


Particle Properties Of waves Part 4 Photoelectric Effect

Einstein's Explanation Of Photoelectric Effect

- Inspired by Planck's quantization of EM radiation, Einstein in 1905 gave a theoretical explanation for the dependence of photoelectric emission on the frequency of the incident radiation.
- He assumed that light is made of corpuscles(particles) each carrying an energy hv, called photons.
- When a beam of light of frequency v is incident on a metal, each photon transmits all its energy hv to an electron near the surface; in the process, the photon is entirely absorbed by the electron.

Work Function & Threshold Frequency

- Every metal has free electrons that move from one atom to another.
- The minimum energy required to dislodge the electron from the metal is called the work function (W) of that metal.
- Threshold Frequency: The minimum frequency required by the incident wave to dislodge the electron from the metal.
- Hence no electron can be emitted from the metal's surface unless hv > W

• If v_0 is the threshold frequency then work function, $W = hv_0$

$$hv = W + K$$
 becomes
 $hv = h\nu_0 + K$ or $K = h(v - \nu_0)$

- No electron can be ejected from the metal unless $\mathbf{v} > \mathbf{v_0}$ (since kinetic energy cannot be negative)
- The photoelectric effect cannot occur when $\mathbf{v} < \mathbf{v_0}$ regardless of the intensity of radiation.
- The ejected electrons acquire their kinetic energy from the excess energy $\mathbf{h} (\mathbf{v} \mathbf{v}_0)$ supplied by the incident radiation.

Review

- No emission below threshold.
- Threshold frequency depends on the properties of the metal.
- The number of electrons ejected increases with the intensity of the light.
- The kinetic energy of the ejected electrons depends on the frequency but not on the intensity of the beam.

Problems

1. How can we increase the number of electrons in photoelectric effect?

- A) By increasing the frequency
- B) By decreasing the frequency
- C) By increasing the intensity
- D) By decreasing the intensity

Solution: C) By increasing the intensity

• The number of ejected electrons increases with the intensity of the light and hence the photoelectric effect.

2. The kinetic energy of the photoelectron depends on the

- A) Wavelength of the incident wave.
- B) Intensity of the incident wave
- C) Amplitude of the incident wave.
- D) None of the above.

Solution: A) Wavelength of the incident wave

• Kinetic energy is proportional to frequency $\mathbf{K} \propto \mathbf{v}$

Also we know $C = v\lambda$

$$\mathbf{v} = \frac{c}{\lambda}$$
 Which means $\mathbf{K} = \frac{c}{\lambda}$

3. When an ultraviolet beam of wavelength λ = 80 nm falls on a lead surface, it produces photoelectrons with maximum energies 11.390 eV. Calculate the work function, the cut-off frequency, and the cut-off wavelength of lead.

Solution: Given

$$\lambda = 80 \text{ nm} = 80 \times 10^{-9} \text{ nm}$$

$$W = ?$$

$$v_0 = ?$$

$$\lambda_0 = ?$$

Work function

By Photoelectric effect hv = W+ K

Also
$$E = hv = \frac{hc}{\lambda}$$

$$hc = 1.24 \times 10^{-6} ev$$

$$\frac{hc}{\lambda} = W + K$$

$$W = \frac{hc}{\lambda} - K$$

$$= \frac{1.24 \times 10^{-6}}{80 \times 10^{-9}} - 11.390 \text{ eV}$$

$$= 4.11 ev$$

Cut off frequency

$$W = h\nu_0 = 4.11 \text{ eV}$$

$$v_0 = \frac{4.11 \times 1.6 \times 10^{-19}}{6.626 \times 10^{-34} Is}$$

$$\nu_0$$
= 10^{15} Hz

Cut off wavelength

$$\lambda_0 = \frac{C}{\nu_0}$$

$$= \frac{3 \times 10^8 m/s}{10^{-15} Hz} = 3 \times 10^{-7} = 300 \text{ nm}$$

4. Threshold wavelength for photoelectric effect on sodium is $5000 \ A^0$. Its work function is

- (b) $16 \times 10^{-14} \text{ J}$
- (c) $4 \times 10^{-19} J$
- (d) $4 \times 110^{-81} J$

Solution : (c) $4 \times 10^{-19} J$

$$\lambda = 5000A^0 = 5000 \times 10^{10} m$$

$$W = \frac{hc}{\lambda_0} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{5000 \times 10^{-10}}$$

$$W = 4 \times 10^{-19} I$$

- 5. When light of wavelength 300 nm falls on a photoelectric emitter, photoelectrons are liberated. For another emitter, however light of 600 nm wavelength is sufficient for creating photoemission. What is the ratio of the work functions of two emitters?
 - (a) 1:2
 - (b) 2:1
 - (c) 4:1
 - (d) 1:4

Solution:

$$\lambda_1 = 300 \text{ nm}$$

$$\lambda_2$$
= 600 nm

$$W_1 = ?$$

$$W_2 = ?$$

$$\frac{W_1}{W_2} = ?$$

Work function,
$$W = \frac{hC}{\lambda} \longrightarrow W \propto \frac{1}{\lambda}$$

$$\frac{W_1}{W_2} = \frac{\lambda_2}{\lambda_1} = \frac{600}{300} = \frac{2}{1}$$

$$W_1:W_2=2:1$$

- 6. The energy of a photon of light with wavelength $5000A^0$ is approximately 2.5 eV. This way the energy of an X-ray photon with wavelength $1A^0$ would be
 - (a) 2.5/5000 eV
 - (b) $2.5/(5000)^2$ eV

ENTRI

- (c) $2.5 \times 5000 \text{ eV}$
- (d) 2.5×5000)² eV

Solution : (c) 2.5× 5000 eV

Given;
$$\lambda_1 = 5000A^0$$

$$E_1 = 2.5 \text{ eV}$$

$$\lambda_2 = 1A^0$$

$$E_2 = ?$$
As $E = \frac{hC}{\lambda} \longrightarrow E \propto \frac{1}{\lambda}$

$$\frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1}$$

$$E_2 = E_1 \frac{\lambda_2}{\lambda_1}$$

$$E_2 = \frac{2.5 \times 5000}{1} = 2.5 \times 5000 \text{ eV}$$

- 7. Threshold frequency of Potassium is 5×10^{14} S⁻¹. A light of frequency
- $1.6 \times 10^{15} S^{-1}$ Strikes the metal. Calculate the kinetic energy of ejected electron.

Solution:

$$v_0 = 5 \times 10^{14} \ S^{-1}$$
 $v = 1.6 \times 10^{15} S^{-1}$
 $K = h (v - v_0)$
 $= 6.626 \times 10^{-34} (1.6 \times 10^{15} - 5 \times 10^{14})$
 $= 72.6 \times 10^{20} J$
 $= 6.5 \text{ eV}$

