Quantum mechanical tunneling

The potential $\mathrm{V}(\mathrm{x})$ is defined by

$$
\mathrm{V}(\mathrm{x})=\left\{\begin{array}{c}
0 \quad x<0 \\
\\
V_{0} \quad 0<x<L \\
0
\end{array} \quad x>0 \mathrm{l}\right.
$$

Consider a stream of particles of mass m approaching the square barrier from the left. Classically the energy of the particle $\mathrm{E}<\mathrm{V}_{0}$ it is always reflected where as it is transmitted if $\mathrm{E}>V_{0}$. However, quantum mechanically it can be seen that there is always a finite probability for a particle to penetrate or leak through the barrier and continue its forward motion even if $\mathrm{E}<\mathrm{V}_{0}$. this phenomenon is called quantum mechanical tunneling, is possible because of the wave nature of matter.

Case (I) $\mathrm{E}<\mathrm{V}_{\mathbf{0}}$

The schrödinger equation for region (1) is given by

$$
\begin{aligned}
& \frac{\partial^{2} \Psi_{1}}{\partial x^{2}}+\frac{2 m E}{\hbar^{2}} \Psi_{1}=0 \rightarrow(1) \\
& \text { Put } k^{2}=\frac{2 m E}{\hbar^{2}} \\
& (1) \rightarrow \frac{\partial^{2} \Psi_{1}}{\partial x^{2}}=-K^{2} \Psi_{1}
\end{aligned}
$$

On solving this $\left(D^{2}+k^{2}\right) \Psi_{1}=0$

$$
D^{2}=-K^{2}
$$

$$
\mathrm{D}= \pm \mathrm{ik}
$$

$$
\text { Therefore } \Psi_{1}=A e^{i k x}+B e^{-i k x} \rightarrow(2)
$$

E. ENTRI

The first term represents the incident wave and second term represents the reflected wave.

$$
\begin{aligned}
& \Psi_{i}=A e^{i k x} \\
& \Psi_{r}=B e^{-i k x}
\end{aligned}
$$

In region 2

$$
\frac{\partial^{2} \Psi_{2}}{\partial x^{2}}+\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}} \Psi \quad \text { here } \alpha^{2}=\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}
$$

On solving this we get

$$
\begin{aligned}
& \Psi_{2}=\mathrm{B} e^{\alpha x}+\mathrm{C} e^{-\alpha x} \\
& \text { For } \mathrm{x} \geq \mathrm{L} \\
& \frac{\partial^{2} \Psi_{3}}{\partial x^{2}}=-k^{2} \Psi_{3} \rightarrow(3)
\end{aligned}
$$

The probability density of the incident, reflected and transmitted waves are 1, $|A|^{2}$ and $|D|^{2}$, respectively. Consequently the transmission coefficient $T=|D|^{2}$ and the reflection coefficient $\mathrm{R}=|A|^{2}$. The two are connected by the relation $\mathrm{R}+\mathrm{T}=1$. The continuity conditions on the wave functions and their first derivative at $\mathrm{x}=0$ and $\mathrm{x}=1$ give

$$
\begin{gathered}
1+\mathrm{A}=\mathrm{B}+\mathrm{C} \rightarrow(4) \\
\mathrm{ik}-\mathrm{ikA}=\alpha \mathrm{B}-\alpha \mathrm{C} \rightarrow(5)
\end{gathered}
$$

And

$$
\begin{aligned}
& \mathrm{B} e^{\alpha l}+\mathrm{C} e^{-\alpha l}=\mathrm{D} e^{i k l} \rightarrow(7) \\
& \alpha \mathrm{B} e^{\alpha l}-\alpha \mathrm{C} e^{-\alpha l}=\mathrm{ikD} e^{i k l} \rightarrow(8)
\end{aligned}
$$

On solving these equations we get

$$
\begin{aligned}
& \mathrm{B}=\frac{D}{2 \alpha}(\alpha+\mathrm{ik}) e^{i k l-\alpha l} \rightarrow(9) \\
& \mathrm{C}=\frac{D}{2 \alpha}(\alpha-\mathrm{ik}) e^{i k l+\alpha l} \rightarrow(10)
\end{aligned}
$$

On solving (4) and (9) we get,

$$
\mathrm{A}=\frac{\mathrm{D}(\alpha+\mathrm{ik})}{(\alpha-\mathrm{ik})} e^{i k l-\alpha l}-\frac{\alpha+i k}{\alpha-i k}
$$

Substituting A , B, C in equ (4) gives

E. ENTRI

$\mathrm{D}=\frac{2 i k \alpha e^{-i k l}}{\left(\alpha^{2}-k^{2}\right)^{2} \sinh (\alpha l)-2 i \alpha k \cosh (\alpha l)}$
Now $T=|D|^{2}$ and also assuming that for broad high barrier $\alpha \mathrm{a} \gg 1$ and $\sinh (\alpha \mathrm{l})=\cosh (\alpha \mathrm{l}) \rightarrow \frac{1}{2} e^{l \alpha}$
So $\quad \mathrm{T}=\frac{16 k^{2} \alpha^{2} e^{-2 l \alpha}}{\left.\alpha^{2}+k^{2}\right)^{2}}$
Substituting the values of α^{2} and k^{2} gives

$$
\mathrm{T}=\frac{16 E\left(V_{0}-E\right) e^{-2 \alpha l}}{V_{0}^{2}}
$$

An illustration of the wave function in three regions

