Banking Daily Quiz Blog - September 9

1. Read the instruction given carefully and answer the questions based

 on it.Data given below shows number of passenger (male + female) who took international and domestic flight in four months i.e. January, February, March and April.

- Total number of passengers in January is $\frac{2}{3}$ of total number of passengers in February.
- Number of passengers who took domestic flight is $\frac{4}{5}$ and $\frac{3}{4}$ of total number of passengers in January and February respectively.
- Number of passengers who took domestic flight in February is same as total number of passenger in March while number of passengers who took international flight in March is 315 less than number of passengers who took international flight in February. Number of passengers who took Domestic flight in March is 1215.
- Total passengers in April is twice than that of in March while passengers who took international flight in April is $\frac{1}{3}$ of passenger who took international flight in February.
Note: - Total passengers $=($ Male + Female $)$ who took domestic and international flight
A. Number of passengers who took Domestic flight (Male + Female) in March is what percent of the total number of passenger (Male + Female) in March?

A 85%

B 88%

C $\quad 90 \%$

E $\quad 92 \%$

Solution

LCM of $2,3,4,5,3,4=60$
So let total number of passenger in February $=60 x$
So total number of passenger in January $=60 x \times \frac{2}{3}=40 x$
Number of passenger who took domestic flight in January
$=\frac{4}{5} \times 40 x=32 x$
So, number of passenger who took International Flight in January is
$=40 x-32 x=8 x$
Number of passenger who took Domestic Flight in February
$=\frac{3}{4} \times 60 x=45 x$
So, number of passenger who took International Flight in February
$=60 x-45 x=15 x$
Total number of passenger in March = Number of passenger who took
Domestic Flight in February $=45 x$
Total number of passenger is Domestic Flight in March $=1215$
So, total number of passenger in International Flight in March
$=45 x-1215$
ATQ,
$(45 x-1215)+315=15 x$
$45 x-900=15 x$
$30 x=900$
$x=30$
Total passenger in April $=90 x$

Total International passenger in April $=\frac{1}{3} \times 15 x=5 x$
So, total Domestic in April $=85 x$
Putting value $x=30$

MONTHS	DOMESTIC PASSENGER	INTERNATIONAL PASSENGER	TOTAL PASSENGER
JAN	960	240	1200
FEB	1350	450	1800
MARCH	1215	135	1350
APRIL	2550	150	2700

Required percentage will be $=\frac{1215}{1350} \times 100 \%=90 \%$
B. In December of the same year, Total number of passengers (Male + Female) is $\frac{5}{4}$ of the total number of passenger (Male + Female) in January while number of passenger who took international flight (Male + Female) is $\frac{6}{5}$ of number of passenger who took international flight (Male + Female) in February. Find the number of passenger who took domestic flight (Male + Female) in December.

900

B 920

```
C 950
```


Solution

LCM of $2,3,4,5,3,4=60$
So let total number of passenger in February $=60 x$
So total number of passenger in January $=60 x \times \frac{2}{3}=40 x$
Number of passenger who took domestic flight in January
$=\frac{4}{5} \times 40 x=32 x$
So, number of passenger who took International Flight in January is
$=40 x-32 x=8 x$
Number of passenger who took Domestic Flight in February
$=\frac{3}{4} \times 60 x=45 x$
So, number of passenger who took International Flight in February
$=60 x-45 x=15 x$
Total number of passenger in March = Number of passenger who took
Domestic Flight in February $=45 x$
Total number of passenger is Domestic Flight in March $=1215$
So, total number of passenger in International Flight in March
$=45 x-1215$
ATQ,
$(45 x-1215)+315=15 x$
$45 x-900=15 x$
$30 x=900$
$x=30$
Total passenger in April $=90 x$

So, total Domestic in April $=85 x$
Putting value $x=30$

MONTHS	DOMESTIC PASSENGER	INTERNATIONAL PASSENGER	TOTAL PASSENGER
JAN	960	240	1200
FEB	1350	450	1800
MARCH	1215	135	1350
APRIL	2550	150	2700

Total number of passenger in December $=\frac{5}{4} \times 1200=1500$
Total number of passenger in International Flight in December
$=\frac{6}{5} \times 450=540$
So, total number of passenger in Domestic Flight in December
$=1300-540=960$
C. Number of passengers who took International flight (Male + Female) in April is approximately what percent of the number of passenger who took domestic flight in the same month?
A
2%

B 4%

C $\quad \mathbf{9 \%}$

E $\quad 6 \%$

Solution

LCM of $2,3,4,5,3,4=60$
So let total number of passenger in February $=60 x$
So total number of passenger in January $=60 x \times \frac{2}{3}=40 x$
Number of passenger who took domestic flight in January
$=\frac{4}{5} \times 40 x=32 x$
So, number of passenger who took International Flight in January is
$=40 x-32 x=8 x$
Number of passenger who took Domestic Flight in February
$=\frac{3}{4} \times 60 x=45 x$
So, number of passenger who took International Flight in February
$=60 x-45 x=15 x$
Total number of passenger in March = Number of passenger who took
Domestic Flight in February $=45 x$
Total number of passenger is Domestic Flight in March $=1215$
So, total number of passenger in International Flight in March
$=45 x-1215$
ATQ,
$(45 x-1215)+315=15 x$
$45 x-900=15 x$
$30 x=900$
$x=30$
Total passenger in April $=90 x$
Total International passenger in April $=\frac{1}{3} \times 15 x=5 x$
So, total Domestic in April $=85 x$
Putting value $x=30$

MONTHS	DOMESTIC PASSENGER	INTERNATIONAL PASSENGER	TOTAL PASSENGER
JAN	960	240	1200
FEB	1350	450	1800
MARCH	1215	135	1350
APRIL	2550	150	2700

Required percentage will be $=\frac{150}{2550} \times 100 \%=5.88 \% \approx 6 \%$
D. Total number of passengers (Male + Female) in April is how much more than total number of passenger (Male + Female) in February?

B 825

C 850

D 875

E $\quad 900$

LCM of $2,3,4,5,3,4=60$
So let total number of passenger in February $=60 x$
So total number of passenger in January $=60 x \times \frac{2}{3}=40 x$
Number of passenger who took domestic flight in January
$=\frac{4}{5} \times 40 x=32 x$
So, number of passenger who took International Flight in January is
$=40 x-32 x=8 x$
Number of passenger who took Domestic Flight in February
$=\frac{3}{4} \times 60 x=45 x$
So, number of passenger who took International Flight in February
$=60 x-45 x=15 x$
Total number of passenger in March = Number of passenger who took
Domestic Flight in February $=45 x$
Total number of passenger is Domestic Flight in March $=1215$
So, total number of passenger in International Flight in March
$=45 x-1215$
ATQ,
$(45 x-1215)+315=15 x$
$45 x-900=15 x$
$30 x=900$
$x=30$
Total passenger in April $=90 x$
Total International passenger in April $=\frac{1}{3} \times 15 x=5 x$
So, total Domestic in April $=85 x$
Putting value $x=30$

MONTHS	DOMESTIC PASSENGER	INTERNATIONAL PASSENGER	TOTAL PASSENGER
JAN	960	240	1200
FEB	1350	450	1800
MARCH	1215	135	1350
APRIL	2550	150	2700

Required passenger $=2700-1800=900$
E. Male passengers who took domestic flight in March is 25% more than female passenger who took domestic flight in March. Find the number of male passenger who took domestic flight in March.
A
725

B 625650

D 675

E None of these

LCM of $2,3,4,5,3,4=60$
So let total number of passenger in February $=60 x$
So total number of passenger in January $=60 x \times \frac{2}{3}=40 x$
Number of passenger who took domestic flight in January
$=\frac{4}{5} \times 40 x=32 x$
So, number of passenger who took International Flight in January is
$=40 x-32 x=8 x$
Number of passenger who took Domestic Flight in February
$=\frac{3}{4} \times 60 x=45 x$
So, number of passenger who took International Flight in February
$=60 x-45 x=15 x$
Total number of passenger in March = Number of passenger who took
Domestic Flight in February $=45 x$
Total number of passenger is Domestic Flight in March $=1215$
So, total number of passenger in International Flight in March
$=45 x-1215$
ATQ,
$(45 x-1215)+315=15 x$
$45 x-900=15 x$
$30 x=900$
$x=30$
Total passenger in April $=90 x$
Total International passenger in April $=\frac{1}{3} \times 15 x=5 x$
So, total Domestic in April $=85 x$
Putting value $x=30$

MONTHS	DOMESTIC PASSENGER	INTERNATIONAL PASSENGER	TOTAL PASSENGER
JAN	960	240	1200
FEB	1350	450	1800
MARCH	1215	135	1350
APRIL	2550	150	2700

Total passenger in Domestic flight in March $=1215$
Let number of Female passenger in Domestic Flight of March $=x$
So, ATQ
$x+\frac{125}{100} \times x=1215$
$x=540$
So, male passenger $=\frac{125}{100} \times 540=675$
F. Number of passengers who took International flight (Male + Female) in March is what percent of the number of passengers who took international flight (Male + Female) in February.

A 30%

B $\quad 24 \%$
C
25%

D $\quad 26 \%$

Solution

LCM of $2,3,4,5,3,4=60$
So let total number of passenger in February $=60 x$
So total number of passenger in January $=60 x \times \frac{2}{3}=40 x$
Number of passenger who took domestic flight in January
$=\frac{4}{5} \times 40 x=32 x$
So, number of passenger who took International Flight in January is
$=40 x-32 x=8 x$
Number of passenger who took Domestic Flight in February
$=\frac{3}{4} \times 60 x=45 x$
So, number of passenger who took International Flight in February
$=60 x-45 x=15 x$
Total number of passenger in March = Number of passenger who took
Domestic Flight in February $=45 x$
Total number of passenger is Domestic Flight in March $=1215$
So, total number of passenger in International Flight in March
$=45 x-1215$
ATQ,
$(45 x-1215)+315=15 x$
$45 x-900=15 x$
$30 x=900$
$x=30$
Total passenger in April $=90 x$
Total International passenger in April $=\frac{1}{3} \times 15 x=5 x$
So, total Domestic in April $=85 x$
Putting value $x=30$
2. Read the instruction given below carefully and answer the questions based on it.

Bar chart given below shows number of mails read and unread on Monday by four different customer care executives. Study the chart and solve the following questions. Note: Total received male $=$ Read mails + Unread mails Mails received on Monday have no relevance to mails received on any other day.

A. Find the ratio of mails read by \mathbf{A} and B together to unread mails by C and D together.

A
3:8

B $\quad 4: 7$

C
5:7

D
 5:9

E
 7:9

Solution
As per data given in the table,
Required ratio $=\frac{130+220}{240+210}=7: 9$
B. Total mails received by \mathbf{E} is 30% more than total mails received by \mathbf{A}. If percentage of mails read out of total mails received is since for \mathbf{C} and E then find the number of mails not read by ' E '.
A
205

B 192

C $\quad \mathbf{2 0 8}$
(D) 218
(E) 210

Total mails received by $\mathrm{E}=\frac{130}{100} \times(130+170)=390$
Percentage of mails read by $\mathrm{E}=\frac{210}{450} \times 100 \%=\frac{140}{3} \%$
Number of mails not read by $\mathrm{E}=390 \times\left[1-\frac{140}{300}\right]$
$=\frac{390}{300} \times(300-140)$
$=208$
C. Average number of mails unread by B and C together is what percent of the average number of mails read by A and B together?
(115%

B $\quad 130 \%$
(C) 100%

D 125%

E 120%

Solution

Average number of mails not read by B and C together
$=\frac{1}{2} \times(180+240)=210$
Average number of mails read by A and B together
$=\frac{1}{2} \times(130+220)=175$
Required $\%=\frac{210}{175} \times 100 \%=120 \%$
D. Total mails received by ' C ' is sent by males and females. Mails sent by Males is 25% more than mails sent by females. Find the number of mails sent by males.

A $\quad 250$

B 240

C 270

D 220

E 200

Solution

Total males received by $\mathrm{C}=210+240=450$
Let number of mails sent by females $=x$
Then, number of mails sent by males $=1.25 x$
ATQ,
$x+1.25 x=450$
$x=200$
Number of males sent by males $=200 \times 1.25=250$
E. Total mails received by G is 25% more than total mails received by B
while G's unread mail is 25% more than unread mails of \mathbf{C}. If read mails sent by males to \mathbf{G} is 78 more than read mails sent by female than find the number of read mails sent to ' G ' by males.
A
129

B $\quad \mathbf{1 3 9}$

C 131

D 135

E $\quad 149$

Solution
Total mails received by $\mathrm{G}=\frac{125}{100} \times(220+180)=500$
Mails read by $\mathrm{G}=500-300=200$
Let, read mails sent by females $=x$
And, read mails sent by males $=x+78$
ATQ,
$x+x+78=200$
$x=61$
Read mails sent by males $=61+78=139$
F. Total mails received by A and \mathbf{C} together is how much more/less then

total mails received by B and D together?

A 20

B $\quad 15$

C 25

D $\quad 10$

E 8

Solution

Total mails received by A and C together
$=130+170+210+240=300+450=750$
Total mails received by B and D together
$=220+180+150+210=400+360=760$
Required difference $=760-750=10$

