
 

 

WKB Approximation 

 
The WKB approximation is a method for obtaining approximate solution of one - 

dimensional schrodinger equation or wave equation which can be separated into 

equations of each of which contains only single independent variable. It is based on 

the expansion of wave function in powers of ħ. This method is applicable especially 

when the potential is slowly  varying. 

 

The  WKB Method  

 

The one - dimensional Schrodinger equation of  a particle moving in a region of 

constant potential 𝑉0 is  

 

 
𝑑2𝛹

𝑑𝑥2 
 + 𝑘2Ψ = 0   → (1) 

Where 𝑘2= 2m 
𝐸−𝑉0 

ħ2
 

Its solution is Ψ = 𝑒±𝑖𝑘𝑥   → (2) 

If the potential is not constant, k in equ (1) is a function of x given by  

                                           𝑘2= 2m 
𝐸−𝑉(𝑥) 

ħ2   → (3) 

For convenience we shall assume that E > V(x). Writing the solution of Schrodinger 

equation in the following form and substituting in Equ (1) 

We get  

 Ψ = exp (
𝑖

ħ
 𝑆(𝑥))      → (4) 

(
𝑑𝑠

𝑑𝑥
)

2
- iħ  

𝑑2𝑠

𝑑𝑥2 
 - 𝑘2ħ2 = 0  → (5) 

 

The solution of the equation gives the form of the function S(x). Expanding S(x) in 

powers of ħ, we get  

 

                     S(x) = 𝑆0(𝑥) + 𝑆1(𝑥)ħ + 𝑆2(𝑥)
ħ2

2
 + . . . . . → (6) 

 

Substituting (6) in Equ (5) and retaining terms up to ħ, we get  



 

 

(
𝑑𝑠0

𝑑𝑥
)

2
 -  𝑘2ħ2 +  (2

𝑑𝑆0

𝑑𝑥

𝑑 𝑆1

𝑑 𝑥
 −  𝑖 

𝑑2𝑠0

𝑑𝑥2 ) ħ = 0   → (7) 

The term -𝑘2ħ2 is included with the term independent of ħ, since  

                   𝑘2ħ2= 2m 
[𝐸−𝑉(𝑥)]ħ2 

ħ2
   = 2m [ E-V(x) ]    

For Equ (7) to be valid, the coefficient of each power of ħ must vanish separately. 

Then  

                 (
𝑑𝑠0

𝑑𝑥
)

2
 -  𝑘2ħ2 = 0        or       

𝑑𝑠0

𝑑𝑥
 = ±kħ    → (8) 

And  

2
𝑑𝑆0

𝑑𝑥

𝑑 𝑆1

𝑑 𝑥
 −  𝑖 

𝑑2𝑠0

𝑑𝑥2
= 0   → (9) 

For better results one has to include the terms in ħ also. Integration of Equ (8) and (9) 

gives 𝑆0(𝑥) 𝑎𝑛𝑑 𝑆1(𝑥) . It follows from Equ (8) 

 

                      𝑆0(𝑥) = ± ∫ kħ dx = ± ∫(2m [ E − V(x) ])   1/2 dx   → (10) 

 

With this value of 𝑆0(𝑥) . Equ (9) becomes  

 

                           
𝑑 𝑆1

𝑑 𝑥
 = 

𝑖

2𝑘
 
𝑑𝑘

𝑑𝑥
   → (11) 

Integrating, we get  

                    𝑠1 = 
𝑖

2
 ln k or i 𝑠1 = ln 𝑘−1/2 or exp (i𝑆1) = 𝑘−1/2 → (12) 

Restricting to two terms in Equ (6) , it follows Eqs (4 ), (6) and (12) that  

 

                 Ψ = A exp (
𝑖

ħ
 𝑆0) exp (i𝑆1) = 

𝐴

𝐾1/2  exp (±𝑖 ∫ 𝑘𝑑𝑥) → (13)  

Where A is a constant and k is given by (13). The general solution will be linear 

combination of two terms, one with each sign. The wavevector k is real and therefore 

the solution is oscillatory. The probability density. 

Ψ𝛹∗ = 
|𝐴|2

𝑘
 exp (±𝑖 ∫ 𝑘𝑑𝑥) exp (∓𝑖 ∫ 𝑘𝑑𝑥) = 

|𝐴|2

𝑘
  → (14) 

 



 

 

 As p = kħ, the probability density is inversely proportional to the velocity . This is 

understandable because classically the time spent by a particle in a region is inversely 

proportional to the velocity. 

 

               In quantum mechanics, particles can even penetrate classically disallowed 

regions and therefore we have to consider the case E < V(x).  

For E < V(x), the basic equation is  

  

                         
𝑑2𝛹

𝑑𝑥2 
  -  𝛾2Ψ = 0 ,                𝛾2=   2m 

[𝐸−𝑉(𝑥)] 

ħ2
  → (15) 

Proceeding in the same fashion, the solution of Equ (15) can be written as  

 

                                Ψ = 
𝐵

𝛾1/2  exp (± ∫ 𝛾𝑑𝑥) 

 

Where B is a constant. The most general solution is a linear combination of the two 

terms, one with each sign. One term is an exponentially  decreasing one. At this stage, 

we cannot leave E < V(x) is usually finite extent. When E ≅ V(x), both the quantities k 

and γ tens zero. Consequently Ψ goes to infinity and the approximation fails. The 

point at which E = V(x) is called classical turning point, since at this point a classical 

particle would stop and begin to move in the opposite direction. 

 

 

 

 

 

 

                     


