
 

 

 

 

FOURIER SERIES AND INTEGRALS 

 4.1 FOURIER SERIES FOR PERIODIC FUNCTIONS 

This section explains three Fourier series: sines, cosines, and exponentials eikx. 

Square waves (1 or 0 or −1) are great examples, with delta functions in the derivative. 

We look at a spike, a step function, and a ramp—and smoother functions too. 

Start with sinx. It has period 2π since sin(x + 2π) = sinx. It is an odd function since 

sin(−x) = −sinx, and it vanishes at x = 0 and x = π. Every function sinnx has those three 

properties, and Fourier looked at infinite combinations of the sines: 

 

If the numbers b1,b2,... drop off quickly enough (we are foreshadowing the 

importance of the decay rate) then the sum S(x) will inherit all three properties: 

 Periodic S(x + 2π) = S(x) Odd S(−x) = −S(x) S(0) = S(π) = 0 

200 years ago, Fourier startled the mathematicians in France by suggesting that any 

function S(x) with those properties could be expressed as an infinite series of sines. 

This idea started an enormous development of Fourier series. Our first step is to 

compute from S(x) the number bk that multiplies sinkx. 

Suppose . Multiply both sides by sinkx. Integrate from 0 to π: 

kx sinkxdx + ··· (2) 

On the right side, all integrals are zero except the highlighted one with n = k. This 

property of “orthogonality” will dominate the whole chapter. The sines make 90◦ 

angles in function space, when their inner products are integrals from 0 to π: 

 

 S ( x )= b 1 sin x + b 2 sin2 x + b 3 sin3 x + ··· = 

∞  

n =1 
b n sin nx (1) 

 

  

0 
sin nx sin kxdx =0 if n = k. (3) 
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 Zero comes quickly if we integrate 0. So we use 

this: 

 Product of sines  (4) 

Integrating cosmx with m = n − k and m = n + k proves orthogonality of the sines. The 

exception is when n = k. Then we are integrating (sin : 

  . (5) 

The highlighted term in equation (2) is bkπ/2. Multiply both sides of (2) by 2/π: 

 

Notice that S(x)sinkx is even (equal integrals from −π to 0 and from 0 to π). 

I will go immediately to the most important example of a Fourier sine series. S(x) 

is an odd square wave with SW(x) = 1 for 0 < x < π. It is drawn in Figure 4.1 as an odd 

function (with period 2π) that vanishes at x = 0 and x = π. SW(x) = 1 

 x 

Figure 4.1: The odd square wave with SW(x + 2π) = SW(x) = {1 or 0 or −1}. 

 Example 1 Find the Fourier sine coefficients bk of the square wave SW(x). 

 Solution For k = 1,2,... use the first formula (6) with S(x) = 1 between 0 and π: 

 
 (7) 

The even-numbered coefficients b2k are all zero because cos2kπ = cos0 = 1. The odd-

numbered coefficients bk = 4/πk decrease at the rate 1/k. We will see that same 1/k 

decay rate for all functions formed from smooth pieces and jumps. 

Put those coefficients 4/πk and zero into the Fourier sine series for SW(x): 

 
 (   )=   (  ) 

b k = 
2 

π 

  

0 
S ( x sin ) kxdx = 

1 

π 

  

  
S ( x ) sin kxdx. (6) 

 
− π 0 π 2 π 



 

 

 Square wave SW  (8) 

Figure 4.2 graphs this sum after one term, then two terms, and then five terms. You 

can see the all-important Gibbs phenomenon appearing as these “partial sums” 

include more terms. Away from the jumps, we safely approach SW(x) = 1 or −1. At x = 

π/2, the series gives a beautiful alternating formula for the number π: 

  so that  

The Gibbs phenomenon is the overshoot that moves closer and closer to the jumps. Its 

height approaches 1.18... and it does not decrease with more terms of the series! 

Overshoot is the one greatest obstacle to calculation of all discontinuous functions 

(like shock waves in fluid flow). We try hard to avoid Gibbs but sometimes we can’t. 

Solid curve  5 terms: 

overshoot−→ 

SW = 1 

 −π xx 

Figure 4.2: Gibbs phenomenon: Partial sums  overshoot near jumps. 

Fourier Coefficients are Best 

Let me look again at the first term b1 sinx = (4/π)sinx. This is the closest possible 

approximation to the square wave SW, by any multiple of sinx (closest in the least 

squares sense). To see this optimal property of the Fourier coefficients, minimize the 

error over all b1: 

The error is  The b1 derivative is  

The integral of sin2 x is π/2. So the derivative is zero when . 

This is exactly equation (6) for the Fourier coefficient. 

Each bk sinkx is as close as possible to SW(x). We can find the coefficients bk one at 

a time, because the sines are orthogonal. The square wave has b2 = 0 because all other 

π 

Dashed 
4 

π 

sin x 

1 

π 
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multiples of sin2x increase the error. Term by term, we are “projecting the function 

onto each axis sinkx.” 

Fourier Cosine Series 

The cosine series applies to even functions with C(−x) = C(x): 

Cosine series  (10) 

Every cosine has period 2π. Figure 4.3 shows two even functions, the repeating 

ramp RR(x) and the up-down train UD(x) of delta functions. That sawtooth ramp 

RR is the integral of the square wave. The delta functions in UD give the derivative 

of the square wave. (For sines, the integral and derivative are cosines.) RR and UD 

will be valuable examples, one smoother than SW, one less smooth. 

First we find formulas for the cosine coefficients a0 and ak. The constant term a0 is 

the average value of the function C(x): 

 a0 = Average  (11) 

I just integrated every term in the cosine series (10) from 0 to π. On the right side, the 

integral of a0 is a0π (divide both sides by π). All other integrals are zero: 

 . (12) 

In words, the constant function 1 is orthogonal to cosnx over the interval [0,π]. 

The other cosine coefficients ak come from the orthogonality of cosines. As with 

sines, we multiply both sides of (10) by coskx and integrate from 0 to π: 

 

You know what is coming. On the right side, only the highlighted term can be nonzero. 

Problem 4.1.1 proves this by an identity for cosnxcoskx—now (4) has a plus sign. The 

bold nonzero term is akπ/2 and we multiply both sides by 2/π: 

 

Again the integral over a full period from −π to π (also 0 to 2π) is just doubled. 

 
 (   )=  (  ) 

a k = 
2 

π 

  

0 
C ( x ) cos kxdx = 

1 

π 

  

  
C ( x ) cos kxdx. (13) 
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Repeating Ramp 

 Integral of Square Wave − − − 

Figure 4.3: The repeating ramp RR and the up-down UD (periodic spikes) are even. 

The derivative of RR is the odd square wave SW. The derivative of SW is UD. 

Example 2 Find the cosine coefficients of the ramp RR(x) and the up-down UD(x). 

Solution The simplest way is to start with the sine series for the square wave: 

 . 

Take the derivative of every term to produce cosines in the up-down delta function: 

Up-down series . (14) 

Those coefficients don’t decay at all. The terms in the series don’t approach zero, so 

officially the series cannot converge. Nevertheless it is somehow correct and important. 

Unofficially this sum of cosines has all 1’s at x = 0 and all −1’s at x = π. Then +∞ and −∞ 

are consistent with 2δ(x) and −2δ(x − π). The true way to recognize δ(x) is by the test

 and Example 3 will do this. 

For the repeating ramp, we integrate the square wave series for SW(x) and add the 

average ramp height a0 = π/2, halfway from 0 to π: 

Ramp series RR  

The constant of integration is a0. Those coefficients ak drop off like 1/k2. They could be 

computed directly from formula (13) using , but this requires an integration 

by parts (or a table of integrals or an appeal to Mathematica or Maple). It was much easier 

to integrate every sine separately in SW(x), which makes clear the crucial point: Each 

“degree of smoothness” in the function is reflected in a faster decay rate of its Fourier 

coefficients ak and bk. 

No decay Delta functions (with spikes) 

1/k decay Step functions (with jumps) 

1/k2 decay Ramp functions (with corners) 

1/k4 decay Spline functions (jumps in rk decay with r < 1

 Analytic functions like 1/(2 − cosx) 

2δ(x)  2δ(x − 2π) 

Up-down UD(x) 

 

 

−π 0 

 2δ(x + π) 

π 2π 

 2δ(x π) 
 

π 

RR ( x )= | x | 

RR ( x ) 



 

 

Each integration divides the kth coefficient by k. So the decay rate has an extra 1/k. 
The “Riemann-Lebesgue lemma” says that ak and bk approach zero for any continuous 

function (in fact whenever  is finite). Analytic functions achieve a new level 
of smoothness—they can be differentiated forever. Their Fourier series and Taylor 
series in Chapter 5 converge exponentially fast. 

The poles of 1/(2−cosx) will be complex solutions of cosx = 2. Its Fourier series 

converges quickly because rk decays faster than any power 1/kp. Analytic functions are 

ideal for computations—the Gibbs phenomenon will never appear. 

Now we go back to δ(x) for what could be the most important example of all. 

 Example 3 Find the (cosine) coefficients of the delta function δ(x), made 2π-

periodic. 

Solution The spike occurs at the start of the interval [0,π] so safer to integrate from −π to 

π. We find a0 = 1/2π and the other ak = 1/π (cosines because δ(x) is even): 

 Average  Cosines  

Then the series for the delta function has all cosines in equal amounts: 

 

Again this series cannot truly converge (its terms don’t approach zero). But we can graph 

the sum after cos5x and after cos10x. Figure 4.4 shows how these “partial sums” are doing 

their best to approach δ(x). They oscillate faster and faster away from x = 0. 

Actually there is a neat formula for the partial sum δN(x) that stops at cosNx. Start by 

writing each term 2cosθ as eiθ + e−iθ: 

 . 

This is a geometric progression that starts from e−iNx and ends at eiNx. We have powers of 

the same factor eix. The sum of a geometric series is known: 

Partial sum 

 N( ) = up to cosNx
 =  .

 (17) 

This is the function graphed in Figure 4.4. We claim that for any N the area underneath 

δN(x) is 1. (Each cosine integrated from −π to π gives zero. The integral of 1/2π is 1.) The 

central “lobe” in the graph ends when  comes down to zero, and that 

 δ ( x )= 
1 

2 π 
+ 

1 

π 
[ cos x + cos 2 x + cos 3 x + ··· ] . (16) 

δ x 
1 

2 π 

e i ( N + 1 
2 ) x − e − i ( N + 1 

2 ) x 

e ix/ 2 − e − ix/ 2 
1 

2 π 

sin( N + 1 
2 ) x 

sin 1 
2 x 



 

 

happens when . I think the area under that lobe (marked by bullets) 

approaches the same number 1.18... that appears in the Gibbs phenomenon. 

In what way does δN(x) approach δ(x)? The terms 

cosnx in the series jump around at each point , not 

approaching zero. At x = π we see and the sum is 1/2π or −1/2π. The bumps in 

the partial sums don’t get smaller than 1/2π. The right test for the delta function δ(x) is 

to multiply by a smooth k kx and integrate, because we only 

know δ(x) from its integrals  

of δN(x) to δ(x) −πδN(x)f(x)dx = a0 + ··· + aN → f(0). (18) Weak convergence π 

In this integrated sense (weak sense) the sums δN(x) do approach the delta function! 

The convergence of a0 + ··· + aN is the statement that at x = 0 the Fourier series of a smooth

 converges to the number f(0). 

 

Figure 4.4: The sums δN(x) = (1+2cosx+···+2cosNx)/2π try to approach δ(x). 

Complete Series: Sines and Cosines 

Over the half-period [0,π], the sines are not orthogonal to all the cosines. In fact the 

integral of sinx times 1 is not zero. So for functions F(x) that are not odd or even, we 

move to the complete series (sines plus cosines) on the full interval. Since our 

functions are periodic, that “full interval” can be [−π,π] or [0,2π]: 

 

On every “2π interval” all sines and cosines are mutually orthogonal. We find the 

Fourier coefficients ak and bk in the usual way: Multiply (19) by 1 and coskx and sinkx, 

and integrate both sides from −π to π: 

− π π 0 

δ 5 (  ) 

δ 10 ( x ) 

height11  2  

height21 / 2 π 

height  1  2  

height1 / 2 π 

 F ( x )= a 0 + 

∞  

n =1 
a n cos nx + 

∞  

n =1 
b n sin nx. (19) 



 

 

a  ak  bk  

Orthogonality kills off infinitely many integrals and leaves only the one we want. 

Another approach is to split F(x) = C(x) + S(x) into an even part and an odd part. 

Then we can use the earlier cosine and sine formulas. The two parts are 

 . (21) 

The even part gives the a’s and the odd part gives the b’s. Test on a short square pulse 

from x = 0 to x = h—this one-sided function is not odd or even. 

1 for 0 < x < h 

 Example 4 Find the a’s and b’s if F(x) = square pulse =  

0 for h < x < 2π 

 Solution The integrals for a0 and ak and bk stop at x = h where F(x) drops to zero. 

The coefficients decay like 1/k because of the jump at x = 0 and the drop at x = h: 

1 h h 

 Coefficients of square pulse  =  = average 

2π 

kh πk πk 

k 

If we divide F(x) by h, its graph is a tall thin rectangle: height , base h, and area = 1. 

When h approaches zero, F(x)/h is squeezed into a very thin interval. The tall rectangle 

approaches (weakly) the delta function δ(x). The average height is area/2π = 1/2π. Its 

other coefficients ak/h and bk/h approach 1/π and 0, already known for δ(x): 

 F(x) → ak 1 sinkh 1

 bk 1 − coskh → → 

and = 0 as h 0. (23) hh πkh 

When the function has a jump, its Fourier series picks the halfway point. This 

example would converge to  and , halfway up and halfway down. 

The Fourier series converges to F(x) at each point where the function is smooth. 

This is a highly developed theory, and Carleson won the 2006 Abel Prize by proving 

convergence for every x except a set of measure zero. If the function has finite energy 

, he showed that the Fourier series converges “almost everywhere.” 

a k = 
1 

π 

 h 

0 
cos kxdx = 

sin 
b = 

1 

π 

 h 

0 
sin kxdx = 

1  cos  
. (22) 



 

 

Energy in Function = Energy in Coefficients 

There is an extremely important equation (the energy identity) that comes from 

integrating (F(x))2. When we square the Fourier series of F(x), and 

integrate from 

, all the “cross terms” drop out. The only nonzero integrals come 

from 12 and cos kx and sin2 kx, multiplied by  and a2k and b2k: 

The energy in F(x) equals the energy in the coefficients. The left side is like the length 

squared of a vector, except the vector is a function. The right side comes from an 

infinitely long vector of a’s and b’s. The lengths are equal, which says that the Fourier 

transform from function to vector is like an orthogonal matrix. Normalized by 

constants , we have an orthonormal basis in function space. 

What is this function space? It is like ordinary 3-dimensional space, except the 
“vectors” are functions. Their length  comes from integrating instead of adding: 

. These functions fill Hilbert space. The rules of geometry hold: 

Length ) comes from the inner product (  

Orthogonal functions (f,g) = 0 produce a right triangle:  

I have tried to draw Hilbert space in Figure 4.5. It has infinitely many axes. The 

energy identity (24) is exactly the Pythagoras Law in infinite-dimensional space. 

 coskx sinx 

π 

  f = A0v0 + A1v1 + B1v2 + ··· 

function in 

Hilbert space 

cosx π 

Figure 4.5: The Fourier series is a combination of orthonormal v’s (sines and cosines). 
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Complex Exponentials ckeikx 

This is a small step and we have to take it. In place of separate formulas for a0 and ak 

and bk, we will have one formula for all the complex coefficients ck. And the function 

F(x) might be complex (as in quantum mechanics). The Discrete Fourier Transform 

will be much simpler when we use N complex exponentials for a vector. We practice 

in advance with the complex infinite series for a 2π-periodic function: 

 

cosine series for an even function. If everyIf every cn = c−n, we can combine einxcwithn = 

−e−c−inxn, we useinto 2cosinxnx−. Then (25) is thee−inx = 2isinnx. 

e 

Then (25) is the sine series for an odd function and the c’s are pure imaginary. 

To find ck, multiply (25) by e−ikx (not eikx) and integrate from −π to π: 

 ckeikxe−ikxdx+··· 

The complex exponentials are orthogonal. Every integral on the right side is zero, 

except for the highlighted term (when n = k and eikxe−ikx = 1). The integral of 1 is 2π. 

That surviving term gives the formula for ck: 

 
Notice that c0 = a0 is still the average of F(x), because e0 = 1. The orthogonality of einx 

and eikx is checked by integrating, as always. But the complex inner product 

 
(F,G) takes the complex conjugate G of G. Before integrating, change eikx to e−ikx: 

Complex 
inner 
product

 Orthogonality of 

einx and eikx k π

 (27) 
. 

Example 5 Add the complex series for 1/(2 − eix) and 1/(2 − e−ix). These geometric 

series have exponentially fast decay from 1/2k. The functions are analytic. 

 F ( x )= c 0 + c 1 e ix + c − 1 e − ix + ··· = 

∞  

n = − ∞ 
c n e 

inx 
(25) 

 

  

  
F ( x ) e 

− ikx 
dx =2 πc k for k =0 , ± 1 ,... (26) 



 

 

 

When we add those functions, we get a real analytic function: 

  (28) 

This ratio is the infinitely smooth function whose cosine coefficients are 1/2k. 

 Example 6 Find ck for the 2π-periodic 

shifted pulse 

 0 [−π,π] 

 Solution The integrals (26) from −π to π become integrals from s to s + h: 

  .

 (29) 

Notice above all the simple effect of the shift by s. It “modulates” each ck by e−iks. The 

energy is unchanged, the integral of |F|2 just shifts, and all |e−iks| = 1: 

 Shift F(x) to F(x − s) ←→ Multiply ck by e−iks. (30) 

Example 7 Centered pulse with shift s = −h/2. The square pulse becomes centered around 

x = 0. This even function equals 1 on the interval from −h/2 to h/2: 

Centered by s = −h
2. 

2 

Divide by h for a tall pulse. The ratio of sin(kh/2) to kh/2 is the sinc function: 

 Tall pulse  Fcentered 1

 kh ikx ∞

for − h/2 ≤ x ≤ h/2  1/h

elsewhere in [−π,π] 
−∞ 

That division by h produces area = 1. Every coefficient approaches  as h → 0. 

The Fourier series for the tall thin pulse again approaches the Fourier series for δ(x). 

c k = e 
ikh/ 2 1 − e − ikh 

2 πik 
= 

1 

2  

sin(  2) 

 

h 
= 

2 π 

 
sinc 

 

2 

  

e = 

 

0 



 

 

Hilbert space can contain vectors c = 

(c0,c1,c−1,c2,c−2,···) instead of functions F(x). The length 

of. The function space is often denoted by L2 and the vector space is 2. The energy 

identity is trivial (but deep). Integrating the Fourier series for F(x) times ), 

orthogonality kills every . This leaves the ckck = |ck|2: 

 

This is Plancherel’s identity: The energy in x-space equals the energy in k-space. 

Finally I want to emphasize the three big rules for operating on : 

dF 

1. The derivative  has Fourier coefficients ikck (energy moves to high k). dx 

2. The integral of F(x) has Fourier coefficients = 0 (faster decay). 

3. The shift to F(x−s) has Fourier coefficients e−iksck (no change in energy). 

Application: Laplace’s Equation in a Circle 

Our first application is to Laplace’s equation. The idea is to construct u(x,y) as an 

infinite series, choosing its coefficients to match u0(x,y) along the boundary. 

Everything depends on the shape of the boundary, and we take a circle of radius 1. 

Begin with the simple solutions 1, r cosθ, r sinθ, r2 cos2θ, r2 sin2θ, ... to Laplace’s 

equation. Combinations of these special solutions give all solutions in the circle: 

 u(r,θ) = a0 + a1r cosθ + b1r sinθ + a2r2 cos2θ + b2r2 sin2θ + ··· (32) 

It remains to choose the constants ak and bk to make u = u0 on the boundary. For a 

circle u0(θ) is periodic, since θ and θ + 2π give the same point: 

Set r = 1 u0(θ) = a0 + a1 cosθ +b1 sinθ +a2 cos2θ + b2 sin2θ + ··· (33) 

This is exactly the Fourier series for u0. The constants ak and bk must be the 

Fourier coefficients of u0(θ). Thus the problem is completely solved, if an infinite 

series (32) is acceptable as the solution. 

Example 8 Point source u0 = δ(θ) at θ = 0 The whole boundary is held at u0 = 0, except for 

the source at x = 1, y = 0. Find the temperature u(r,θ) inside. 



 

 

 u ( r,θ )= 
1 

2 π 

 π 

− π 
u 0 ( ϕ ) 

1 − r 2 

1+ r 2 − 2 r cos( θ − ϕ ) 
dϕ (37) 

 
u 0 ( ϕ ) dϕ/ 2 π 

Fourier series for 

Inside the circle, each cosnθ is multiplied by rn: 

 Infinite series for u

 

Poisson managed to sum this infinite series! It involves a series of powers of reiθ. So 

we know the response at every (r,θ) to the point source at r = 1, θ = 0: 

 
At the center r = 0, this produces the average of u0 = δ(θ) which is a0 = 1/2π. On the 

boundary r = 1, this produces u = 0 except at the point source where cos0 = 1: 

 1 1 − r2 1 1 + r 

 On the ray θ = 0 u(r,θ) = =

 . (36) 

 2π 1 + r2 − 2r 2π 1 − r 

As r approaches 1, the solution becomes infinite as the point source requires. 

 Example 9 Solve for any boundary values u0(θ) by integrating over point 

sources. 

When the point source swings around to angle ϕ, the solution (35) changes from θ to θ − 

ϕ. Integrate this “Green’s function” to solve in the circle: 

Ar r = 0 the fraction disappears and u is the average . The steady state temperature at 

the center is the average temperature around the circle. 

Poisson’s formula illustrates a key idea. Think of any u0(θ) as a circle of point sources. 

The source at angle ϕ = θ produces the solution inside the integral (37). Integrating around 

the circle adds up the responses to all sources and gives the response to u0(θ). 

Example 10 u0(θ) = 1 on the top half of the circle and u0 = −1 on the bottom half. 

Solution The boundary values are the square wave SW(θ). Its sine series is in (8): 

 u ( r,θ )= 
1 

2 π 

1 − r 2 

1+ r 2 − 2 r cos θ 
(35) 



 

 

 Square wave for u

 (38) 

Inside the circle, multiplying by r, r2, r3,... gives fast decay of high frequencies: 

 Rapid decay inside

 

Laplace’s equation has smooth solutions, even when u0(θ) is not smooth. 

  WORKED EXAMPLE  

A hot metal bar is moved into a freezer (zero temperature). The sides of the bar 

are coated so that heat only escapes at the ends. What is the temperature u(x,t) along 

the bar at time t? It will approach u = 0 as all the heat leaves the bar. 

Solution The heat equation is ut = uxx. At t = 0 the whole bar is at a constant temperature, 

say u=1. The ends of the bar are at zero temperature for all time t>0. This is an initial-

boundary value problem: 

 Heat equation ut = uxx with u(x,0) = 1 and u(0,t) = u(π,t) = 0. (40) 

Those zero boundary conditions suggest a sine series. Its coefficients depend on t: 

Series solution of the heat equation  (41) 

The form of the solution shows separation of variables. In a comment below, we look 

for products A(x)B(t) that solve the heat equation and the boundary conditions. What 

we reach is exactly A(x) = sinnx and the series solution (41). 

Two steps remain. First, choose each bn(t)sinnx to satisfy the heat equation: 

 
Notice n − n. Now determine each bn(0) from the initial condition u(x,0) = 1 

on (0,π). Those numbers are the Fourier sine coefficients of SW(x) in equation (38): 

 

This completes the series solution of the initial-boundary value problem: 

   =   b  n ( t ) sin nx = − n 2 b n ( t ) sin nx b n ( t )= e − n 2 t b n (0). 

 

∞  

1 
b n (0) sin nx =1 b n (0)= 

4 

πn 
forodd n 



 

 

Bar temperature  (42) 

For large n (high frequencies) the decay of e−n2t is very fast. The dominant term (4/π)e−t 

sinx for large times will come from n = 1. This is typical of the heat equation and all 

diffusion, that the solution (the temperature profile) becomes very smooth as t 

increases. 

Numerical difficulty I regret any bad news in such a beautiful solution. To compute 

u(x,t), we would probably truncate the series in (42) to N terms. When that finite 

series is graphed on the website, serious bumps appear in uN(x,t). You ask if there is a 

physical reason but there isn’t. The solution should have maximum temperature at the 

midpoint x = π/2, and decay smoothly to zero at the ends of the bar. 

Those unphysical bumps are precisely the Gibbs phenomenon. The initial u(x,0) 

is 1 on (0,π) but its odd reflection is −1 on (−π,0). That jump has produced the slow 

4/πn decay of the coefficients, with Gibbs oscillations near x = 0 and x = π. The sine 

series for u(x,t) is not a success numerically. Would finite differences help? 

Separation of variables We found bn(t) as the coefficient of an eigenfunction sinnx. 

Another good approach is to put u = A(x)B(t) directly into ut = uxx: 

 Separation ) requires  constant. 

(43) 

is constant in space, is constant in time, and they are equal: 

  gives A = sin√λx and cos√λx  gives B = e−λt 

The products AB = e−λt sin√λx and e−λt cos√λx solve the heat equation for any number 

λ. But the boundary condition u(0,t) = 0 eliminates the cosines. Then u(π,t) = 0 

requires λ = n2 = 1,4,9,... to have sin√λπ = 0. Separation of variables has recovered the 

functions in the series solution (42). 

Finally u(x,0) = 1 determines the numbers 4/πn for odd n. We find zero for even n 

because sinnx has n/2 positive loops and n/2 negative loops. For odd n, the extra 

positive loop is a fraction 1/n of all loops, giving slow decay of the coefficients. 

Heat bath (the opposite problem) The solution on the website is 1 − u(x,t), because 

it solves a different problem. The bar is initially frozen at U(x,0) = 0. It is placed into 

a heat bath at the fixed temperature U = 1 (or U = T0). The new unknown is U and its 

boundary conditions are no longer zero. 



 

 

The heat equation and its boundary conditions are solved first by UB(x,t). In this 

example UB ≡ 1 is constant. Then the difference V = U −UB has zero boundary values, 

and its initial values are V = −1. Now the eigenfunction method (or 

separation of variables) solves for V . (The series in (42) is multiplied 

by −1 to account for 1.) Adding back UB solves the heat bath problem: U = UB + V = 1 − 

x,t 

Here UB ≡ 1 is the steady state solution at t = ∞, and V is the transient solution. The 

transient starts at V = −1 and decays quickly to V = 0. 

Heat bath at one end The website problem is different in another way too. The Dirichlet 

condition u(π,t) = 1 is replaced by the Neumann condition Only the left 

end is in the heat bath. Heat flows down the metal bar and out at the far end, now 

located at x = 1. How does the solution change for fixed-free? 

Again UB = 1 is a steady state. The boundary conditions apply to V = 1 − UB: 

 
Those eigenfunctions give a new form for the sum of Bn(t)An(x): 

Fixed-free solution  (45) 

All frequencies shift by  and multiply by π, because  has a free end at x = 
1. The crucial question is: Does orthogonality still hold for these new eigenfunctions 

sin  on [0,1]? The answer is yes because this fixed-free “Sturm–Liouville 
problem”  is still symmetric. 
Summary The series solutions all succeed but the truncated series all fail. We can see 

the overall behavior of u(x,t) and V (x,t). But their exact values close to the jumps are 

not computed well until we improve on Gibbs. 

We could have solved the fixed-free problem on [0,1] with the fixed-fixed solution 

on [0,2]. That solution will be symmetric around x = 1 so its slope there is zero. Then 

rescaling x by 2π changes sin(  into sin(2n + 1)x. I hope you like the graphics 

created by Aslan Kasimov on the cse website. 

Problem Set 4.1 

1 Find the Fourier series on −π ≤ x ≤ π for 

(a) f(x) = sin3 x, an odd function 

, an even function 

 
 

V (0)=0 and V  (1)=0 leadto A ( x )= sin 

 

n + 
1 

2 

  

πx. (44) 



 

 

(d) f(x) = ex, using the complex form of the series. 

What are the even and odd parts of f(x) = ex and f(x) = eix? 

2 From Parseval’s formula the square wave sine coefficients satisfy 

 

Derive the remarkable sum  

3 If a square pulse is centered at x = 0 to give 

 f(x) = 1 for ) = 0 for  

draw its graph and find its Fourier coefficients ak and bk. 

4 Suppose f has period T instead of 2x, so that f(x) = f(x+T). Its graph from −T/2 

to T/2 is repeated on each successive interval and its real and complex Fourier 

series are 

 

Multiplying by the right functions and integrating from −T/2 to T/2, find ak, bk, 

and ck. 

5 Plot the first three partial sums and the function itself: 

 

Why is 1/k3 the decay rate for this function? What is the second derivative? 

6 What constant function is closest in the least square sense to f = cos2 x? What 

multiple of cosx is closest to f = cos3 x? 

7 Sketch the 2π-periodic half wave with f(x) = sinx for 0 < x < π and f(x) = 0 for −π 

< x < 0. Find its Fourier series. 

8 (a) Find the lengths of the vectors ) in 

Hilbert space and test the Schwarz 

 inequality

(b) For the functionsand 

use part (a) to find the numerical value of each term in 



 

 

 Substitute for and use orthogonality (or Parseval). 

9 Find the solution to Laplace’s equation with u0 = θ on the boundary. Why is this 

the imaginary part of 2(z − z2/2 + z3/3···) = 2log(1 + z)? Confirm that on the unit 

circle z = eiθ, the imaginary part of 2log(1 + z) agrees with θ. 

10 If the boundary condition for Laplace’s equation is u0 = 1 for 0 < θ < π and u0 = 

0 for −π < θ < 0, find the Fourier series solution u(r,θ) inside the unit circle. 

What is u at the origin? 

11 With boundary values, what is the 

Fourier series solution to Laplace’s equation in the circle? Sum the series. 

12 (a) Verify that the fraction in Poisson’s formula satisfies Laplace’s equation. 

(b) What is the response u(r,θ) to an impulse at the point (0,1), at the angle ϕ 

= π/2? 

(c) If u0(ϕ) = 1 in the quarter-circle 0 < ϕ < π/2 and u0 = 0 elsewhere, show that 

at points on the horizontal axis (and especially at the origin) 

  by using 

. 

13 When the centered square pulse in Example 7 has width h = π, find 

(a) its energy  by direct integration 

(b) its Fourier coefficients ck as specific numbers 

(c) the sum in the energy identity (31) or (24) 

If h = 2π, why is c0 = 1 the only nonzero coefficient? What is F(x)? 

14 In Example 5, F(x) = 1+(cosx)/2+···+(cosnx)/2n+··· is infinitely smooth: 

(a) If you take 10 derivatives, what is the Fourier series of d10F/dx10? 

(b) Does that series still converge quickly? Compare n10 with 2n for n1024. 

15 (A touch of complex analysis) The analytic function in Example 5 blows up when 

4cosx = 5. This cannot happen for real x, but equation (28) shows blowup if eix 



 

 

= 2 or . In that case we have poles at x = ±ilog2. Why are there also poles at all 

the complex numbers x = ±ilog2 + 2πn? 

16 (A second touch) Change 2’s to 3’s so that equation (28) has 1/(3 − eix) + 1/(3 − 

e−ix). Complete that equation to find the function that gives fast decay at the rate 

1/3k. 

17 (For complex professors only) Change those 2’s and 3’s to 1’s: 

. 

A constant! What happened to the pole at eix = 1? Where is the dangerous series 

(1 + eix + ···) + (1 + e−ix + ···) = 2 + 2cosx + ··· involving δ(x)? 

18 Following the Worked Example, solve the heat equation ut = uxx from a point 

source u(x,0) = δ(x) with free boundary conditions 
Use the infinite cosine series for δ(x) with time decay factors bn(t). 


