's Complement is as follows. 
 

 
1's Complement Table 

 

Binary 

Number 

1's Complement 

0000 1111 

0001 1110 

0010 1101 

0011 1100 

0100 1011 

0101 1010 

0110 1001 

0111 1000 

1000 0111 

1001 0110 

1010 0101 

1011 0100 

1100 0011 

1101 0010 

1110 0001 



 

 

1111 0000 

 
 

Use of 1's complement 

 

● 1's complement plays an important role in representing the signed binary numbers.  
● The main use of 1's complement is to represent a signed binary number. 
●  Apart from this, it is also used to perform various arithmetic operations such as addition 

and subtraction. 
 

● In signed binary number representation, we can represent both positive and negative 

numbers. 
●  For representing the positive numbers, there is nothing to do. 
●  But for representing negative numbers, we have to use 1's complement technique. 
●  For representing the negative number, we first have to represent it with a positive sign, 

and then we find the 1's complement of it. 
 

● Let's take an example of a positive and negative number and see how these numbers are 

represented. 
 

Example 1: +6 and -6 

 

● The number +6 is represented as same as the binary number.  
● For representing both numbers, we will take the 5-bit register. 
● So the +6 is represented in the 5-bit register as 0 0110. 
 

● The -6 is represented in the 5-bit register in the following way: 
1. +6=0 0110 

2. Find the 1's complement of the number 0 0110, i.e., 1 1001. Here, MSB denotes that 

a number is a negative number. 

 

 
● Here, MSB refers to Most Significant Bit, and LSB denotes the Least Significant Bit. 

 

Example 2: +120 and -120 

 

● The number +120 is represented as same as the binary number. 
●  For representing both numbers, take the 8-bit register. 
● So the +120 is represented in the 8-bit register as 0 1111000. 

 



 

 

● The -120 is represented in the 8-bit register in the following way: 
 

1. +120=0 1111000 

2. Now, find the 1's complement of the number 0 1111000, i.e., 1 0000111. Here, the MSB 

denotes the number is the negative number. 
 

✔ Two’s complement 
 
● The 2's complement of binary number is obtained by adding 1 to the Least Significant 

Bit (LSB) of 1's complement of the number. 
 

2's complement = 1's complement + 1 

 

● Example of 2's Complement is as follows. 

 
2's Complement Table 

 

 

Binary Number 

 

1's Complement 

 

2's complement 

 

0000 

 

 

1111 

 

0000 

 

0001 

 

 

1110 

 

     1111 

 

0010 

 

 

1101 

 

1110 

0100 

 

1011 1100 

 

0101 

 

 

1010 

 

1011 

 

0110 

 

 

1001 

 

1010 

 

Use of 2's complement 



 

 

 

● 2's complement is used for representing signed numbers and performing arithmetic 

operations such as subtraction, addition, etc.  
● The positive number is simply represented as a magnitude form. So there is nothing to 

do for representing positive numbers.  
● But if we represent the negative number, then we have to choose either 1's complement 

or 2's complement technique. 
●  The 1's complement is an ambiguous technique, and 2's complement is an unambiguous 

technique.  
● Let's see an example to understand how we can calculate the 2's complement in signed 

binary number representation. 
 

Example 1: +6 and -6 

 

● The number +6 is represented as same as the binary number. For representing both 

numbers, take the 5-bit register. 
● So the +6 is represented in the 5-bit register as 0 0110. 

 

● The -6 is represented in the 5-bit register in the following way: 
 

1. +6=0 0110 

2. Now, find the 1's complement of the number 0 0110, i.e. 1 1001. 

3. Now, add 1 to its LSB. When we add 1 to the LSB of 11001, the newly generated 

number comes out 11010. Here, the sign bit is one which means the number is the 

negative number. 
 

 
Example 2: +120 and -120 

● The number +120 is represented as same as the binary number. For representing both 

numbers, take the 8-bit register. 
 

● So the +120 is represented in the 8-bit register as 0 1111000. 
 

● The -120 is represented in the 8-bit register in the following way: 
 

1. +120=0 1111000 

2. Now, find the 1's complement of the number 0 1111000, i.e. 1 0000111. Here, the MSB 

denotes the number is the negative number. 



 

 

3. Now, add 1 to its LSB. When we add 1 to the LSB of 1 0000111, the newly generated 

number comes out 1 0001000. Here, the sign bit is one, which means the number is the 

negative number. 
 

ASCII Code 
 
● The ASCII stands for American Standard Code for Information Interchange.  
● The ASCII code is an alphanumeric code used for data communication in digital 

computers. 
●  The ASCII is a 7-bit code capable of representing 27 or 128 number of different 

characters.  
● The ASCII code is made up of a three-bit group, which is followed by a four-bit code. 
 

   
 

● The ASCII Code is a 7 or 8-bit alphanumeric code. 
● This code can represent 127 unique characters. 
● The ASCII code starts from 00h to 7Fh. 
●  In this, the code from 00h to 1Fh is used for control characters, and the code from 

20h to 7Fh is used for graphic symbols. 
● The 8-bit code holds ASCII, which supports 256 symbols where math and graphic 

symbols are added. 
● The range of the extended ASCII is 80h to FFh. 
● The ASCII characters are classified into the following groups: 

 

   
 
1. Control Characters 

● The non-printable characters used for sending commands to the PC or printer are known 

as control characters.  
● We can set tabs, and line breaks functionality by this code. 
●  The control characters are based on telex technology.  
● Nowadays, it's not so much popular in use.  
● The character from 0 to 31 and 127 comes under control characters. 



 

 

 

2. Special Characters 

● All printable characters that are neither numbers nor letters come under the special 

characters.  
● These characters contain technical, punctuation, and mathematical characters with 

space also.  
● The character from 32 to 47, 58 to 64, 91 to 96, and 123 to 126 comes under this 

category. 
 

3. Numbers Characters 

● This category of ASCII code contains ten Arabic numerals from 0 to 9. 
 

4. Letters Characters 

● In this category, two groups of letters are contained, i.e., the group of uppercase letters 

and the group of lowercase letters.  
● The range from 65 to 90 and 97 to 122 comes under this category. 

 

ASCII Table 

 
The values are typically represented in ASCII code tables in decimal, binary, and hexadecimal 

form. 

Binary Hexa 

decimal 

decimal 

Decimal ASCII 

Symbol 

Description Group 

0000000 0 0 NUL The null 

character 

encourage the 

device to do 

nothing 

Control 

Character 

0000001 1 1 SOH The symbol SOH 

(Starts of 

heading) 

Initiates the 

header. 

Control 

Character 

0000010 2 2 STX The symbol STX 

(Start of Text) 

ends the 

header and 

marks the 

beginning of a 

message. 

Control 

Character 

0000011 3 3 ETX The symbol ETX 

(End of Text) 

indicates the 

end of the 

message. 

Control 

Character 

0000100 4 4 EOT The EOT(end of 

text) symbol 

marks the end 

Control 

Character 



 

 

of a 

completes 

transmission 

0000101 5 5 ENQ The 

ENQ(Enquiry

) symbol is a 

request that 

requires a 

response 

Control 

Character 

0000110 6 6 ACK The ACK 

(Acknowledg

e) symbol is a 

positive 

answer to the 

request. 

Control 

Character 

0000111 7 7 BEL The BEL (Bell) 

symbol 

triggers a 

beep. 

Control 

Character 

0001000 8 8 BS Lets the cursor 

move back 

one step 

(Backspace) 

Control 

Character 

0001001 9 9 TAB (HT) A horizontal tab 

that moves the 

cursor within 

a row to the 

next 

predefined 

position 

(Horizontal 

Tab) 

Control 

Character 

0001010 A 10 LF Causes the cursor 

to jump to the 

next line (Line 

Feed) 

Control 

Character 

0001011 B 11 VT The vertical tab 

lets the cursor 

jump to a 

predefined 

line (Vertical 

Tab) 

Control 

Character 

0001100 C 12 FF Requests a page 

break (Form 

Feed) 

Control 

Character 

0001101 D 13 CR Moves the cursor 

back to the 

first position 

of the line 

Control 

Character 



 

 

(Carriage 

Return) 

0001110 E 14 SO Switches to a 

special 

presentation 

(Shift Out) 

Control 

Character 

0001111 F 15 SI Switches the 

display back 

to the normal 

state (Shift In) 

Control 

Character 

0010000 10 16 DLE Changes the 

meaning of 

the following 

characters 

(Data Link 

Escape) 

Control 

Character 

0001011 B 11 VT The vertical tab 

lets the cursor 

jump to a 

predefined 

line (Vertical 

Tab) 

Control 

Character 

0001100 C 12 FF Requests a page 

break (Form 

Feed) 

Control 

Character 

0001101 D 13 CR Moves the cursor 

back to the 

first position 

of the line 

(Carriage 

Return) 

Control 

Character 

0001110 E 14 SO Switches to a 

special 

presentation 

(Shift Out) 

Control 

Character 

0001111 F 15 SI Switches the 

display back 

to the normal 

state (Shift In) 

Control 

Character 

0010000 10 16 DLE Changes the 

meaning of 

the following 

characters 

(Data Link 

Escape) 

Control 

Character 

0010001 11 17 DC1 Control 

characters 

assigned 

depending on 

the device 

Control 

Character 



 

 

used (Device 

Control) 

0010010 12 18 DC2 Control 

characters 

assigned 

depending on 

the device 

used (Device 

Control) 

Control 

Character 

0010011 13 19 DC3 Control 

characters 

assigned 

depending on 

the device 

used (Device 

Control) 

Control 

Character 

0011010 1A 26 SUB Replacement for a 

faulty sign 

(Substitute) 

Control 

Character 

0011011 1B 27 ESC Initiates an escape 

sequence and 

thus gives the 

following 

characters a 

special 

meaning 

(Escape) 

Control 

Character 

0011100 1C 28 FS File separator. Control 

Character 

0011101 1D 29 GS Group separator. Control 

Character 

0011110 1E 30 RS Record separator. Control 

Character 

0011111 1F 31 US Unit separator. Control 

Character 

0100000 20 32 SP Blank space Special 

Character 

0100001 21 33 ! Exclamation 

mark 

Special 

Character 

0100010 22 34  Only quotes 

above 

Special 

Character 

0100011 23 35 # Pound sign Special 

Character 

0100100 24 36 $ Dollar sign Special 

Character 

0100101 25 37 % Percentage sign Special 

Character 

0100110 26 38 & Commercial and Special 

Character 



 

 

0100111 27 39  Apostrophe Special 

Character 

0101000 28 40 ( Left bracket Special 

Character 

0101001 29 41 ) Right bracket Special 

Character 

0101010 2A 42 * Asterisk Special 

Character 

0101011 2B 43 + Plus symbol Special 

Character 

0101100 2C 44 , Comma Special 

Character 

0101101 2D 45 - Dash Special 

Character 

0101110 2E 46 . Full stop Special 

Character 

0101111 2F 47 / Forward slash Special 

Character 

0110000 30 48 0  Numbers 

0110001 31 49 1  Numbers 

0110010 32 50 2  Numbers 

0110011 33 51 3  Numbers 

0110100 34 52 4  Numbers 

0110101 35 53 5  Numbers 

0110110 36 54 6  Numbers 

0110111 37 55 7  Numbers 

0111000 38 56 8  Numbers 

0111001 39 57 9  Numbers 

0111010 3A 58 : Colon Special 

characters 

0111011 3B 59 ; Semicolon Special 

characters 

0111100 3C 60 < Small than 

bracket 

Special 

characters 

0111101 3D 61 = Equals sign Special 

characters 

0111110 3E 62 > Bigger than 

symbol 

Special 

characters 

0111111 3F 63 ? Question mark Special 

characters 

1000000 40 64 @ At symbol Special 

characters 

1000001 41 65 A  Capital letters 

1100110 66 102 F  Lowercase 

letters 

1100111 67 103 G  Lowercase 

letters 

1101000 68 104 H  Lowercase 

letters 



 

 

1101001 69 105 I  Lowercase 

letters 

1101010 6A 106 J  Lowercase 

letters 

1101011 6B 107 K  Lowercase 

letters 

1101100 6C 108 L  Lowercase 

letters 

1101101 6D 109 M  Lowercase 

letters 

1101110 6E 110 N  Lowercase 

letters 

1101111 6F 111 O  Lowercase 

letters 

1110000 70 112 P  Lowercase 

letters 

1110001 71 113 Q  Lowercase 

letters 

1110010 72 114 R  Lowercase 

letters 

1110011 73 115 S  Lowercase 

letters 

1110100 74 116 T  Lowercase 

letters 

1110101 75 117 U  Lowercase 

letters 

1110110 76 118 v  Lowercase 

letters 

1110111 77 119 w  Lowercase 

letters 

1111000 78 120 x  Lowercase 

letters 

1111001 79 121 y  Lowercase 

letters 

1111010 7A 122 z  Lowercase letters 

1111011 7B 123 { Left curly bracket Special characters 

1111100 7C 124 l Vertical line Special characters 

1111101 7D 125 } Right curly 

brackets 

Special characters 

1111110 7E 126 ~ Tilde Special characters 

1111111 7F 127 DEL The DEL (Delete) 

symbol 

deletes a 

character. 

This is a 

control 

character that 

consists of the 

same number 

Control c 



 

 

in all 

positions. 

1111000 78 120 x  Lowercase letters 

1111001 79 121 y  Lowercase letters 

1111010 7A 122 z  Lowercase letters 

1111011 7B 123 { Left curly bracket Special characters 

1111100 7C 124 l Vertical line Special characters 

1111101 7D 125 } Right curly 

brackets 

Special characters 

1111110 7E 126 ~ Tilde Special characters 

1111111 7F 127 DEL The DEL (Delete) 

symbol 

deletes a 

character. 

This is a 

control 

character that 

consists of the 

same number 

in all 

positions. 

Control character 

 

Example 1:  

 

(10010101100001111011011000011010100111000011011111101001 

110111011101001000000011000101100100110011)2 

 

Step 1: In the first step, we make the groups of 7-bits because the ASCII code is 7 bit. 

 

1001010 1100001 1110110 1100001 1010100 1110000 1101111 1101001 1101110 1110100 

1000000 0110001 0110010 0110011 

 

Step 2: Then, we find the equivalent decimal number of the binary digits either from the 

ASCII table or 64 32 16 8 4 2 1 scheme. 

 

Binary Decimal 

64 32 16 8 4 2 1  

 

1   0   0   1 0 1 0 

64+8+2=74 

64 32 16 8 4 2 1 

 

1    1   0   0 0 0 1  

64+32+1=94 

64 32 16 8 4 2 1 

 

1   1   1   0 1 1 0  

64+32+16+4+2=118 

64 32 16 8 4 2 1 

 

1   1   0   0 0 0 1  

64+32+1=97 

64 32 16 8 4 2 1 64+16+4=84 



 

 

 

1   0   1   0 1 0 0  

64 32 16 8 4 2 1 

 

1   1   1   0 0 0 0  

64+32+16=112 

64 32 16 8 4 2 1 

 

1   1   0   1 1 1 1 

64+32+8+4+2+1=111 

64 32 16 8 4 2 1 

 

1   1   0   1 0 0 1 

64+32+8+1=105 

64 32 16 8 4 2 1 

 

1   1   0   1 1 1 0 

64+32+8+4+2=110 

64 32 16 8 4 2 1 

 

1   1   1   0 1 0 0 

64+32+16+4=116 

64 32 16 8 4 2 1 

 

1   0   0   0 0 0 0 

64 

64 32 16 8 4 2 1 

 

0   1   1   0 0 0 1 

32+16+1=49 

64 32 16 8 4 2 1 

 

0   1   1   0 0 1 0 

32+16+2=50 

64 32 16 8 4 2 1 

 

0   1   1   0 0 1 1 

32+16+2+1=51 

 

Step 3: Last, we find the equivalent symbol of the decimal number from the ASCII table. 

 

Decimal  Symbol 

74 J 

94 a 

118 v 

97 a 

84 T 

112 p 

111 o 

111 o 

105 i 

110 n 

116 t 

64 @ 

49 1 

50 2 

51 3 

 



 

 

UNICODE 

 
● Unicode is a universal encoding system to provide a comprehensive character set and 

was created by the Unicode Consortium (a group of multilingual software 

manufacturers).  
● Unicode simplifies software localization and improves multilingual text processing.  
● It overcomes the difficulty inherent in ASCII and extended ASCII. 

 

● Unicode has standardizes script behavior which allows any combination of characters, 

drawn from any combination of scripts and languages, to co-exist in a single document. 
 

●  Unicode defines multiple encodings of its single character set: UTF-7, UTF-8, UTF-

16, and UTF-32.  
 

● Conversion of data among these encodings is lossless. 
 

● Unicode was originally a 2-byte character set. 
 

●  Unicode version 3, however, is a 4-byte code and is fully compatible with ASCII and 

extended ASCII. 
 

● These all support encoding the same set of characters. 
 

✔ UTF-8 uses anywhere from 1 to 4 bytes per character depending on character, but 

ASCII take only 1 byte and 4 bytes for unusual ones. 

✔ UTF-16 uses 2 bytes for most characters, while very unusual characters take 4. 

✔ UTF-32 uses 4 bytes per character. We can calculate the number of characters in a 

UTF-32 string by only counting bytes. 
 

● The notation uses hexadecimal digits in format as follows. 
 

U-XXXXXXXX – 

● The numbering goes from U-00000000 to U-FFFFFFFF.  
● Unicode divides the available space codes into planes.  
● A plane is a continuous group of 65,536 code points.  
● The most significant 16 bits define the plane (i.e. number of planes = 65,535) and each 

plane can define up to 65,536 characters or symbols. 
 

 

 

 

Types of Plane – 

 

1. Basic multilingual plane (BMP) – Plane 0000, the basic multilingual plane is designed 

to be compatible with the previous 16-bit Unicode. The most significant 16-bits in this 

plane are all zeroes. It mostly defines character sets in different languages with the 

exception of some control and special characters. It is represented as U+XXXX where 

XXXX is the least significant 16-bits, eig.,: U+0900 to U+09FF reserved for 

Devanagari, Bengali U+2200 to U+22FF reserved for a mathematical operation etc. 



 

 

2. Supplementary multilingual plane (SMP) – Plane 0001, the supplementary 

multilingual plane, is designed to provide more codes for those multilingual characters 

that are excluded in the BMP. Example: 10140-1018F is reserved for Ancient Greek 

Numbers. 

3. Supplementary ideography plane (SIP) – Plane 0002, the supplementary ideography 

plane, is designed to provide codes for ideographic symbols, symbols that provide an 

idea in contrast to a sound, e.g., 20000-2A6DF are reserved for CJK Unified Extension 

B 

4. Supplementary special plane (SSP) – 000E, the supplementary special plane, is used 

for special characters, e.g., E0000-E007F is reserved for tags. 

5. Private use planes (PUPs) – Planes 000F and 0010, private use planes are for private 

use. They are used by fonts internally to refer to auxiliary glyphs. 
 

  BCD OR BINARY CODED DECIMAL 
 

● Binary Coded Decimal, or BCD, is another process for converting decimal numbers 

into their binary equivalents.  
● It is a form of binary encoding where each digit in a decimal number is represented in 

the form of bits. 
● This encoding can be done in either 4-bit or 8-bit (usually 4-bit is preferred). 
● It is a fast and efficient system that converts the decimal numbers into binary numbers 

as compared to the existing binary system. 
● These are generally used in digital displays where is the manipulation of data is quite a 

task. 
● Thus BCD plays an important role here because the manipulation is done treating each 

digit as a separate single sub-circuit. 
● The BCD equivalent of a decimal number is written by replacing each decimal digit in 

the integer and fractional parts with its four bit binary equivalent.  
● The BCD code is more precisely known as 8421 BCD code, with 8, 4, 2 and 1 

representing the weights of different bits in the four-bit groups, Starting from MSB and 

proceeding towards LSB.  
● This feature makes it a weighted code, which means that each bit in the four bit group 

representing a given decimal digit has an assigned weight. 
● Many decimal values have an infinite place-value representation in binary but have a 

finite place-value in binary-coded decimal.  
● For example, 0.2 in binary is .001100… and in BCD is 0.0010. 
●  It avoids fractional errors and is also used in huge financial calculations.  

 

Consider the following truth table and focus on how these are represented.  

 

 

 

 

 

Truth Table for Binary Coded Decimal 

 

DECIMAL NUMBER BCD 

0 0000 

1 0001 

2 0010 



 

 

3 0011 

4 0100 

5 0101 

6 0110 

 

● In the BCD numbering system, the given decimal number is segregated into chunks of 

four bits for each decimal digit within the number. 
●  Each decimal digit is converted into its direct binary form (usually represented in 4-

bits).  
 

For example:  

  

1. Convert (123)10 in BCD  

 

From the truth table above,  

1 -> 0001  

2 -> 0010  

3 -> 0011  

Thus, BCD becomes -> 0001 0010 0011  

  

2. Convert (324)10 in BCD  

 

(324)10 -> 0011 0010 0100 (BCD)  

 

Again from the truth table above,  

3 -> 0011  

2 -> 0010  

4 -> 0100  

Thus, BCD becomes -> 0011 0010 0100  

  

This is how decimal numbers are converted to their equivalent BCDs.  

 

● It is noticeable that the BCD is nothing more than a binary representation of each digit 

of a decimal number. 
● It cannot be ignored that the BCD representation of the given decimal number uses extra 

bits, which makes it heavy-weighted. 
 
   
 
 

GRAY CODE 
 

● The reflected binary code or Gray code is an ordering of the binary numeral system 

such that two successive values differ in only one bit (binary digit).  
● Gray codes are very useful in the normal sequence of binary numbers generated by the 

hardware that may cause an error or ambiguity during the transition from one number 

to the next. 
●  So, the Gray code can eliminate this problem easily since only one bit changes its value 

during any transition between two numbers. 
● Gray code is not weighted that means it does not depend on positional value of digit.  



 

 

● This cyclic variable code that means every transition from one value to the next value 

involves only one bit change. 
● Gray code also known as reflected binary code, because the first (n/2) values compare 

with those of the last (n/2) values, but in reverse order. 
 

Constructing an n-bit Gray code 
● N-bit Gray code can be generated recursively using reflect and prefix method which is 

explained as following below. 
 

✔ Generate code for n=1: 0 and 1 code. 

✔ Take previous code in sequence: 0 and 1. 

✔ Add reversed codes in the following list: 0, 1, 1 and 0. 

✔ Now add prefix 0 for original previous code and prefix 1 for new generated code: 00, 

01, 11, and 10. 
 

● Therefore, Gray code 0 and 1 are for Binary number 0 and 1 respectively. 
●  Gray codes: 00. 01, 11, and 10 are for Binary numbers: 00, 01, 10, and 11 respectively.  
● Similarly you can construct Gray code for 3 bit binary numbers: 
 
 

 
 

● Therefore, Gray codes are as following below, 
 

For n = 1 bit For n = 2 bit For n = 3 bit 

Binary Gray Binary           Gray Binary     Gray 

0                        1 00                    00 000                  000 

0                        1 01                     01 001                  001 

  10                    11 010                011 

11                    10 011                010 

 100                110 

101                111 

110                101 

111                100 



 

 

001                  001 

 

● Iterative method of generating G(n+1) from Gn are given below.  
● This is simpler method to contract Gray code of n-bit Binary numbers.  
● Each bit is inverted if the next higher bit of the input value is set to one.  
● The nth Gray code is obtained by computing n⊕ (floor (n/2)). 

 

❖ Gn is unique numbers for the permutation from 0 to (2n-1). 

❖ Gn is embedded as the first half of G (n+1) and second half as the reverse order of G(n+1). 

❖ Prefix 0 in each digit of first half and 1 in each digit of second half. 
 

● The hamming distance of two neighbors Gray codes is always 1 and also first Gray 

code and last Gray code also has Hamming distance is always 1, so it is also called 

Cyclic codes. 
● You can construct Gray codes using other methods but they may not be performed 

in parallel like given above method. 
●  For example, 3 bit Gray codes can be contracted using K-map which is given as 

following below: 

 
  

Decimal Binary Gray Code 

0 000 000 

1 001 001 

2 010 011 

3 011 010 

4 100 110 

5 101 111 

6 110 101 

  

 

 

 

 

Types of Gray Codes 

● There are also other types of Gray codes, like Beckett-Gray code, Single track Gray 

codes etc. 
 

❖ N-ary Gray code, where non-Boolean values are included like sequences of 1, 2, 3. 

❖ Two dimensional (n,k) Gray codes are used for error correction. 

❖ Balanced Gray codes have equal transition counts. 
Uses of Gray codes 

● Gray codes are used in rotary and optical encoders, Karnaugh maps, and error detection. 



 

 

 

ERROR DETECTION AND CORRECTION CODE 

 
● We know that the bits 0 and 1 corresponding to two different range of analog voltages.  
● So, during transmission of binary data from one system to the other, the noise may also 

be added.  
● Due to this, there may be errors in the received data at other system. 
● That means a bit 0 may change to 1 or a bit 1 may change to 0. 
●  We can’t avoid the interference of noise. 
●  But, we can get back the original data first by detecting whether any errors present and 

then correcting those errors.  
● For this purpose, we can use the following codes. 

 

⮚ Error detection codes 

⮚ Error correction codes 
 

● Error detection codes − are used to detect the errors present in the received data bit 

stream. These codes contain some bits, which are included appended to the original bit 

stream. These codes detect the error, if it is occurred during transmission of the original 

data bit stream.  
Example − Parity code, Hamming code. 

 

● Error correction codes − are used to correct the errors present in the received data bit 

stream so that, we will get the original data. Error correction codes also use the similar 

strategy of error detection codes. 
Example − Hamming code. 

 

● Therefore, to detect and correct the errors, additional bits are appended to the data bits 

at the time of transmission. 
 

Parity Code 

It is easy to include append one parity bit either to the left of MSB or to the right of LSB of 

original bit stream. There are two types of parity codes, namely even parity code and odd parity 

code based on the type of parity being chosen. 

 

 

 

 

Even Parity Code 

The value of even parity bit should be zero, if even number of ones present in the binary code. 

Otherwise, it should be one. So that, even number of ones present in even parity code. Even 

parity code contains the data bits and even parity bit. 

 

● The following table shows the even parity codes corresponding to each 3-bit binary 

code.  
● Here, the even parity bit is included to the right of LSB of binary code. 

 
 

Binary Code Even Parity bit Even Parity Code 



 

 

000 0 0000 

001 1 0011 

010 1 0101 

011 0 0110 

100 1 1001 

101 0 1010 

110 0 1100 

 
● Here, the number of bits present in the even parity codes is 4.  
● So, the possible even number of ones in these even parity codes are 0, 2 & 4. 

 

✔ If the other system receives one of these even parity codes, then there is no error in the 

received data. The bits other than even parity bit are same as that of binary code. 

✔ If the other system receives other than even parity codes, then there will be an errors in 

the received data. In this case, we can’t predict the original binary code because we 

don’t know the bit positions of error. 
 

● Therefore, even parity bit is useful only for detection of error in the received parity 

code. But, it is not sufficient to correct the error. 
 

Odd Parity Code 

● The value of odd parity bit should be zero, if odd number of ones present in the binary 

code.  
● Otherwise, it should be one.  
● So that, odd number of ones present in odd parity code. Odd parity code contains the 

data bits and odd parity bit. 
 

● The following table shows the odd parity codes corresponding to each 3-bit binary code.  
● Here, the odd parity bit is included to the right of LSB of binary code. 

 

Binary Code Odd Parity bit Odd Parity Code 

000 1 0001 

001 0 0010 

010 0 0100 

011 1 0111 

100 0 1000 

101 1 1011 

110 1 1101 

 

● Here, the number of bits present in the odd parity codes is 4.  
● So, the possible odd number of ones in these odd parity codes is 1 & 3. 

 

✔ If the other system receives one of these odd parity codes, then there is no error in the 

received data. The bits other than odd parity bit are same as that of binary code. 
 

✔ If the other system receives other than odd parity codes, then there is an errors in the 

received data. In this case, we can’t predict the original binary code because we don’t 

know the bit positions of error. 
 



 

 

● Therefore, odd parity bit is useful only for detection of error in the received parity code. 

But, it is not sufficient to correct the error. 
 

HAMMING CODE 
● Hamming code is useful for both detection and correction of error present in the 

received data.  
● This code uses multiple parity bits and we have to place these parity bits in the positions 

of powers of 2. 
● The minimum value of 'k' for which the following relation is correct valid is nothing 

but the required number of parity bits. 
 

 

2k≥n+k+1 
 

Where, 

 

‘n’ is the number of bits in the binary code information 

‘k’ is the number of parity bits 

 

Therefore, the number of bits in the Hamming code is equal to n + k. 

 

● Let the Hamming code is bn+kbn+k−1.....b3b2b1 & parity bits pk,pk−1,....p1 
● We can place the ‘k’ parity bits in powers of 2 positions only. In remaining bit positions, 

we can place the ‘n’ bits of binary code. 
● Based on requirement, we can use either even parity or odd parity while forming a 

Hamming code.  
● But, the same parity technique should be used in order to find whether any error present 

in the received data. 
 

● Follow this procedure for finding parity bits. 
 

⮚ Find the value of p1, based on the number of ones present in bit positions b3, b5, 

b7 and so on. All these bit positions suffixes in their equivalent binary have ‘1’ 

in the place value of 20. 
 

⮚ Find the value of p2, based on the number of ones present in bit positions b3, b6, 

b7 and so on. All these bit positions suffixes in their equivalent binary have ‘1’ 

in the place value of 21. 
 

⮚ Find the value of p3, based on the number of ones present in bit positions b5, b6, 

b7 and so on. All these bit positions suffixes in their equivalent binary have ‘1’ 

in the place value of 22. 
 

⮚ Similarly, find other values of parity bits. 
 

● Follow this procedure for finding check bits. 
 



 

 

⮚ Find the value of c1, based on the number of ones present in bit positions b1, b3, 

b5, b7 and so on. All these bit positions suffixes in their equivalent binary have 

‘1’ in the place value of 20. 
 

⮚ Find the value of c2, based on the number of ones present in bit positions b2, b3, 

b6, b7 and so on. All these bit positions suffixes in their equivalent binary have 

‘1’ in the place value of 21. 
 

⮚ Find the value of c3, based on the number of ones present in bit positions b4, b5, 

b6, b7 and so on. All these bit positions suffixes in their equivalent binary have 

‘1’ in the place value of 22. 
 

⮚ Similarly, find other values of check bits. 
 

 

● The decimal equivalent of the check bits in the received data gives the value of bit 

position, where the error is present. 
●  Just complement the value present in that bit position.  
● Therefore, we will get the original binary code after removing parity bits. 

 

Example 1 

 

Let us find the Hamming code for binary code, d4d3d2d1 = 1000. Consider even parity bits. 

 

The number of bits in the given binary code is n=4. 

 

We can find the required number of parity bits by using the following mathematical relation. 

 

 

 

2k≥n+k+1 
 

 

 

Substitute, n=4 in the above mathematical relation. 

 

 

 

⇒2k≥4+k+1 

                                        ⇒2k≥5+k 

 

● The minimum value of k that satisfied the above relation is 3.  
● Hence, we require 3 parity bits p1, p2, and p3.  
● Therefore, the number of bits in Hamming code will be 7, since there are 4 bits in binary 

code and 3 parity bits.  
● We have to place the parity bits and bits of binary code in the Hamming code as shown 

below. 



 

 

 

● The 7-bit Hamming code is b7b6b5b4b3b2b1=d4d3d2p3d1p2bp1 

 

● By substituting the bits of binary code, the Hamming code will be 

b7b6b5b4b3b2b1=100p3Op2p1. Now, let us find the parity bits. 
 

                                             p1=b7⊕b5⊕b3=1⊕0⊕0=1 

p2=b7⊕b6⊕b3=1⊕0⊕0=1 

p3=b7⊕b6⊕b5=1⊕0⊕0=1 

 

● By substituting these parity bits, the Hamming code will be b7b6b5b4b3b2b1=1001011. 
 

Example 2 

 

● In the above example, we got the Hamming code as b7b6b5b4b3b2b1=1001011.  
● Now, let us find the error position when the code received is b7b6b5b4b3b2b1=1001111. 

 

Now, let us find the check bits. 

 

c1=b7⊕b5⊕b3⊕b1=1⊕0⊕1⊕1=1 

c2=b7⊕b6⊕b3⊕b2=1⊕0⊕1⊕1=1 

c3=b7⊕b6⊕b5⊕b4=1⊕0⊕0⊕1=0 

 

● The decimal value of check bits gives the position of error in received Hamming code. 
 

 

c3c2c1=(011)2=(3)10 

 
 

● Therefore, the error present in third bit (b3) of hamming code. Just complement the 

value present in that bit and remove parity bits in order to get the original binary code. 
 
 

 

 

BOOLEAN ALGEBRA 
 

● Boolean algebra is an algebra, which deals with binary numbers & binary variables.  
● Hence, it is also called as Binary Algebra or logical Algebra.  
● A mathematician, named George Boole had developed this algebra in 1854. 
●  The variables used in this algebra are also called as Boolean variables. 
● The range of voltages corresponding to Logic ‘High’ is represented with ‘1’ and the 

range of voltages corresponding to logic ‘Low’ is represented with ‘0’. 
 

Postulates and Basic Laws of Boolean Algebra 

 

● In this section, let us discuss about the Boolean postulates and basic laws that are used 

in Boolean algebra. 



 

 

●  These are useful in minimizing Boolean functions. 
 

Boolean Postulates 

● Consider the binary numbers 0 and 1, Boolean variable x and its complement x′.  
● Either the Boolean variable or complement of it is known as literal. 
●  The four possible logical OR operations among these literals and binary numbers are 

shown below. 
 

x + 0 = x 

 

x + 1 = 1 

 

x + x = x 

 

x + x’ = 1 

 

● Similarly, the four possible logical AND operations among those literals and binary 

numbers are shown below. 
 

x.1 = x 

 

x.0 = 0 

 

x.x = x 

 

x.x’ = 0 

 

● These are the simple Boolean postulates. 
●  We can verify these postulates easily, by substituting the Boolean variable with ‘0’ or 

‘1’. 
 

Note− The complement of complement of any Boolean variable is equal to the variable itself. 

i.e., x′’=x. 

 

 

 

Basic Laws of Boolean Algebra 

 

Following are the three basic laws of Boolean Algebra. 

 

✔ Commutative law 

✔ Associative law 

✔ Distributive law 
           Commutative Law 

 

● If any logical operation of two Boolean variables gives the same result irrespective of 

the order of those two variables, then that logical operation is said to be Commutative.  
● The logical OR & logical AND operations of two Boolean variables x & y are shown 

below 



 

 

 

x + y = y + x 

 

x.y = y.x 

 

● The symbol ‘+’ indicates logical OR operation. 
●  Similarly, the symbol ‘.’ indicates logical AND operation and it is optional to represent. 
●  Commutative law obeys for logical OR & logical AND operations. 

 

Associative Law 

 

● If a logical operation of any two Boolean variables is performed first and then the same 

operation is performed with the remaining variable gives the same result, then that 

logical operation is said to be Associative.  
● The logical OR & logical AND operations of three Boolean variables x, y & z are shown 

below. 
  

x + y+z = x+y + z 

 

x.y.z = x.y.z 

 

● Associative law obeys for logical OR & logical AND operations. 
 

Distributive Law 

 

● If any logical operation can be distributed to all the terms present in the Boolean 

function, then that logical operation is said to be Distributive. 
●  The distribution of logical OR & logical AND operations of three Boolean variables x, 

y & z are shown below. 
 

x.y+z = x.y + x.z 

 

x + y.z = x+y.x+z 

● Distributive law obeys for logical OR and logical AND operations. 
 

● These are the Basic laws of Boolean algebra. We can verify these laws easily, by 

substituting the Boolean variables with ‘0’ or ‘1’. 
 

Theorems of Boolean Algebra 
● The following two theorems are used in Boolean algebra. 

 

✔ Duality theorem 

✔ DeMorgan’s theorem 
Duality Theorem 

 

● This theorem states that the dual of the Boolean function is obtained by interchanging 

the logical AND operator with logical OR operator and zeros with ones.  
● For every Boolean function, there will be a corresponding Dual function. 

 



 

 

● Let us make the Boolean equations relations that we discussed in the section of Boolean 

postulates and basic laws into two groups. 
 

●  The following table shows these two groups. 
 
  

Group1  Group2 

x + 0 = x x.1 = x 

x + 1 = 1 x.0 = 0 

x + x = x x.x = x 

x + x’ = 1 x.x’ = 0 

x + y = y + x x.y = y.x 

x + y+z = x+y + z x.y.z = x.y.z 

x.y+z = x.y + x.z x + y.z = x+y.x+z 

 
● In each row, there are two Boolean equations and they are dual to each other.  
● We can verify all these Boolean equations of Group1 and Group2 by using duality 

theorem. 
 

DeMorgan’s Theorem 

 

● This theorem is useful in finding the complement of Boolean function. 
●  It states that the complement of logical OR of at least two Boolean variables is equal 

to the logical AND of each complemented variable. 
 

DeMorgan’s theorem with 2 Boolean variables x and y can be represented as 

 

x+y’ = x’.y’ 

 

The dual of the above Boolean function is 

 

x.y’ = x’ + y’ 

 

● Therefore, the complement of logical AND of two Boolean variables is equal to the 

logical OR of each complemented variable.  
● Similarly, we can apply DeMorgan’s theorem for more than 2 Boolean variables also. 

 

Simplification of Boolean Functions 

● Till now, we discussed the postulates, basic laws and theorems of Boolean algebra.  
● Now, let us simplify some Boolean functions. 

 

Example 1 

Let us simplify the Boolean function, f = p’qr + pq’r + pqr’ + pqr 

 

We can simplify this function in two methods. 

 

Method 1 

 

Given Boolean function, f = p’qr + pq’r + pqr’ +pqr. 

 



 

 

Step 1 − In first and second terms r is common and in third and fourth terms pq is common. 

So, take the common terms by using Distributive law. 

 

⇒ f = p′q+pq′r + pqr′+r 

Step 2 − The terms present in first parenthesis can be simplified to Ex-OR operation. The terms 

present in second parenthesis can be simplified to ‘1’ using Boolean postulate 

 

⇒ f = p⊕qr + pq1 

Step 3 − The first term can’t be simplified further. But, the second term can be simplified to pq 

using Boolean postulate. 

 

⇒ f = p⊕qr + pq 

 

Therefore, the simplified Boolean function is f = p⊕qr + pq 

 

Method 2 

 

Given Boolean function, f = p’qr + pq’r + pqr’ + pqr. 

 

Step 1 − Use the Boolean postulate, x + x = x. That means, the Logical OR operation with any 

Boolean variable ‘n’ times will be equal to the same variable. So, we can write the last term 

pqr two more times. 

 

⇒ f = p’qr + pq’r + pqr’ + pqr + pqr + pqr 

 

Step 2 − Use Distributive law for 1st and 4th terms, 2nd and 5th terms, 3rd and 6th terms. 

 

⇒ f = qrp′+p + prq′+q + pqr′+r 

Step 3 − Use Boolean postulate, x + x’ = 1 for simplifying the terms present in each parenthesis. 

 

⇒ f = qr1 + pr1 + pq1 

Step 4 − Use Boolean postulate, x.1 = x for simplifying the above three terms. 

 

⇒ f = qr + pr + pq 

 

⇒ f = pq + qr + pr 

 

Therefore, the simplified Boolean function is f = pq + qr + pr. 

 

So, we got two different Boolean functions after simplifying the given Boolean function in each 

method. Functionally, those two Boolean functions are same. So, based on the requirement, we 

can choose one of those two Boolean functions. 

 

Example 2 

Let us find the complement of the Boolean function, f = p’q + pq’. 

 

The complement of Boolean function is f’ = p′q+pq′’. 

 

Step 1 − Use DeMorgan’s theorem, x+y’ = x’.y’. 

 



 

 

⇒ f’ = p′q’.pq′’ 

 

Step 2 − Use DeMorgan’s theorem, x.y’ = x’ + y’ 

 

⇒ f’ = {p′’ + q’}.{p’ + q′’} 

 

Step3 − Use the Boolean postulate, x′’=x. 

 

⇒ f’ = {p + q’}.{p’ + q} 

 

⇒ f’ = pp’ + pq + p’q’ + qq’ 

 

Step 4 − Use the Boolean postulate, xx’=0. 

 

⇒ f = 0 + pq + p’q’ + 0 

 

⇒ f = pq + p’q’ 

 

Therefore, the complement of Boolean function, p’q + pq’ is pq + p’q’. 

 

 

COMBINATIONAL CIRCUITS 

 
● Combinational circuit is a circuit in which we combine the different gates in the circuit, 

for example encoder, decoder, multiplexer and demultiplexer.  
● Some of the characteristics of combinational circuits are following − 

 

✔ The output of combinational circuit at any instant of time depends only 

on the levels present at input terminals. 
 

✔ The combinational circuits do not use any memory. The previous state 

of input does not have any effect on the present state of the circuit. 
 

✔ A combinational circuit can have an n number of inputs and m number 

of outputs. 
 

                                      Block diagram 

 

 

 
We're going to elaborate few important combinational circuits as follows. 

 

HALF ADDER 



 

 

 
● Half adder is a combinational logic circuit with two inputs and two outputs.  
● The half adder circuit is designed to add two single bit binary numbers A and B.  
● It is the basic building block for addition of two single bit numbers.  
● This circuit has two outputs carry and sum. 

 

Block Diagram 

 

 

 
 

Truth Table 

 

 
 

 

 

 

Circuit Diagram 

 

 

 
 

FULL ADDER 

 
● Full adder is developed to overcome the drawback of Half Adder circuit. 
●  It can add two one-bit numbers A and B, and carry c.  



 

 

● The full adder is a three input and two output combinational circuit. 
 

Block diagram 

 

 
 

  Truth Table 

 

 
 

 

 

Circuit Diagram 

 



 

 

 

N-Bit Parallel Adder 

● The Full Adder is capable of adding only two single digit binary number along with a 

carry input. 
●  But in practical we need to add binary numbers which are much longer than just one 

bit.  
● To add two n-bit binary numbers we need to use the n-bit parallel adder.  
● It uses a number of full adders in cascade.  
● The carry output of the previous full adder is connected to carry input of the next full 

adder. 
 

4 Bit Parallel Adder 

● In the block diagram, A0 and B0 represent the LSB of the four bit words A and B. 
●  Hence Full Adder-0 is the lowest stage. 
●  Hence its Cin has been permanently made 0. 
● The rest of the connections are exactly same as those of n-bit parallel adder are shown 

in fig.  
● The four bit parallel adder is a very common logic circuit. 
 

Block diagram 
 

 
 

N-Bit Parallel Subtractor 

● The subtraction can be carried out by taking the 1's or 2's complement of the number to 

be subtracted. 
●  For example we can perform the subtraction (A-B) by adding either 1's or 2's 

complement of B to A. 
●  That means we can use a binary adder to perform the binary subtraction. 

 

4 Bit Parallel Subtractor 

● The number to be subtracted (B) is first passed through inverters to obtain its 1's 

complement.  
● The 4-bit adder then adds A and 2's complement of B to produce the subtraction. 
●  S3 S2 S1 S0 represents the result of binary subtraction (A-B) and carry output Cout 

represents the polarity of the result.  
● If A > B then Cout = 0 and the result of binary form (A-B) then Cout = 1 and the result is 

in the 2's complement form. 
 



 

 

Block diagram 

 

 
 

HALF SUBTRACTORS 

 
● Half subtractor is a combination circuit with two inputs and two outputs (difference and 

borrow).  
● It produces the difference between the two binary bits at the input and also produces an 

output (Borrow) to indicate if a 1 has been borrowed. 
●  In the subtraction (A-B), A is called as Minuend bit and B is called as Subtrahend bit. 

   

                            Truth Table                    

 
 

Circuit Diagram 

 

 



 

 

 
 

  FULL SUBTRACTORS 

 
● The disadvantage of a half subtractor is overcome by full subtractor.  
● The full subtractor is a combinational circuit with three inputs A,B,C and two output D 

and C'.  
● A is the 'minuend', B is 'subtrahend', C is the 'borrow' produced by the previous stage, 

D is the difference output and C' is the borrow output. 
 

Truth Table 

 

 

 
 

Circuit Diagram 

 

 



 

 

 

 

MULTIPLEXERS 

 
● Multiplexer is a special type of combinational circuit. 
●  There are n-data inputs, one output and m select inputs with 2m = n.  
● It is a digital circuit which selects one of the n data inputs and routes it to the output.  
● The selection of one of the n inputs is done by the selected inputs.  
● Depending on the digital code applied at the selected inputs, one out of n data sources 

is selected and transmitted to the single output Y.  
● E is called the strobe or enables input which is useful for the cascading.  
● It is generally an active low terminal that means it will perform the required operation 

when it is low. 
 

Block diagram 

 

 
 

Multiplexers come in multiple variations 

 

✔ 2 : 1 multiplexer 

✔ 4 : 1 multiplexer 

✔ 16 : 1 multiplexer 

✔ 32 : 1 multiplexer 
 

Block Diagram 

 

 



 

 

 
 

Truth Table 

 

 
DEMULTIPLEXERS 

● A demultiplexer performs the reverse operation of a multiplexer i.e. it receives one input 

and distributes it over several outputs.  
● It has only one input, n outputs, m select input.  
● At a time only one output line is selected by the select lines and the input is transmitted 

to the selected output line. 
●  A de-multiplexer is equivalent to a single pole multiple way switch as shown in fig. 

 

● Demultiplexer comes in multiple variations. 
 

✔ 1 : 2 demultiplexer 

✔ 1 : 4 demultiplexer 

✔ 1 : 16 demultiplexer 

✔ 1 : 32 demultiplexer 
 

 

 

 

Block diagram 

 



 

 

 
 

        Truth Table 

 

 

 
 

 

DECODER 

 
● A decoder is a combinational circuit. 
●  It has n input and to a maximum m = 2n outputs. 
●  Decoder is identical to a demultiplexer without any data input.  
● It performs operations which are exactly opposite to those of an encoder. 

 

Block diagram 

 

 
 

Examples of Decoders are following. 

 

✔ Code converters 

✔ BCD to seven segment decoders 

✔ Nixie tube decoders 

✔ Relay actuator 

2 to 4 Line Decoder 



 

 

 
● The block diagram of 2 to 4 line decoder is shown in the fig. 
●  A and B are the two inputs where D through D are the four outputs.  
● Truth table explains the operations of a decoder.  
● It shows that each output is 1 for only a specific combination of inputs. 

 

Block diagram 

 

 
Logic circuit 

 

 
 

ENCODER 

 
● Encoder is a combinational circuit which is designed to perform the inverse operation 

of the decoder.  
● An encoder has n number of input lines and m number of output lines. 
●  An encoder produces an m bit binary code corresponding to the digital input number.  
● The encoder accepts an n input digital word and converts it into an m bit another digital 

word. 
 



 

 

Block diagram 

 

 

 
 

 

Examples of Encoders are following. 

 

● Priority encoders 
● Decimal to BCD encoder 
● Octal to binary encoder 
● Hexadecimal to binary encoder 

 

Priority Encoder 

 
● This is a special type of encoder. 
●  Priority is given to the input lines.  
● If two or more input line is 1 at the same time, then the input line with highest priority 

will be considered. 
● There are four input D0, D1, D2, D3 and two output Y0, Y1.  
● Out of the four input D3 has the highest priority and D0 has the lowest priority. 
●  That means if D3 = 1 then Y1 Y1 = 11 irrespective of the other inputs.  
● Similarly if D3 = 0 and D2 = 1 then Y1 Y0 = 10 irrespective of the other inputs. 

 

Block diagram 

 

 
 

       

 

 

 

    Truth Table 



 

 

 

 
 

     Logic circuit 

 
K-MAP (KARNAUGH MAP) 

 
● The Boolean functions using Boolean postulates and theorems are a time consuming 

process and we have to re-write the simplified expressions after each step. 
● To overcome this difficulty, Karnaugh introduced a method for simplification of 

Boolean functions in an easy way.  
● This method is known as Karnaugh map method or K-map method. 
●  It is a graphical method, which consists of 2n cells for ‘n’ variables.  
● The adjacent cells are differed only in single bit position. 

 

Steps to solve expression using K-map-  

 

1. Select K-map according to the number of variables. 

2. Identify minterms or maxterms as given in problem. 

3. For SOP put 1’s in blocks of K-map respective to the minterms (0’s elsewhere). 

4. For POS put 0’s in blocks of K-map respective to the maxterms (1’s elsewhere). 



 

 

5. Make rectangular groups containing total terms in power of two like 2, 4, 8... (Except 

1) and try to cover as many elements as you can in one group. 

6. From the groups made in step 5 find the product terms and sum them up for SOP form. 

 

K-Maps for 2 to 5 Variables 

 

● K-Map method is most suitable for minimizing Boolean functions of 2 variables to 5 

variables.  
● Now, let us discuss about the K-Maps for 2 to 5 variables one by one. 

 

2 Variable K-Map 

 

● The number of cells in 2 variables K-map is four, since the number of variables is two.  
● The following figure shows 2 variables K-Map. 

 

 
 

● There is only one possibility of grouping 4 adjacent min terms. 
● The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m2, m3), 

(m0, m2) and (m1, m3)}. 
 

3 Variable K-Map 

 

● The number of cells in 3 variables K-map is eight, since the number of variables is three.  
● The following figure shows 3 variables K-Map. 

 
● There is only one possibility of grouping 8 adjacent min terms. 
● The possible combinations of grouping 4 adjacent min terms are {(m0, m1, m3, m2), (m4, 

m5, m7, m6), (m0, m1, m4, m5), (m1, m3, m5, m7), (m3, m2, m7, m6) and (m2, m0, m6, m4)}. 
● The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m1, m3), 

(m3, m2), (m2, m0), (m4, m5), (m5, m7), (m7, m6), (m6, m4), (m0, m4), (m1, m5), (m3, m7) 

and (m2, m6)}. 
 

● If x=0, then 3 variable K-map becomes 2 variable K-map. 
 

4 Variable K-Map 



 

 

● The number of cells in 4 variables K-map is sixteen, since the number of variables is 

four. The following figure shows 4 variables K-Map. 

 
● There is only one possibility of grouping 16 adjacent min terms. 
● Let R1, R2, R3 and R4 represents the min terms of first row, second row, third row and 

fourth row respectively.  
● Similarly, C1, C2, C3 and C4 represents the min terms of first column, second column, 

third column and fourth column respectively.  
● The possible combinations of grouping 8 adjacent min terms are {(R1, R2), (R2, R3), 

(R3, R4), (R4, R1), (C1, C2), (C2, C3), (C3, C4), (C4, C1)}. 
● If w=0, then 4 variable K-map becomes 3 variable K-map. 

 

5 Variable K-Map 

● The number of cells in 5 variables K-map is thirty-two, since the number of variables 

is 5. The following figure shows 5 variables K-Map. 

 
● There is only one possibility of grouping 32 adjacent min terms. 
● There are two possibilities of grouping 16 adjacent min terms. i.e., grouping of min 

terms from m0 to m15 and m16 to m31. 
● If v=0, then 5 variable K-map becomes 4 variable K-map. 

 

● In the above all K-maps, we used exclusively the min terms notation. 
 

●  Similarly, you can use exclusively the Max terms notation. 
 

Minimization of Boolean Functions using K-Maps 



 

 

● If we consider the combination of inputs for which the Boolean function is ‘1’, then we 

will get the Boolean function, which is in standard sum of products form after 

simplifying the K-map. 
● Similarly, if we consider the combination of inputs for which the Boolean function is 

‘0’, then we will get the Boolean function, which is in standard product of sums form 

after simplifying the K-map. 
● Follow these rules for simplifying K-maps in order to get standard sum of products 

form. 
 

✔ Select the respective K-map based on the number of variables present in the Boolean 

function. 
 

✔ If the Boolean function is given as sum of min terms form, then place the ones at 

respective min term cells in the K-map. If the Boolean function is given as sum of 

products form, then place the ones in all possible cells of K-map for which the given 

product terms are valid. 
 

✔ Check for the possibilities of grouping maximum number of adjacent ones. It should be 

powers of two. Start from highest power of two and up to least power of two. Highest 

power is equal to the number of variables considered in K-map and least power is zero. 
 

✔ Each grouping will give either a literal or one product term. It is known as prime 

implicant. The prime implicant is said to be essential prime implicant, if at least single 

‘1’ is not covered with any other groupings but only that grouping covers. 
 

✔ Note down all the prime implicants and essential prime implicants. The simplified 

Boolean function contains all essential prime implicants and only the required prime 

implicants. 
 

● Note 1 − If outputs are not defined for some combination of inputs, then those output 

values will be represented with don’t care symbol ‘x’. That means, we can consider 

them as either ‘0’ or ‘1’. 
 

● Note 2 − If don’t care terms also present, then place don’t cares ‘x’ in the respective 

cells of K-map. Consider only the don’t cares ‘x’ that are helpful for grouping maximum 

number of adjacent ones. In those cases, treat the don’t care value as ‘1’. 
 

Example 

● Let us simplify the following Boolean function, f W, X, Y, Z= WX’Y’ + WY + W’YZ’ 

using K-map. 
 

● The given Boolean function is in sum of products form. It is having 4 variables W, X, 

Y & Z. So, we require 4 variable K-map. The 4 variable K-map with ones corresponding 

to the given product terms is shown in the following figure. 



 

 

 

 

 

 

 

 

 

● Here, 1s are placed in the following cells of K-map. 
 

✔ The cells, which are common to the intersection of Row 4 and columns 1 & 2 are 

corresponding to the product term, WX’Y’. 
 

✔ The cells, which are common to the intersection of Rows 3 & 4 and columns 3 & 4 are 

corresponding to the product term, WY. 
 

✔ The cells, which are common to the intersection of Rows 1 & 2 and column 4 are 

corresponding to the product term, W’YZ’. 
 

● There are no possibilities of grouping either 16 adjacent ones or 8 adjacent ones. 
●  There are three possibilities of grouping 4 adjacent ones. 
●  After these three groupings, there is no single one left as ungrouped.  
● So, we no need to check for grouping of 2 adjacent ones.  
● The 4 variable K-map with these three groupings is shown in the following figure. 

 
● Here, we got three prime implicants WX’, WY & YZ’. All these prime 

implicants are essential because of following reasons. 
 

✔ Two ones (m8 & m9) of fourth row grouping are not covered by any other 

groupings. Only fourth row grouping covers those two ones. 
 

✔ Single one (m15) of square shape grouping is not covered by any other 

groupings. Only the square shape grouping covers that one. 
 



 

 

✔ Two ones (m2 & m6) of fourth column grouping are not covered by any other 

groupings. Only fourth column grouping covers those two ones. 
 

Therefore, the simplified Boolean function is 

 

f = WX’ + WY + YZ’ 

 

● Follow these rules for simplifying K-maps in order to get standard product of 

sums form. 
 

✔ Select the respective K-map based on the number of variables present in the 

Boolean function. 
 

✔ If the Boolean function is given as product of Max terms form, then place the 

zeroes at respective Max term cells in the K-map. If the Boolean function is 

given as product of sums form, then place the zeroes in all possible cells of K-

map for which the given sum terms are valid. 
 

✔ Check for the possibilities of grouping maximum number of adjacent zeroes. It 

should be powers of two. Start from highest power of two and up to least power 

of two. Highest power is equal to the number of variables considered in K-map 

and least power is zero. 
 

✔ Each grouping will give either a literal or one sum term. It is known as prime 

implicant. The prime implicant is said to be essential prime implicant, if at least 

single ‘0’ is not covered with any other groupings but only that grouping covers. 
 

✔ Note down all the prime implicants and essential prime implicants. The 

simplified Boolean function contains all essential prime implicants and only the 

required prime implicants. 
 

● Note − If don’t care terms also present, then place don’t cares ‘x’ in the 

respective cells of K-map. Consider only the don’t cares ‘x’ that are helpful for 

grouping maximum number of adjacent zeroes. In those cases, treat the don’t 

care value as ‘0’. 
 

Example 

● Let us simplify the following Boolean function, f(X, Y, Z) =∏M (0, 1, 2, 4) 

using K-map. 
● The given Boolean function is in product of Max terms form. It is having 3 

variables X, Y & Z. So, we require 3 variable K-map. The given Max terms are 

M0, M1, M2 & M4. The 3 variable K-map with zeroes corresponding to the given 

Max terms is shown in the following figure. 

 



 

 

● There are no possibilities of grouping either 8 adjacent zeroes or 4 adjacent zeroes. There 

are three possibilities of grouping 2 adjacent zeroes.  
● After these three groupings, there is no single zero left as ungrouped.  
● The 3 variable K-map with these three groupings is shown in the following figure. 

 
● Here, we got three prime implicants X + Y, Y + Z & Z + X.  
● All these prime implicants are essential because one zero in each grouping is not 

covered by any other groupings except with their individual groupings. 
 

Therefore, the simplified Boolean function is 

 

f = X+Y.Y+Z.Z+X 

 

● In this way, we can easily simplify the Boolean functions up to 5 variables using K-map 

method.  
● For more than 5 variables, it is difficult to simplify the functions using K-Maps.  
● Because, the number of cells in K-map gets doubled by including a new variable. 
● Due to this checking and grouping of adjacent ones minterms or adjacent zeros 

Maxterms will be complicated.  
 

SUM OF PRODUCT (SOP) 

 
● A canonical sum of products is a Boolean expression that entirely consists of minterms. 
●  The Boolean function F is defined on two variables X and Y.  
● The X and Y are the inputs of the Boolean function F whose output is true when any 

one of the inputs is set to true.  
● The truth table for Boolean expression F is as follows: 

 

                 Input                                                                       Output 

X Y F 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

● In our previous section, we learned about how we can form the minterm from the 

variable's value. 
●  Now, a column will be added for the minterm in the above table.  



 

 

● The complement of the variables is taken whose value is 0, and the variables whose 

value is 1 will remain the same. 
  

   

Inputs                                    Output                                  Minterm 

X Y F 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

● Now, we will add all the minterms for which the output is true to find the desired 

canonical SOP (Sum of Product) expression. 
 

 

F=X' Y+XY'+XY 

 

 

Converting Sum of Products (SOP) to shorthand notation 

 

● The process of converting SOP form to shorthand notation is the same as the process of 

finding shorthand notation for minterms.  
● There are the following steps to find the shorthand notation of the given SOP 

expression. 
 
1. Write the given SOP expression. 

2. Find the shorthand notation of all the minterms. 

3. Replace the minterms with their shorthand notations in the given expression. 

 

Example: F = X'Y+XY'+XY 

 

1. Firstly, we write the SOP expression: 

 

 

F = X'Y+XY'+XY 

 

 

2. Now, we find the shorthand notations of the minterms X'Y, XY', and XY. 

 

X'Y = (01)2 = m1 

XY' = (10)2 = m2 

XY = (11)2 = m3 

 

3. In the end, we replace all the minterms with their shorthand notations: 

 

F=m1+m2+m3 

 

Converting shorthand notation to SOP expression 

 



 

 

● The process of converting shorthand notation to SOP is the reverse process of 

converting SOP expression to shorthand notation.  
● Let's see an example to understand this conversion. 

 

Example: 

 

● Let us assume that we have a Boolean function F, which defined on two variables X 

and Y.  
● The minterms for the function F are expressed as shorthand notation is as follows: 

 

 

F=∑(1,2,3) 

 

 

● Now, from this expression, we will find the SOP expression. 
●  The Boolean function F has two input variables X and y and the output of F=1 for m1, 

m2, and m3, i.e., 1st, 2nd, and 3rd combinations. So, 
 

F=∑ (1, 2, 3) 

F= m1 + m2 + m3 

F= 01 + 10 + 11 

● Now, we replace zeros with either X' or Y' and ones with either X or Y. Simply, the 

complement variable is used when the variable value is 1 otherwise the non-

complement variable is used. 
 

F = ∑ (1, 2, 3) 

F=01+10+11 

F= A'B + AB' + AB 

 

 

PRODUCT OF SUM (POS) 

 
● A canonical product of sum is a Boolean expression that entirely consists of maxterms. 
●  The Boolean function F is defined on two variables X and Y. 
●  The X and Y are the inputs of the Boolean function F whose output is true when only 

one of the inputs is set to true.  
● The truth table for Boolean expression F is as follows: 

 

Inputs                                                                                               Output 

X Y F 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

● In our minterm and maxterm section, we learned about how we can form the maxterm 

from the variable's value. 
●  A column will be added for the maxterm in the above table. 



 

 

●  The complement of the variables is taken whose value is 0, and the variables whose 

value is 1 will remain the same. 
 

Inputs                               Output                                                              Minterm 

X Y F 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

● Now, we will multiply all the minterms for which the output is false to find the desired 

canonical POS (Product of sum) expression. 
 

 

F=(X'+Y').(X+Y) 

 

 

Converting Product of Sum (POS) to shorthand notation 

 

● The process of converting POS form to shorthand notation is the same as the process of 

finding shorthand notation for maxterms.  
● There are the following steps used to find the shorthand notation of the given POS 

expression. 
 

1) Write the given POS expression. 

2) Find the shorthand notation of all the maxterms. 

3) Replace the minterms with their shorthand notations in the given expression. 

 

Example: F = (X'+Y'). (X+Y) 

 

1. Firstly, we will write the POS expression: 

 

F = (X'+Y'). (X+Y) 

2. Now, we will find the shorthand notations of the maxterms X'+Y' and X+Y. 

 

X'+Y' = (00)2 = M0 

X+Y = (11)2 = M3 

3. In the end, we will replace all the minterms with their shorthand notations: 

 

F=M0.M3 

Converting shorthand notation to POS expression 

 

● The process of converting shorthand notation to POS is the reverse process of 

converting POS expression to shorthand notation. 
●  Let's see an example to understand this conversion. 

 

Example: 

● Let us assume that we have a Boolean function F, defined on two variables X and Y.  
● The maxterms for the function F are expressed as shorthand notation is as follows: 

 



 

 

F=∏ (1, 2, 3) 

● Now, from this expression, we find the POS expression.  
● The Boolean function F has two input variables X and Y and the output of F=0 for M1, 

M2, and M3, i.e., 1st, 2nd, and 3rd combinations. So, 
F=∏ (1, 2, 3) 

F= M1.M2.M3 

F= 01.10.11 

● Next, we replace zeros with either X or Y and ones with either X' or Y'. Simply, if the 

value of the variable is 1, then we take the complement of that variable, and if the value 

of the variable is 0, then we take the variable "as is". 
 

F = ∑ (1, 2, 3) 

F=01.10.11 

F= (A+B'). (A’+B). (A’+B') 

 

Difference between SOP and POS in Digital Logic 

 
 

S.No. 

 

 

SOP 

 

POS 

 

1 

 

SOP stands for Sum of Products. 

 

 

POS stands for Product of Sums. 

 

2 

 

It is a technique of defining 

Boolean terms as a sum of 

product terms. 

 

 

It is a technique of defining the Boolean 

terms as the product of sum terms. 

 

3 

 

 

It prefers minterms. 

 

t prefers maxterms. 

 

4 

 

In the case of SOP, the minterms 

are defined as ‘m’. 

 

 

In the case of POS, the Maxterms are 

defined as ‘M’ 

 

5 

 

It gives HIGH (1) output.  

 

It gives LOW (0) output. 

 

 

6 

 

In SOP, we can get the final term 

by adding the product terms. 

 

 

In POS, we can get the final term by 

multiplying the sum terms. 

   

 

SEQUENTIAL CIRCUITS 

 
● The combinational circuit does not use any memory. 
●  Hence the previous state of input does not have any effect on the present state of the 

circuit.  



 

 

● But sequential circuit has memory so output can vary based on input.  
● This type of circuits uses previous input, output, clock and a memory element. 
 

Block Diagram 

 

 
 

 

FLIP FLOP 
● Flip flop is a sequential circuit which generally samples its inputs and changes its 

outputs only at particular instants of time and not continuously.  
● Flip flop is said to be edge sensitive or edge triggered rather than being level triggered 

like latches. 
 

S-R Flip Flop 
● It is basically S-R latch using NAND gates with an additional enable input.  
● It is also called as level triggered SR-FF.  
● For this, circuit in output will take place if and only if the enable input (E) is made 

active.  
● In short this circuit will operate as an S-R latch if E = 1 but there is no change in the 

output if E = 0. 
 

 

 

 

 

Block Diagram 



 

 

 
 

Circuit Diagram 

 

 
Truth Table 

 

 
 

Operation 
 

  

S.N. Condition Operation 

1 S = R = 0 : No change  If S = R = 0 then output of 

NAND gates 3 and 4 are 

forced to become 1. 

Hence R' and S' both will 

be equal to 1. Since S' and 

R' are the input of the basic 

S-R latch using NAND 

gates, there will be no 

change in the state of 

outputs. 



 

 

2   S = 0, R = 1, E = 1. Since S = 0, output of 

NAND-3 i.e. R' = 1 and E = 

1 the output of NAND-4 

i.e. S' = 0 

Hence Qn+1 = 0 and Qn+1 

bar = 1. This is reset 

condition. 

3   S = 1, R = 0, E = 1 Output of NAND-3 i.e. R' = 

0 and output of NAND-4 

i.e. S' = 1. 

Hence output of S-R 

NAND latch is Qn+1 = 1 

and Qn+1 bar = 0. This is 

the reset condition. 

4   

 

S = 1, R = 1, E = 1 As S = 1, R = 1 and E = 1, 

the output of NAND gates 

3 and 4 both are 0 i.e. S' = 

R' = 0. 

Hence the Race condition 

will occur in the basic 

NAND latch. 

 

Master Slave JK Flip Flop 

 
● Master slave JK FF is a cascade of two S-R FF with feedback from the output of second 

to input of first. 
●  Master is a positive level triggered.  
● But due to the presence of the inverter in the clock line, the slave will respond to the 

negative level. 
●  Hence when the clock = 1 (positive level) the master is active and the slave is inactive.  
● Whereas when clock = 0 (low level) the slave is active and master is inactive. 

 

Circuit Diagram 

 

 

 
 

 

 

Truth Table 



 

 

 

 
 

Operation 
 

 

S.N. Condition Operation 

1   J = K = 0 (No change) When clock = 0, the slave 

becomes active and master 

is inactive. But since the S 

and R inputs have not 

changed, the slave outputs 

will also remain 

unchanged. Therefore 

outputs will not change if J 

= K =0. 

2  J = 0 and K = 1 (Reset)

  

Clock = 1 − Master active, 

slave inactive. Therefore 

outputs of the master 

become Q1 = 0 and Q1 bar 

= 1. That means S = 0 and 

R =1. 

Clock = 0 − Slave active, 

master inactive. Therefore 

outputs of the slave become 

Q = 0 and Q bar = 1. 

 

Again clock = 1 − Master 

active, slave inactive. 

Therefore even with the 

changed outputs Q = 0 and 

Q bar = 1 fed back to 

master, its output will be 

Q1 = 0 and Q1 bar = 1. That 

means S = 0 and R = 1. 

 

Hence with clock = 0 and 

slave becoming active the 

outputs of slave will remain 

Q = 0 and Q bar = 1. Thus 



 

 

we get a stable output from 

the Master slave. 

3   J = 1 and K = 0 (Set) Clock = 1 − Master active, 

slave inactive. Therefore 

outputs of the master 

become Q1 = 1 and Q1 bar 

= 0. That means S = 1 and 

R =0. 

Clock = 0 − Slave active, 

master inactive. Therefore 

outputs of the slave become 

Q = 1 and Q bar = 0. 

 

Again clock = 1 − then it 

can be shown that the 

outputs of the slave are 

stabilized to Q = 1 and Q 

bar = 0. 

4   J = K = 1 (Toggle) Clock = 1 − Master active, 

slave inactive. Outputs of 

master will toggle. So S and 

R also will be inverted. 

Clock = 0 − Slave active, 

master inactive. Outputs of 

slave will toggle. 

 

These changed output are 

returned back to the master 

inputs. But since clock = 0, 

the master is still inactive. 

So it does not respond to 

these changed outputs. This 

avoids the multiple 

toggling which leads to the 

race around condition. The 

master slave flip flop will 

avoid the race around 

condition. 

 

 

Delay Flip Flop / D Flip Flop 

 
● Delay Flip Flop or D Flip Flop is the simple gated S-R latch with a NAND inverter 

connected between S and R inputs. 
●  It has only one input.  
● The input data is appearing at the output after some time. 
●  Due to this data delay between i/p and o/p, it is called delay flip flop.  
● S and R will be the complements of each other due to NAND inverter.  
● Hence S = R = 0 or S = R = 1, these input condition will never appear.  



 

 

● This problem is avoid by SR = 00 and SR = 1 conditions. 
 

Block Diagram 

 

 
 

 

Circuit Diagram 

 
 

Truth Table 

 

 
 

 

Operation 
   

 

S.N. 

 

Condition 

 

Operation 

 

 

1  

 

E = 0  

 

Latch is disabled. Hence no 

change in output. 

 

2  

 

E = 1 and D = 0  

 

If E = 1 and D = 0 then S = 

0 and R = 1. Hence 

irrespective of the present 

state, the next state is Qn+1 



 

 

= 0 and Qn+1 bar = 1. This 

is the reset condition. 

 

3  

 

E = 1 and D = 1  

 

 

If E = 1 and D = 1, then S = 

1 and R = 0. This will set 

the latch and Qn+1 = 1 and 

Qn+1 bar = 0 irrespective 

of the present state. 

 

Toggle Flip Flop / T Flip Flop 

 
● Toggle flip flop is basically a JK flip flop with J and K terminals permanently connected 

together.  
● It has only input denoted by T as shown in the Symbol Diagram.  
● The symbol for positive edge triggered T flip flop is shown in the Block Diagram. 

 

Symbol Diagram 

  
 

  Block Diagram 

 

                 
    Truth Table 

 
Operation 

 
S.N. Condition Operation 

1 T = 0, J = K = 0 The output Q and Q bar 

won't change 



 

 

2 T = 1, J = K = 1 Output will toggle 

corresponding to 

every leading edge 

of clock signal. 

 

 

DIGITAL REGISTERS 

 
● Flip-flop is a 1 bit memory cell which can be used for storing the digital data. 
●  To increase the storage capacity in terms of number of bits, we have to use a group of 

flip-flop. Such a group of flip-flop is known as a Register.  
● The n-bit register will consist of n number of flip-flop and it is capable of storing an n-

bit word. 
● The binary data in a register can be moved within the register from one flip-flop to 

another.  
● The registers that allow such data transfers are called as shift registers. There are four 

modes of operations of a shift register. 
 

✔ Serial Input Serial Output 

✔ Serial Input Parallel Output 

✔ Parallel Input Serial Output 

✔ Parallel Input Parallel Output 
 

Serial Input Serial Output 
 

● Let all the flip-flop be initially in the reset condition i.e. Q3 = Q2 = Q1 = Q0 = 0. 
● If an entry of a four bit binary number 1 1 1 1 is made into the register, this number 

should be applied to Din bit with the LSB bit applied first. 
● The D input of FF-3 i.e. D3 is connected to serial data input Din.  
● Output of FF-3 i.e. Q3 is connected to the input of the next flip-flop i.e. D2 and so on. 

 

Block Diagram 

 

 
 
 

Operation 

 

● Before application of clock signal, let Q3 Q2 Q1 Q0 = 0000 and apply LSB bit of the 

number to be entered to Din.  



 

 

● So Din = D3 = 1. Apply the clock. On the first falling edge of clock, the FF-3 is set, and 

stored word in the register is Q3 Q2 Q1 Q0 = 1000. 
 

 
 
● Apply the next bit to Din. So Din = 1. As soon as the next negative edge of the clock hits, 

FF-2 will set and the stored word change to Q3 Q2 Q1 Q0 = 1100. 
 

 
 

 
 
 
● Apply the next bit to be stored i.e. 1 to Din. Apply the clock pulse. As soon as the third 

negative clock edge hits, FF-1 will be set and output will be modified to Q3 Q2 Q1 Q0   
= 1110. 

 

 
 

 

● Similarly with Din = 1 and with the fourth negative clock edge arriving, the stored word 

in the register is Q3 Q2 Q1 Q0 = 1111. 
 



 

 

 
 
 

Truth Table 

 
 

Waveforms 

 

 

 

 
 



 

 

 

Serial Input Parallel Output 

 
● In such types of operations, the data is entered serially and taken out in parallel fashion. 
● Data is loaded bit by bit. The outputs are disabled as long as the data is loading. 
● As soon as the data loading gets completed, all the flip-flops contain their required data; 

the outputs are enabled so that all the loaded data is made available over all the output 

lines at the same time. 
● 4 clock cycles are required to load a four bit word. Hence the speed of operation of 

SIPO mode is same as that of SISO mode. 
 

Block Diagram 

 

 
 

Parallel Input Serial Output (PISO) 

 
● Data bits are entered in parallel fashion. 
● The circuit shown below is a four bit parallel input serial output register. 
● Output of previous Flip Flop is connected to the input of the next one via a 

combinational circuit. 
● The binary input word B0, B1, B2, B3 is applied though the same combinational circuit. 
● There are two modes in which this circuit can work namely - shift mode or load mode. 

 

Load mode 

● When the shift/load bar line is low (0), the AND gate 2, 4 and 6 become active they will 

pass B1, B2, B3 bits to the corresponding flip-flops.  
● On the low going edge of clock, the binary input B0, B1, B2, B3 will get loaded into the 

corresponding flip-flops. Thus parallel loading takes place. 
 

Shift mode 

● When the shift/load bar line is low (1), the AND gate 2, 4 and 6 become inactive. 
●  Hence the parallel loading of the data becomes impossible.  
● But the AND gate 1, 3 and 5 become active. 
●  Therefore the shifting of data from left to right bit by bit on application of clock pulses.  
● Thus the parallel in serial out operation takes place. 

 

Block Diagram   



 

 

 

 
 

 

Parallel Input Parallel Output (PIPO) 

 
● In this mode, the 4 bit binary input B0, B1, B2, B3 is applied to the data inputs D0, D1, 

D2, D3 respectively of the four flip-flops.  
● As soon as a negative clock edge is applied, the input binary bits will be loaded into the 

flip-flops simultaneously 
● . The loaded bits will appear simultaneously to the output side. Only clock pulse is 

essential to load all the bits. 
 

Block Diagram 

 

 

 
Bidirectional Shift Register 

 



 

 

● If a binary number is shifted left by one position then it is equivalent to multiplying the 

original number by 2. 
●  Similarly if a binary number is shifted right by one position then it is equivalent to 

dividing the original number by 2. 
● Hence if we want to use the shift register to multiply and divide the given binary 

number, then we should be able to move the data in either left or right direction. 
● Such a register is called bi-directional register. A four bit bi-directional shift register is 

shown in fig. 
● There are two serial inputs namely the serial right shift data input DR, and the serial left 

shift data input DL along with a mode select input (M). 
 

Block Diagram 

 

 
 

 

Operation 

 

S.N. Condition Operation 

1   With M = 1 − Shift right 

operation 

If M = 1, then the AND 

gates 1, 3, 5 and 7 are 

enabled whereas the 

remaining AND gates 2, 4, 

6 and 8 will be disabled. 

The data at DR is shifted to 

right bit by bit from FF-3 to 

FF-0 on the application of 

clock pulses. Thus with M 

= 1 we get the serial right 

shift operation. 

2  .With M = 0 − Shift left 

operation  

When the mode control M 

is connected to 0 then the 

AND gates 2, 4, 6 and 8 are 

enabled while 1, 3, 5 and 7 

are disabled. 



 

 

The data at DL is shifted 

left bit by bit from FF-0 to 

FF-3 on the application of 

clock pulses. Thus with M 

= 0 we get the serial right 

shift operation. 

 

 

Universal Shift Register 

 
● A shift register which can shift the data in only one direction is called a uni-directional 

shift register.  
● A shift register which can shift the data in both directions is called a bi-directional shift 

register.  
● Applying the same logic, a shift register which can shift the data in both directions as 

well as load it parallely, is known as a universal shift register.  
● The shift register is capable of performing the following operation − 

 

✔ Parallel loading 

✔ Left Shifting 

✔ Right shifting 
● The mode control input is connected to logic 1 for parallel loading operation whereas it 

is connected to 0 for serial shifting.  
● With mode control pin connected to ground, the universal shift register acts as a bi-

directional register. 
●  For serial left operation, the input is applied to the serial input which goes to AND 

gate-1 shown in figure.  
● Whereas for the shift right operation, the serial input is applied to D input. 

 

Block Diagram 

 

 
 

 

 

  DIGITAL COUNTERS 

 



 

 

● Counter is a sequential circuit.  
● A digital circuit which is used for counting pulses is known counter.  
● Counter is the widest application of flip-flops. 
●  It is a group of flip-flops with a clock signal applied.  
● Counters are of two types. 

 

✔ Asynchronous or ripple counters. 

✔ Synchronous counters. 
 

Asynchronous or ripple counters 

 
● The logic diagram of a 2-bit ripple up counter is shown in figure. 
●  The toggle (T) flip-flop is being used.  
● But we can use the JK flip-flop also with J and K connected permanently to logic 1.  
● External clock is applied to the clock input of flip-flop A and QA output is applied to 

the clock input of the next flip-flop i.e. FF-B. 
 

Logical Diagram 

 

 
Operation 

 

S.N. Condition Operation 

 

1 

 

Initially let both the FFs be 

in the reset state 

 

QBQA = 00 initially 

 

 

 

2   

 

After 1st negative clock 

edge 

 

As soon as the first 

negative clock edge is 

applied, FF-A will toggle 

and QA will be equal to 1. 

QA is connected to clock 

input of FF-B. Since QA has 

changed from 0 to 1, it is 

treated as the positive clock 

edge by FF-B. There 

 



 

 

 is no change in QB because 

FF-B is a negative edge 

triggered FF. 

 

QBQA = 01 after the first 

clock pulse. 

 

 

3  

 

After 2nd negative clock 

edge  

 

On the arrival of second 

negative clock edge, FF-A 

toggles again and QA = 0. 

The change in QA acts as a 

negative clock edge for FF-

B. So it will also toggle, 

and QB will be 1. 

 

QBQA = 10 after the second 

clock pulse. 

 

 

4   

 

After 3rd negative clock 

edge 

 

On the arrival of 3rd 

negative clock edge, FF-A 

toggles again and QA 

become 1 from 0. 

Since this is a positive 

going change, FF-B does 

not respond to it and 

remains inactive. So QB 

does not change and 

continues to be equal to 1. 

 

QBQA = 11 after the third 

clock pulse. 

 

 

5   

 

After 4th negative clock 

edge 

 

On the arrival of 4th 

negative clock edge, FF-A 

toggles again and QA 

becomes 1 from 0. 

This negative change in QA 

acts as clock pulse for FF-

B. Hence it toggles to 

change QB from 1 to 0. 

 

QBQA = 00 after the fourth 

clock pulse. 

 

 

 

Truth Table 



 

 

 

 

 
 

Synchronous counters 

 
● If the "clock" pulses are applied to all the flip-flops in a counter simultaneously, then 

such a counter is called as synchronous counter. 
 

2-bit Synchronous up counter 

● The JA and KA inputs of FF-A are tied to logic 1. So FF-A will work as a toggle flip-

flop.  
● The JB and KB inputs are connected to QA. 

 

Logical Diagram 

 

   
 

Operation 

 

S.N. Condition Operation 

 

1 

 

Initially let both the FFs be 

in the reset state 

 

QBQA = 00 initially. 

 

 

 

2  

  



 

 

After 1st negative clock 

edge  

As soon as the first 

negative clock edge is 

applied, FF-A will toggle 

and QA will change from 0 

to 1. 

But at the instant of 

application of negative 

clock edge, QA, JB = KB = 

0. Hence FF-B will not 

change its state. So QB will 

remain 0. 

 

QBQA = 01 after the first 

clock pulse. 

 

 

3   

 

After 2nd negative clock 

edge 

 

On the arrival of second 

negative clock edge, FF-A 

toggles again and QA 

changes from 1 to 0. 

But at this instant QA was 1. 

So JB = KB= 1 and FF-B 

will toggle. Hence QB 

changes from 0 to 1. 

 

QBQA = 10 after the second 

clock pulse. 

 

 

4   

 

After 3rd negative clock 

edge 

 

On application of the third 

falling clock edge, FF-A 

will toggle from 0 to 1 but 

there is no change of state 

for FF-B. 

QBQA = 11 after the third 

clock pulse. 

 

5   

 

After 4th negative clock 

edge 

 

On application of the next 

clock pulse, QA will change 

from 1 to 0 as QB will also 

change from 1 to 0. 

QBQA = 00 after the fourth 

clock pulse. 

 

 

CLASSIFICATION OF COUNTERS 

 



 

 

● Depending on the way in which the counting progresses, the synchronous or 

asynchronous counters are classified as follows − 
 

✔ Up counters 

✔ Down counters 

✔ Up/Down counters 
 

UP/DOWN Counter 

 

● Up counter and down counter is combined together to obtain an UP/DOWN counter.  
● A mode control (M) input is also provided to select either up or down mode.  
● A combinational circuit is required to be designed and used between each pair of flip-

flop in order to achieve the up/down operation. 
 

Type of up/down counters 

 

✔ UP/DOWN ripple counters 

✔ UP/DOWN synchronous counter 
 

UP/DOWN Ripple Counters 

● In the UP/DOWN ripple counter all the FFs operate in the toggle mode.  
● So either T flip-flops or JK flip-flops are to be used.  
● The LSB flip-flop receives clock directly. But the clock to every other FF is obtained 

from (Q = Q bar) output of the previous FF. 
 

UP counting mode (M=0) − The Q output of the preceding FF is connected to the clock of the 

next stage if up counting is to be achieved. For this mode, the mode select input M is at logic 0 

(M=0). 

 

DOWN counting mode (M=1) − If M = 1, then the Q bar output of the preceding FF is 

connected to the next FF. This will operate the counter in the counting mode. 

 

Example 

3-bit binary up/down ripple counter. 

 

● 3-bit − hence three FFs are required. 
● UP/DOWN − So a mode control input is essential. 
● For a ripple up counter, the Q output of preceding FF is connected to the clock input of 

the next one. 
● For a ripple up counter, the Q output of preceding FF is connected to the clock input of 

the next one. 
● For a ripple down counter, the Q bar output of preceding FF is connected to the clock 

input of the next one. 
● Let the selection of Q and Q bar output of the preceding FF be controlled by the mode 

control input M such that, If M = 0, UP counting. So connect Q to CLK. If M = 1, 

DOWN counting. So connect Q bar to CLK. 
 

Block Diagram 

 



 

 

 
 

 

Truth Table 

 

   
 

Operation 

S.N. Condition Operation 

1  Case 1 − With M = 0 (Up 

counting mode)  

If M = 0 and M bar = 1, then 

the AND gates 1 and 3 in 

fig. will be enabled whereas 

the AND gates 2 and Hence 

QA gets connected to the 

clock input of FF-B and QB 

gets connected to the clock 

input of FF-C. 

 

These connections are 

same as those for the 

normal up counter. Thus 

with M = 0 the circuit work 

as an up counter.4 will be 

disabled. 

 

2  Case 2: With M = 1 (Down 

counting mode)  

If M = 1, then AND gates 2 

and 4 in fig. are enabled 



 

 

whereas the AND gates 1 

and 3 are disabled. 

Hence QA bar gets 

connected to the clock 

input of FF-B and QB bar 

gets connected to the clock 

input of FF-C. 

 

These connections will 

produce a down counter. 

Thus with M = 1 the circuit 

works as a down counter. 

 

Modulus Counter (MOD-N Counter) 

 

● The 2-bit ripple counter is called as MOD-4 counter and 3-bit ripple counter is called 

as MOD-8 counter. 
●  So in general, an n-bit ripple counter is called as modulo-N counter.  

Where, MOD number = 2n. 

 

Type of modulus 

 

✔ 2-bit up or down (MOD-4) 

✔ 3-bit up or down (MOD-8) 

✔ 4-bit up or down (MOD-16) 
 

Application of counters 

 

● Frequency counters 
● Digital clock 
● Time measurement 
● A to D converter 
● Frequency divider circuits 
● Digital triangular wave generator. 
 
 

BOOTH’S ALGORITHM 

 
● Booth algorithm gives a procedure for multiplying binary integers in signed 2’s 

complement representation in efficient way, i.e., less number of additions/subtractions 

required.  
● It operates on the fact that strings of 0’s in the multiplier require no addition but just 

shifting and a string of 1’s in the multiplier from bit weight 2^k to weight 2^m can be 

treated as 2^(k+1 ) to 2^m. 
● As in all multiplication schemes, booth algorithm requires examination of the 

multiplier bits and shifting of the partial product. 
●  Prior to the shifting, the multiplicand may be added to the partial product, subtracted 

from the partial product, or left unchanged according to following rules: 



 

 

1. The multiplicand is subtracted from the partial product upon encountering the first least 

significant 1 in a string of 1’s in the multiplier 

2. The multiplier is added to the partial product upon encountering the first 0 (provided that 

there was a previous ‘1’) in a string of 0’s in the multiplier. 

3. The partial product does not change when the multiplier bit is identical to the previous 

multiplier bit. 

● Hardware Implementation of Booths Algorithm – The hardware implementation of 

the booth algorithm requires the register configuration shown in the figure below. 
 

BOOTH’S ALGORITHM FLOWCHART 

 

 
 

● We name the register as A, B and Q, AC, BR and QR respectively.  
● Qn designates the least significant bit of multiplier in the register QR.  
● An extra flip-flop Qn+1is appended to QR to facilitate a double inspection of the 

multiplier. 
●  Qn+1 is appended to QR to facilitate a double inspection of the multiplier.  
● The flowchart for the booth algorithm is shown below. 
 

   
 



 

 

● AC and the appended bit Qn+1 are initially cleared to 0 and the sequence SC is set to a 

number n equal to the number of bits in the multiplier.  
● The two bits of the multiplier in Qn and Qn+1are inspected.  
● If the two bits are equal to 10, it means that the first 1 in a string has been encountered.  
● This requires subtraction of the multiplicand from the partial product in AC. If the 2 

bits are equal to 01, it means that the first 0 in a string of 0’s has n = been encountered.  
● This requires the addition of the multiplicand to the partial product in AC. 
● When the two bits are equal, the partial product does not change.  

● An overflow cannot occur because the addition and subtraction of the multiplicand 

follow each other. 

●  As a consequence, the 2 numbers that are added always have a opposite signs, a 

condition that excludes an overflow.  

● The next step is to shift right the partial product and the multiplier (including Qn+1).  

● This is an arithmetic shift right (ashr) operation which AC and QR ti the right and leaves 

the sign bit in AC unchanged. 

● The sequence counter is decremented and the computational loop is repeated n times. 

Example – A numerical example of booth’s algorithm is shown below for n = 4. It shows the 

step by step multiplication of -5 and -7. 
 

 

MD = -5 = 1011, MD = 1011, MD'+1 = 0101 

MR = -7 = 1001  

The explanation of first step is as follows: Qn+1                              

AC = 0000, MR = 1001, Qn+1 = 0, SC = 4    

Qn Qn+1 = 10     

So, we do AC + (MD)'+1, which gives AC = 0101 

On right shifting AC and MR, we get 

AC = 0010, MR = 1100 and Qn+1 = 1 

 

OPERATION AC MR Qn+1 SC 

0000 1001 0 4  

AC + MD’ + 1 0101 1001 0  

ASHR 0010 1100 1 3 

AC + MR 1101 1100 1  

ASHR 1110 1110 0 2 

ASHR 1111 0111 0 1 

AC + MD’ + 1 0010 0011 1 0 

 

 

Product is calculated as follows: 

 

Product = AC MR 

Product = 0010 0011 = 35 

 

 

 

 



 

 

FLOATING POINT REPRESENTATION 

 
● The floating-point representation can implement operations for high range values. 
●  The numerical evaluations are carried out using floating-point values.  
● It can create calculations easy, scientific numbers are described as follows − 

 

The number 5,600,000 can be described as 0.56 * 107. 

 

Therefore, 0.56 is the mantissa and 7 is the value of the exponent. 

 

● Binary numbers can also be described in exponential form.  
● The description of binary numbers in the exponential form is called floating-point 

representation. 
●  The floating-point representation breaks the number into two parts, the left-hand side 

is a signed, fixed-point number known as a mantissa and the right-hand side of the 

number is known as the exponent.  
● The floating-point values are also authorized with a sign; 0 denoting the positive value 

and 1 denoting the negative value. 
 

The general structure of floating-point representation of a binary number − 

 

x=(x0*20+x1*21+x2*22±−−∓b− (n−1)*2− (n−1) ) 

 

Mantissa*2Exponent 

 

● In the following syntax, the decimal point is transferred left for negative exponents of 

two and right for positive exponents of two.  
● Both the mantissa and the exponent are signed values enabling negative numbers and 

negative exponents commonly. 
 

Example − Convert 111101.1000110 into floating-point value. 

 

111101.1000110 = 1.111011000110 * 25  converted to floating-point value 

 

→ Denotes negative sign value 

 

● In this example, the integer value is converted to a floating-point value by changing the 

radix point next to the signed integer and scaling up the number to the exponential form 

by multiplying the value with the base 2.  
● The value remains unaltered and this phase is known as the normalized method. 


