Rodrigues' formula for the Legendre polynomials

1 Introduction

Legendre polynomials $P_{n}(x)$ are solutions of Legendre's differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{00}-2 x y^{0}+n(n+1) y=0 \quad \text { for } n \in N \cup\{0\} \tag{1}
\end{equation*}
$$

and one explicit, compact expression for the polynomials is by Rodrigues' formula

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \tag{2}
\end{equation*}
$$

This means that when $P_{n}(x)$ is plugged in the position of y for Equation (1), it must satisfy the equality to 0 . In this note, we show indeed the expression (2) works, after a bit of tedious arithmetics.

2 Main

I will proceed in two steps. Let $f_{n}(x)=\left(x^{2}-1\right)^{n}$ then we first show that the n-th derivative of $f_{n}(x)$ is a solution of Legendre equation. Then, we find a proper scaling factor of $1 / 2^{n} n$! to recover $P_{n}(x)$ in line with a common constraint that $P_{n}(x)=$ 1 for all n when $x=1$. For notational simplicity, we denote $g^{(n)}$ for the n-th derivative of a function $g(x)$, i.e,

$$
g^{(n)}=\frac{d^{n}}{d x^{n}} g(x) .
$$

Before proceeding, we need (generalized) Leibniz's rule. Suppose we have n-times differentiable functions $f(x)$ and $g(x)$, then

$$
\begin{equation*}
\frac{d^{n}}{d x^{n}} f(x) g(x)=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)}(x) g^{(k)}(x)=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} f^{(n-k)}(x) g^{(k)}(x \tag{3}
\end{equation*}
$$

where the choice of f and g can help in reducing the number of terms when there exists a polynomial term. For example, when $g(x)=x^{2}, g^{(k)}=0$ for all $k \geq 3$.

E ENTRI

Part 1. $f_{n}^{(n)}(x)$ is one solution.

Our goal here is to show that $f_{n}^{(n)}(x)$ is a solution for Equation (1). As a first step, let's take derivative on $f_{n}(x)$,

$$
\begin{aligned}
\frac{d}{d x} f_{n}(x)= & 2 n\left(x^{2}-1\right)^{n-1} x \\
& =2 n x\left(x^{2}-1\right)^{n-1}
\end{aligned}
$$

and multiply $\left(x^{2}-1\right)$ on both sides

$$
\left(x^{2}-1\right) \frac{d}{d x} f_{n}(x)=2 n x\left(x^{2}-1\right)^{n} .
$$

Now, differentiate both sides $(n+1)$ times, which leads to

$$
\begin{aligned}
\frac{d^{n+1}}{d x^{n+1}}\left[\frac{d}{d x} f_{n}(x)\right]\left(x^{2}-1\right) & =\sum_{k=0}^{n+1}\binom{n+1}{k}\left(\frac{d}{d x} f_{n}(x)\right)^{(n+1-k)}\left(x^{2}-1\right)^{(k)} \\
& =\binom{n+1}{0} f_{n}^{(n+2)}(x)\left(x^{2}-1\right)+\binom{n+1}{1} 2 x f_{n}^{(n+1)}(x)+\binom{n+1}{2} f_{n}^{(n)}(x) \cdot 2 \\
& =\left(x^{2}-1\right) f_{n}^{(n+2)}(x)+2(n+1) x f_{n}^{(n+1)}(x)+n(n+1) f_{n}^{(n)}(x)
\end{aligned}
$$

for the left-hand side, and

$$
\begin{aligned}
\frac{d^{n+1}}{d x^{n+1}} f_{n}(x) 2 n x & =\binom{n+1}{0} f_{n}^{(n+1)}(x) 2 n x+\binom{n+1}{1} f_{n}^{(n)}(x) 2 n \\
& =2 n x f_{n}^{(n+1)}(x)+2 n(n+1) f_{n}^{(n)}(x)
\end{aligned}
$$

Therefore, we have following arrangement,

$$
\begin{gathered}
(x 2-1) f_{n(n+2)}(x)+2 x(n+1) f_{n(n+1)}(x)+n(n+1) f_{n(n)}(x)=2 n x f_{n(n+1)}(x)+2 n(n+1) f_{n(n)}(x) \\
(x 2-1) f_{n(n+2)}(x)+2 x f_{n(n+1)}(x)-n(n+1) f_{n(n)}(x)=0(1- \\
x 2) f_{n(n+2)}(x)-2 x f_{n(n+1)}(x)+n(n+1) f_{n(n)}(x)=0
\end{gathered}
$$

where the last line is in the form of Equation (1) so that we have $f_{n}^{(n)}(x)$ as a solution.

Part 2. find a scaling factor.

Even though $f_{n}^{(n)}(x)$ as a solution, we have a requirement for the standard Legendre polynomial that $P_{n}(x)=1$ for $x=1$. Let us take a closer look at $f_{n}^{(n)}(x)$ when evaluated at $x=1$.

$$
\begin{aligned}
f_{n}^{(n)}(x) & =\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \\
& =\frac{d^{n}}{d x^{n}}(x+1)^{n}(x-1)^{n}
\end{aligned}
$$

E. ENTRI

and by Leibniz's rule, we have

$$
\begin{align*}
& =\sum_{k=0}^{n}\binom{n}{k}\left((x+1)^{n}\right)^{(k)}\left((x-1)^{n}\right)^{(n-k)} \\
& =\sum_{k=0}^{n}\binom{n}{k} \frac{n!}{(n-k)!}(x+1)^{n-k} \frac{n!}{k!}(x-1)^{k} \tag{*}\\
& =n!\sum_{k=0}^{n}\binom{n}{k} \frac{n!}{(n-k)!k!}(x+1)^{n-k}(x-1)^{k} \\
& =n!\sum_{k=0}^{n}\binom{n}{k}^{2}(x+1)^{n-k}(x-1)^{k} .
\end{align*}
$$

Since we want to evaluate
$f_{n}^{(n)}(x)$ at $x=1$, the last line of equations above tells us that all the terms but $k=0$ become zero,

$$
f_{n}^{(n)}(x=1)=n!\binom{n}{0}^{2} 2^{n-0}=n!2^{n}
$$

which finally leads to define $P_{n}(x)$ as

$$
P_{n}(x)=\frac{1}{n!2^{n}} f_{n}^{(n)}(x)=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

to fulfill the condition of $P_{n}(x)=1$ for $x=1$.

