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Introduction to the Gamma Function 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Definitions of the gamma function 

1.1 Definite integral 

During the years 1729 and 1730 ([9], [12]), Euler introduced an analytic function 
which has the property to interpolate the factorial whenever the argument of the 
function is an integer. In a letter from January 8, 1730 to Christian Goldbach he 
proposed the following definition : 

Definition 1 (Euler, 1730) Let x > 0 

  (1) 
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By elementary changes of variables this historical definition takes the more 
usual forms : 

Theorem 2 For 

(2) 
0 

or sometimes 

  (3) 

Proof. Use respectively the changes of variable u = −log(t) and u2 = −log(t) in (1). 

 

From this theorem, we see that the gamma function Γ(x) (or the Eulerian 
integral of the second kind) is well defined and analytic for x > 0 (and more 
generally for complex numbers x with positive real part). 

The notation Γ(x) is due to Legendre in 1809 [11] while Gauss expressed it by 
Π(x) (which represents Γ(x + 1)). 

The derivatives can be deduced by differentiating under the integral sign of 

(2) 

 

1.1.1 Functional equation 

We have obviously 

 = 1 (4) 

and for x > 0, an integration by parts yields 

 , (5) 

and the relation Γ(x + 1) = xΓ(x) is the important functional equation. For 
integer values the functional equation becomes 

Γ(n + 1) = n!, 

and it’s why the gamma function can be seen as an extension of the factorial 
function to real non null positive numbers. 

A natural question is to determine if the gamma function is the only solution 
of the functional equation ? The answer is clearly no as may be seen if we consider, 
for example, the functions cos(2mπx)Γ(x), where m is any non null integer and 
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which satisfy both (4) and (5). But the following result states that under an 
additional condition the gamma function is the only solution of this equation. 
Theorem 3 (Bohr-Mollerup, 1922, [6]) There is a unique function f : ]0,+∞[→ ]0,+∞[ such as 

log(f(x)) is convex and 

f(1) = 1, f(x + 

1) = xf(x). 

 Proof. An elementary one is given in [2].  

Other conditions may also work as well, see again [2]. 

It’s also possible to extend this function to negative values by inverting the 
functional equation (which becomes a definition identity for −1 < x < 0) 

, 

and for example Γ(−1/2) = −2Γ(1/2). Reiteration of this identity allows to define 

the gamma function on the whole real axis except on the negative integers 

(0,−1,−2,...). For any non null integer n, we have 

 . (6) 

− 

Suppose that x = −n + h with h being small, then 

  when h → 0, 

so Γ(x) possesses simple poles at the negative integers −n with residue (−1)n/n! 

(see the plot of the function 2.1.1). 

In fact, also by mean of relation (6), the gamma function can be defined in the 
whole complex plane. 
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Γ(x) function 

1.2 Another definition by Euler and Gauss 

In another letter written in October 13, 1729 also to his friend Goldbach, Euler 
gave another equivalent definition for Γ(x). 

Definition 4 (Euler, 1729 and Gauss, 1811) Let x > 0 and define 

 , (7) 

then   

  Γ(x) = lim Γp(x). (8) 

p→∞ 

(Check the existence of this limit). This approach, using an infinite product, 
was also chosen, in 1811, by Gauss in his study of the gamma function [8]. Clearly 

, and 

, 

hence 

Γ(1) = 1, 
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Γ(x + 1) = xΓ(x). 

We retrieve the functional equation verified by Γ(x). 
It’s interesting to observe that the definition is still valid for negative values of 

x, except on the poles (0,−1,−2,...). Using this formulation is often more convenient 

to establish new properties of the gamma function. 

1.3 Weierstrass formula 

The relation 

px = exlog(p) = ex(log(p)−1−1/2−...−1/p)ex+x/2+...+x/p, 

entails 

, 

Now Euler’s constant is defined by 

 

and therefore follows the Weierstrass form of the gamma function. 

Theorem 5 (Weierstrass) For any real number x, except on the negative integers 

(0,−1,−2,...), we have the infinite product 

 . (9) 

From this product we see that Euler’s constant is deeply related to the gamma 
function and the poles are clearly the negative or null integers. According to 
Godefroy [9], Euler’s constant plays in the gamma function theory a similar role 
as π in the circular functions theory. 

It’s possible to show that Weierstrass form is also valid for complex numbers. 

2 Some special values of Γ(x) 

Except for the integer values of x = n for which 

Γ(n) = (n − 1)! 
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some non integers values have a closed form. The 
change of variable t = u2 gives 

 

The functional equation (5) entails for positive integers n (see [1]) 

(10) 

, 

and for negative values 

 

No basic expression is known for Γ(1/3) or Γ(1/4), but it was proved that those 
numbers are transcendental (respectively by Le Lionnais in 1983 and Chudnovsky 
in 1984). 

Up to 50 digits, the numerical values of some of those constants are : 

 . 

For example, thanks to the very fast converging formula (which is based on the 
expression (34) and uses the Arithmetic-Geometric Mean AGM, [7]) 

, 

this constant was computed to more than 50 millions digits by P. Sebah and M. 
Tommila [10]. Similar formulae are available for other fractional arguments like 
Γ(1/3) ... 

3 Properties of the gamma function 

3.1 The complement formula 

There is an important identity connecting the gamma function at the 

complementary values x and 1 − x. One way to obtain it is to start with Weierstrass 

formula (9) which yields 
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 . 

But the functional equation gives Γ(−x) = −Γ(1−x)/x and the equality writes as 

, 

and using the well-known infinite product : 

 

finally gives 

 . (11) 

Relation (11) is the complement (or reflection) formula and is valid when x and 
1 − x are not negative or null integers and it was discovered by Euler. 

For example, if we apply this formula for the values x = 1/2, x = 1/3, x = 1/4 we 
find 

, 

3.2 Duplication and Multiplication formula 

In 1809, Legendre obtained the following duplication formula [11]. 

Theorem 6 (Legendre, 1809) 

 . (12) 

Proof. Hint : an easy proof can lie on the expression of Γp(x) and Γp(x+1/2) 

from (7), then make the product and find the limit as p → ∞.  

Notice that by applying the duplication formula for x = 1/2, we retrieve the 
value of Γ(1/2), while x = 1/6 permits to compute 

. 
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This theorem is the special case when n = 2 of the more general result known 
as Gauss multiplication formula : 

Theorem 7 (Gauss) 

 

 Proof. Left as exercise.  

Corollary 8 (Euler) 

 

 Proof. Set x = 1/n in the Gauss multiplication formula.  

3.3 Stirling’s formula 

It’s of interest to study how the gamma function behaves when the argument x 
becomes large. If we restrict the argument x to integral values n, the following 
result, due to James Stirling (1692-1730) and Abraham de Moivre (1667-1754) is 
famous and of great importance : 

Theorem 9 (Stirling-De Moivre, 1730) If the integer n tends to infinite we have the 

asymptotic formula 

 . (13) 

Proof. See [2] for a complete proof. You may obtain a weaker approximation by 

observing that the area under the curve log(x) with x ∈ [1,n] is well approximated 

by the trapezoidal rule, therefore 

 

and because Rn = O(1) (check this!), we find 

 

which gives this weaker result 

n! ≈ eCnn√ne−n. 
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Stirling’s formula is remarkable because the pure arithmetic factorial function 
is equivalent to an expression containing important analytic constants like 

 

There is an elementary way to improve the convergence of Stirling’s formula. 

Suppose you can write 

 , 

then this relation is still valid for n + 1 

 

but we also have (n + 1)! = (n + 1)n! giving 

  . (15) 

We now compare relations (14) and (15) when n becomes large. This gives after 
some simplifications and classical series expansions 

 

and after the identification comes 

, 

Therefore we found, by elementary means, the first correcting terms of the 
formula to be : a1 = 1/12,a2 = 1/288,... A more efficient (but less elementary) way 
to find more terms is to use the Euler-Maclaurin asymptotic formula. 

In fact the following theorem is a generalization of Stirling’s formula valid for 
any real number x : 

Theorem 10 When x → ∞, we have the famous Stirling’s asymptotic formula 

[1] 

 

For example here are some approximations of the factorial using different 
values for n : 
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n n! Stirling formula + correction 1/(12n) 
5 120 118 119 

10 3628800 3598695 3628684 
20 2432902008176640000 2422786846761133393 2432881791955971449 

4 Series expansion 

To estimate the gamma function near a point it’s possible to use some series 
expansions at this point. Before doing this we need to introduce a new function 
which is related to the derivative of the gamma function. 

4.1 The digamma and polygamma functions 

Many of the series involving the gamma function and its derivatives may be 
derived from the Weierstrass formula. By taking the logarithm on both sides of 
the Weierstrass formula (9) we find the basic relation 

  . (17) 

4.1.1 Definition 

Definition 11 The psi or digamma function denoted Ψ(x) is defined for any non nul 

or negative integer by the logarithmic derivative of Γ(x), that is : 

. 

By differentiating the series (17) we find 

  (18) 

and those series are slowly converging for any non negative integer x. 

4.1.2 Properties 

Polygamma functions Now if we go on differentiating relation (18) several 
times, we find 
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 , (19) 

(20) 

and the Ψn = Ψ(n) functions are the polygamma functions : 

, 

Observe from (19) that for 0 so it’s a monotonous function on 

the positive axis and therefore the function log(Γ(x)) is convex when x > 0. 
Recurrence relations The structure of the series expansion (18) suggests to 

study 

 

which gives, just like for the gamma function, the recurrence formulae 

, 

and by differentiating the first of those relations we deduce 

 . (21) 

Complement and duplication formulae By logarithmic differentiation of the 
corresponding complement (11) and duplication (12) formulae for the gamma 
function we find directly : 

Theorem 12 

. 

4.1.3 Special values of the Ψn 

Values at integer arguments From the relations (18) and (20) comes 



 

12 

Ψ(1) = −γ, 

Ψ1(1) = ζ(2) = π2/6, Ψ2(1) = 

−2ζ(3), 

 Ψn(1) = (−1)n+1n!ζ(n + 1), (22) 

where ζ(k) is the classical Riemann zeta function. Using the recurrence relations 
(21) allow to compute those values for any other positive integer and, for 
example, we have 

  (23) 

Values at rational arguments The value Ψ(1/2) can be computed directly from 
(18) or from the psi duplication formula with x = 1/2 : 

. 

To end this section we give the interesting identities 

 

which are consequences of a more general and remarkable result : 

Theorem 13 (Gauss) Let 0 < p < q being integers 

 . 

 Proof. See [2] for a proof.  

From this aesthetic relation, we see that the computation of Ψ(p/q) for any 
rational argument always involves the three fundamental mathematical constants 
: π,γ,log(2) ! 
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4.1.4 Series expansions of the digamma function 

The following series expansions are easy consequences of relations (22) and of 
the series 

. 

Theorem 14 (Digamma series) 

 
4.1.5 Zeros of the digamma function 

The zeros of the digamma function are the extrema of the gamma function. From 
the two relations 

Ψ(1) = −γ < 0 Ψ(2) = 

1 − γ > 0, 

and because Ψ  0, we see that the only positive zero x0 of the digamma 

function is in ]1,2[ and its first 50 digits are : 

x0 = 1.46163214496836234126265954232572132846819620400644... 

Γ(x0) = 0.88560319441088870027881590058258873320795153366990..., 

it was first computed by Gauss, Legendre [11] and given in [13]. On the negative 
axis, the digamma function has a single zero between each consecutive negative 
integers (the poles of the gamma function), the first one up to 50 decimal places 
are 

 
and Hermite (1881) observed that when n becomes large [1] 
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 1 1 
2 

Ψ(x) 
function 

(digamma) 

4.2 Series expansion of the gamma function 

Finding series expansions for the gamma function is now an easy consequence of 
the series expansions for the digamma function. 

Theorem 15 

 

Proof. Use the term by term integration of the Taylor series (24) and (25). 

 

We may observe that the Riemann zeta function at integer values appears in 
the series expansion of the logarithm of the gamma function. The convergence of 
the series can be accelerated by computing 
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, 

We now observe that the complement formula (11) becomes 

 

and by taking the logarithms finally 

 

and therefore we obtain the fast converging series due to Legendre : 

, 

valid for |x| < 1. 

Gauss urged to his calculating prodigy student Nicolai (1793-1846) to 
compute tables of log(Γ(x)) with twenty decimal places [8]. More modern tables 
related to Γ(x) and Ψ(x) are available in [1]. 

5 Euler’s constant and the gamma function 

For x = 1 the formula (23) for Ψ(n) yields 

 

so Euler’s constant is the opposite of the derivative of the gamma function at x = 
1. 

5.1 Euler-Mascheroni Integrals 

Using the integral representation of Γ ) gives the interesting integral formula 
for Euler’s constant 

 

and from (19) comes 

 

hence 

. 

We may go on like this and compute the Euler-Mascheroni integrals 
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, 

5.2 Euler’s constant and the zeta function at integer values 

Series formulas involving ζ(k) can also be deduced from formula (26). Taking x = 
1 gives 

, 

thus 

, 

which is due to Euler. Setting x = 1/2 into (26) gives 

, 

therefore 

. 

It is of interest to use the series expansion (28) at x = 1/2, 

. 

It follows a fast converging expansion for γ 

. 

and for large values of k, we have 

 hence . 

This expression was used by Thomas Stieltjes (1856-1894) in 1887 to compute 
Euler’s constant up to 32 decimal places [14]. In the same article he also computed 
ζ(2) up to ζ(70) with 32 digits. 
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6 The gamma function and the Riemann Zeta function 
The integral definition of the gamma function 

 

together with the change of variables t = ku (with k a positive integer) yields 

 

We write this in the form 

 

hence by summation 

 
We have obtained the beautiful formula 

  (29) 

and, for example, for x = 2, (29) becomes 

 
There is another celebrated and most important functional equation between 

those two functions, the Riemann zeta function functional equation : Theorem 16 

(Riemann, 1859) Let 

, 

an analytic function except at poles 0 and 1, then 

Λ(s) = Λ(1 − s). 

Proof. Several proofs may be found in [15]. Euler demonstrated it for integer 

values of s.  

This equation allows to extend the definition of the Zeta function to negative 
values of the arguments. 
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7 The Beta function 

Let us now consider the useful and related function to the gamma function which 
occurs in the computation of many definite integrals. It’s defined, for x > 0 and y > 
0 by the two equivalent identities : 

Definition 17 The beta function (or Eulerian integral of the first kind) is given by 

 

This definition is also valid for complex numbers x and y such as  

0 and 0 and Euler gave (30) in 1730. The name beta function was 
introduced for the first time by Jacques Binet (1786-1856) in 1839 [5] and he 
made various contributions on the subject. 

The beta function is symmetric and may be computed by mean of the gamma 
function thanks to the important property : 

Theorem 18 Let  and , then 

 . (32) 

Proof. We use the definite integral (3) and form the following product 

 

we introduce the polar variables u = r cosθ,v = r sinθ so that 

 

 

From relation (32) follows 

, 

this is the beta function functional equation 
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 . (33) 

7.1 Special values 

. 

7.2 Wallis’s integrals 

For example the following integrals (Wallis’s integrals) 

 

may be computed by mean of the beta and gamma functions. Thanks to the 
relation (31), we have 

, 

and come naturally the two cases n = 2p + 1 and n = 2p. For the odd values of the 
argument n : 

 

and using formula (10) produces the well-known result 

. 

The same method permits to compute the integrals for the even values 

 

and finally 

. 
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Observe that it’s easy to see that 

 

thanks to the beta function functional equation (33). It’s 
interesting to notice that 

 

also works for any real number α > −1 and therefore we may deduce using (30) 

and (31) that (respectively with α = −1/2 and α = 1/2) 

 , (34) 

Consequently the product of those two integrals permits to derive the relation due 
to Euler 

. 


