
 

 

                  Elementary theory of Scattering  

 
Scattering Theory  

 

⚫ Much of our understanding about the structure of matter is extracted from the 

scattering of particles. 

⚫ It is through scattering experiment that important building blocks of matter, such 

as atomic nucleus, the nucleons, and the various quarks, have been discovered. 

 

Scattering and Cross Section  

 

⚫ In a scattering experiment, one observes the collisions between a beam of 

incident particles and a target material. 

⚫ The total number of collisions over the duration of the experiment is proportional 

to the total number of incident particles and to the number of target particles per 

unit area in the path of the beam.  

⚫ After scattering , those particles that do not interact with the target continue their 

motion ( undisturbed ) in the forward direction, but those that interact with the 

target  get scattered ( deflected ) at some angle. 

             

⚫ The number of particle coming out varies from one direction to the other. The 

number of particles scattered into an element of solid angle dΏ (dΏ = sinθdθ dφ) 

       Is proportional to a quantity that plays a central role in physical scattering : th 

differential cross section. The differential cross section, which is denoted by  

        dσ (θ, ∅)/dΏ, is defined as the number of particles scattered into an element of 

solid angle of dΏ in the direction (θ,Ø) per unit time and incident flux. 
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⚫ Where 𝐽𝑖𝑛𝑐  is the incident flux ( or the incident current density ) ; it is equal to the 

number of incident particles per area per unit time. We can verify that  dσ /dΏ 

has the dimensions of an area ; hence it is appropriate to call it a differential cross 

section.  

⚫ The relationship between  dσ /dΏ and the total cross section σ is  
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⚫ Most scattering experiments are carried out in the laboratory frame in which 

target is initially at rest while the projectiles are moving. 

⚫ Calculations of the cross sections are generally easier to perform within the centre 

of mass (CM) frame in which the centre of mass of the projectiles - target system 

is rest (before and after collision ) 

⚫ In order to be able to compare the experimental measurements with the 

theoretical calculations, one has to know how to transform the cross sections from 

one frame into the other. 

⚫ The total cross is the same in both the frames, since the total number of collisions 

that take place does not depend on the frame in which the observation is carried 

out. 

⚫ As far the differential cross section dσ (θ, ∅)/dΏ, they are not the same in both 

frames, since the scattering angles (θ,Ø) are frame dependent. 
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Which, using cos 𝜃1 = 1/√𝑡𝑎𝑛21 + 1 , becomes  
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Limiting case ; (a) if 𝑚1 >> 𝑚2 , or when 
𝑚1

𝑚2
 → 0, the lab and CM results be the 

same. 
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                 (b) if 𝑚1 = 𝑚2 then  
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Scattering Amplitude of Spinless Particles  

We consider the case of scattering between two spinless, nonrelativistic particles of 

masses 𝑚1 and 𝑚2. During the scattering process, the particles interact with one 

another. If the interaction is time independent, we can describe the two - particle 

system with stationary states. 

 

                      Ψ (𝑟1⃗⃗⃗   , 𝑟2⃗⃗  ⃗ , t) =    Ψ (𝑟1⃗⃗⃗   , 𝑟2⃗⃗  ⃗) 𝑒−𝑖𝐸𝑇𝑡/ħ 

Where 𝐸𝑇 is the total energy and Ψ (𝑟1⃗⃗⃗   , 𝑟2⃗⃗  ⃗), is a solution of the time - independent 

Schrodinger equation. 
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  + �̂� ( 𝑟1⃗⃗⃗   , 𝑟2⃗⃗  ⃗) ] Ψ (𝑟1⃗⃗⃗   , 𝑟2⃗⃗  ⃗) = 𝐸𝑇 Ψ (𝑟1⃗⃗⃗   , 𝑟2⃗⃗  ⃗), 

�̂� ( 𝑟1⃗⃗⃗   , 𝑟2⃗⃗  ⃗) is the potential representing the interaction between two particles. 

We can reduce the eigenvalue problem to two decoupled eigenvalue problems; one 

for centre of mass (CM). which moves like a free particle with reduced mass 

 μ =  𝑚1𝑚2/ (𝑚1+𝑚2 ) which moves in the potential �̂�( r) . 

 

                   
−ħ2

2𝜇
 �⃗�  2

1 Ψ(𝑟 ) + �̂�( r) Ψ( r ) = E Ψ(𝑟  ) 

The problem of scattering between two particles is thus reduced to solving this 

equation. 

                    
−ħ2

2𝜇
 �⃗�  2 Ψ(𝑟 )⃗⃗ ⃗⃗   + �̂�( r) Ψ( r )  =  E Ψ(𝑟  ) 

( 𝛻   2+ 𝑘0
2 ) ∅𝑖𝑛𝑐  ( 𝑟  ) = 0 

Where 𝑘0
2
= 2μE/ħ2 . In this case μ behaves as a free particle before collision nd 

hence can be described by a plane wave. 

                                    ∅𝑖𝑛𝑐  ( 𝑟  ) = A 𝑒𝑖𝑘𝑧 

Where  𝑘0 is the wave vector associated with the incident particle and A is 

normalization factor. Thus, prior to the interaction with the target, the particles of 

incident beam are independent of each other , they move like free particles, each with 

momentum 𝑝  = ħ𝑘0 

 

When the incident wave collides or interacts with the target, an outgoing wave  

∅𝑧𝑒 (𝑟 ) is scattered out. In the case of an isotropic scattering, the scattered wave is 

spherically symmetric, having the form 𝑒𝑖𝑘𝑟/r . In general, however the scattered 

wave is not spherically symmetric ; its amplitude depends on the direction (θ,Ø) along 

which it is detected and hence  

                                 ∅𝑧𝑒 (𝑟 ) = A f  (θ,Ø) 
𝑒𝑖𝑘𝑟

𝑟
 

                                          

Where f ( θ, Ø ) is called scattering amplitude , �⃗�  is the wave vector associated with 

the scattered particle , and θ is the angle between 𝑘0
⃗⃗⃗⃗  and �⃗� . 

After the scattering has taken place , the total wave consists of a superposition of the 

incident plane wave and the scattered wave. 



 

 

 

                      Ψ ( 𝑟  ) =   ∅𝑖𝑛𝑐  ( 𝑟  )  + ∅𝑧𝑒 (𝑟 ) 

                                Ψ ( 𝑟  )   = A [  𝑒𝑖𝑘𝑧  +  f  (θ,Ø) 
𝑒𝑖𝑘𝑟

𝑟
 ]  

Where A is a normalization factor ; since A has no effect on the cross section.we will 

take it equal to one. 

 

                      

We shall next deduce the relation between the scattering amplitude f(θ) and the 

differential scattering cross - section σ (θ). The probability current density vector  

j (r,t ) is given by  

 

                         J ( r,t ) =  
−ħ2

2𝜇
 [ 𝛹∗∇Ψ - (𝛻 𝛹)∗Ψ ]  

If   j(r,t) is calculated with the wave function, we get interference terms between the 

incident and scattered waves. These do not appear in the usual experimental 

arrangements and therefor we can calculate the incident and scattered probability 

current densities by substituting the two parts of Ψ separately. 
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Where 1/𝑟2 is the solid angle subtended by unit area of the detector at the 

scattering centre. Also 

                   σ (θ) = 
ν |𝐴|2 |𝑓(𝜃)|2

ν |𝐴|2
 = |𝑓(𝜃)|2 

 The scattering amplitude is thus related to the experimentally observable differential  

scattering cross - section. Since σ (θ) has the dimension of (𝑙𝑒𝑛𝑔𝑡ℎ)2 



 

 

f (θ) has the dimension of length. 

 

The Born Approximation  

 

Born used an iteractive procedure for the evaluation of  Ψ(𝑟′) . In the first Bron - 

approximation Ψ(𝑟′) in the integral is replaced by the incoming plane wave 

 exp ( ik . 𝑟′) . This leads to an improved value for the wave function  Ψ( r ) which is 

used in the second Born approximation .  

 

Replacing  Ψ(𝑟′) by exp ( ik . 𝑟′)  

 f (θ) = - 
1

4𝜋
 ∫ 𝑒𝑥𝑝 (𝑖(𝑘 − 𝑘′) . 𝑟 ,) U(𝑟)′ d𝜏′ 

Where K and 𝑘′ are the wave vectors in the incident and scattered directions, 

respectively. The quantity (𝑘 − 𝑘′)ħ = qħ is then the momentum transfer from the 

incident particle to the scattering potential . Change in momentum qħ due to collision 

is given by  

                         qħ = (𝑘 − 𝑘′)ħ  or |𝑞| = 2|𝑘| sin 
𝜃

2
 

Replacing  (𝑘 − 𝑘′) by q in the equ of  f(θ)  

         f (θ) = - 
1

4𝜋
 ∫ 𝑒𝑥𝑝 (𝑖𝑞 . 𝑟 ,) U(𝑟)′ d𝜏′ 

The angular integration of above equ can easily carried out by taking the direction of 

q as the polar axis. Denoting the angle between q and 𝑟′ by 𝜃′. Also the integration 

over Ø gives 2π. The θ - integral can easily be evaluated writing  

                       Cos 𝜃′ = x or - sin 𝜃′ d𝜃′ = dx 

Again simplifying the equation we get  

f(θ) = - 
2𝜇

ħ2   ∫
𝑠𝑖𝑛 (𝑞𝑟′)

𝑞𝑟′

∞

0
 V(𝑟′)𝑟′2d𝑟′ 

Scattering cross section depends on the momentum of the incident particle kħ and 

scattering angle θ through the combination q = 2k sin (θ/2) 

 

 


