
 

 

Time dependent Perturbation Theory  

 
In  a large number of systems the Hamiltonian may depend on time resulting in the 

absence of stationary states. Again perturbation methods can be applied for those 

problems in which the Hamiltonian H may be written as the sum of two terms. 

                                  H(r,t) = 𝐻0(𝑟) + 𝐻′(r,t)  → (1) 

Where 𝐻0(𝑟) is the time independent and  𝐻′(r,t) is the time-dependent part. Our 

main interest is in problems for which 𝐻, << 𝐻0. The time - dependent schrödinger 

equation to be solved is  

                                       iħ 
𝜕 𝛹

𝜕 𝑡
 = H (r,t) Ψ (r,t)   → (2) 

Where H(r,t) is of the form given in Equ (1). Let 𝛹𝑛
0, n = 1, 2, 3, . . . . be the 

stationary state eigenfunctions of the unperturbed Hamiltonian 𝐻0 forming a complete 

orthonormal set. The  𝛹𝑛
0 are of the form. 

                             𝛹𝑛
0=  𝛹𝑛

0 exp (−
𝑖𝐸𝑛𝑡

ħ
)    → (3)            n = 1, 2, . . . 

And obey the equations 

                        iħ 
𝜕 𝛹𝑛

0

𝜕 𝑡
 = 𝐻0 𝛹𝑛

0   → (4) 

In the presence of the perturbation 𝐻,(t), the states of the system may be expressed as 

a linear combination of  𝛹𝑛
0 as  

                       Ψ(r,t) = ∑ 𝑐𝑛𝑛 (t)  𝛹𝑛
0 = ∑ 𝑐𝑛𝑛 (t)  𝛹𝑛

0( r ) exp (−
𝑖𝐸𝑛𝑡

ħ
)  → (5) 

Where 𝑐𝑛(t)’s are expansion coefficients. Substituting Equ (1) and (5) in Equ (2) 

iħ 
𝜕 

𝜕 𝑡
  ∑ 𝑐𝑛𝑛 (t)  𝛹𝑛

0( r ) exp (−
𝑖𝐸𝑛𝑡

ħ
) = (𝐻0 + 𝐻,)  ∑ 𝑐𝑛𝑛 (t)  𝛹𝑛

0( r ) exp (−
𝑖𝐸𝑛𝑡

ħ
) 

→6 

Using eqs (4) and (3), Equ (6) reduces to  

               Iħ  ∑
𝑑

𝑑𝑡
𝑐𝑛𝑛 (t)  𝛹𝑛

0exp (−
𝑖𝐸𝑛𝑡

ħ
) =  ∑ 𝑐𝑛𝑛 (t)  H; 𝛹𝑛

0 exp (−
𝑖𝐸𝑛𝑡

ħ
)→(7) 

For convenience, we shall use the Dirac’s notation for states. Multiplying Eq (7) from 

left by ⟨𝑘| and using orthonormality of states. 

                     iħ 
𝑑 𝑐𝑘(𝑡)

𝑑𝑡
 =  ∑ 𝑐𝑛𝑛 (t)  ⟨𝑘| 𝐻,|𝑛⟩ exp 

𝑖(𝐸𝑘−𝐸𝑛)𝑡

ħ
    



 

 

                             iħ 
𝑑 𝑐𝑘(𝑡)

𝑑𝑡
 =  ∑ 𝑐𝑛𝑛 (t) 𝐻𝑘𝑛

′ exp (i𝜔𝑘𝑛t)   → (8) 

Where  

               𝐻𝑘𝑛
′ = ⟨𝛹𝑘

0|𝐻′   ǀ𝛹𝑛
0⟩ = ⟨𝑘| 𝐻′  |𝑛⟩  and 𝜔𝑘  = 

(𝐸𝑘−𝐸𝑛)

ħ
  → (9) 

The summation symbol in Equ (8) stands for summation over the discrete states and 

integration over the continuum states.  

 

First - Order Perturbation  

Replacing 𝐻′ by  λ 𝐻′ as in time - independent perturbation theory and expressing the 

coefficient 𝑐𝑛(𝑡) as a power series in λ 

𝑐𝑛(𝑡)= 𝑐𝑛
0(𝑡) + 𝜆1𝑐𝑛

1(𝑡) +  𝜆2𝑐𝑛
2(𝑡) + . . .    → (10) 

Substituting the value of 𝑐𝑛(𝑡) in Equ (8) and replacing 𝐻𝑘𝑛
′ by λ𝐻𝑘𝑛

′  

iħ (
𝑑𝑐(0)

𝑘

𝑑𝑡
+ 𝜆1 𝑑𝑐𝑘

1

𝑑𝑡
+ 𝜆2 𝑑𝑐(2)

𝑘

𝑑𝑡
+. . . )  

  =   ∑ 𝜆𝑛  𝐻𝑘𝑛
′(r,t) (𝑐𝑛

0(𝑡) + 𝜆1𝑐𝑛
1(𝑡) +  𝜆2𝑐𝑛

2(𝑡) + . . .  ) exp (i𝜔𝑘𝑛t) → 

(11) 

Equating the coefficients of 𝜆0, 𝜆1,𝜆2  

𝑑𝑐(0)
𝑘

𝑑𝑡
 = 0 → (12) 

iħ
𝑑𝑐𝑘

1

𝑑𝑡
 = ∑ 𝑐(0)

𝑛𝑛  𝐻𝑘𝑛
′ exp (i𝜔𝑘𝑛t)   → (13) 

                         iħ
𝑑𝑐𝑘

(2)

𝑑𝑡
 = ∑ 𝑐(1)

𝑛𝑛  𝐻𝑘𝑛
′ exp (i𝜔𝑘𝑛t) → (14) 

Equation (12) implies that the coefficient 𝑐𝑘
0  is constant in time which is 

understandable as the Zero - order Hamiltonian is time -  independent. From (13) first 

order contribution to 𝑐𝑛 is  

                 𝑐𝑛
1(𝑡)  = 

1

𝑖ħ
 ∫ ∑ 𝑐(0)

𝑛𝑛  𝐻𝑘𝑛
′(r, t) exp (i𝜔𝑘𝑛t)  dt  → (15) 

For times after t , 𝐻′ = 0  and 𝑐𝑘 = 𝑐𝑘 (t) for time greater than t. Equation (15) reduces 

to  

  𝑐𝑛
1(𝑡)  = 

1

𝑖ħ
 ∫ ∫  𝐻𝑘𝑛

′(r, t,) exp (i𝜔𝑘𝑛t,)  dt, 
𝑡

0
 → (16) 

The perturbation 𝐻′ has induced transition to other states and after time t the 

probability that a transition to state k has occurred is given by |𝑐𝑘
1(𝑡)|2. Instead , if 



 

 

the system is in a more complicated initial state, one can study its behaviour by a 

superposition process. 

Fermi’s Golden Rule  

Consider the transition from a discrete state n to a continuum of states around 𝐸𝑘 , 

where the density of the state is ρ(𝐸𝑘). The number of states in the energy range 𝐸𝑘to 

(𝐸𝑘+d𝐸𝑘) is ρ(𝐸𝑘) d𝐸𝑘  and total probability for transition into range d𝐸𝑘  is  

             P(t) = 
4

ħ2 ∫ |𝐻𝑘𝑛
′|2

𝑑𝐸𝑘

𝑠𝑖𝑛2(𝜔𝑘𝑛−𝜔)𝑡/2

(𝜔𝑘𝑛−𝜔)2  ρ(𝐸𝑘)𝑑𝐸𝑘→ (17) 

When t is large, the width of the main peak becomes small and only limited number 

of final states contribute to the above integral. Consequently, we can regard 𝐻𝑘𝑛
′ and 

ρ(𝐸𝑘) as constants over this range . 

To evaluate the integral, the variable of integration may be changed from 𝐸𝑘  to x by 

defining  

                    X = 
(𝜔𝑘𝑛−𝜔)

2
 = ( 

(𝐸𝑘−𝐸𝑛)
ħ

− 𝜔)
𝑡

2
 ;       dx = 

𝑡

2ħ
 𝑑𝐸𝑘  → (18) 

Equ (17) changes to 

P(t) =  
2𝑡

ħ
 |𝐻𝑘𝑛

′|2 ρ(𝐸𝑘) ∫
𝑠𝑖𝑛2𝑥

𝑥2
 dx → (19) 

The transition from the state 𝐸𝑛 into a state 𝐸𝑘  can be on either side of 𝐸𝑛. Though the 

integral is over a small range (𝜔𝑘𝑛 − 𝜔), the limits on x can be extended to ±∞ as 

the integrand is very small outside the actual range. The integral is a standard one and 

is given by  

                          ∫
𝑠𝑖𝑛2𝑥

𝑥2

∞

−∞
  dx = π → (20) 

Equ (19) take the very simple form  

P(t) = 
2𝜋

ħ
t |𝐻𝑘𝑛

′|2 ρ(𝐸𝑘) → (21) 

The number of transitions per unit time called transition probability, is usually 

denoted by the letter ω 

                              ω =  
2𝜋
ħ

 |𝐻𝑘𝑛
′|2 ρ(𝐸𝑘) → (22) 

Equation (22) is called Fermi’s Golden Rule. The transition probability is proportional 

to the square of the matrix element of the amplitude of the Harmonic perturbing term 

between states n and k to the density of final states. The intensities of spectral lines 



 

 

are proportional to these transition probabilities as they depend on the rate of transfer 

of energy between the electromagnetic field of the system. 


