
SQL Tutorial
SQL is a standard 
language for storing, 
manipulating and 
retrieving data in 
databases.



// Introduction to SQL

// SQL Basics 

// SQL Functions 

// SQL Advanced Concepts

// Hands-On Examples

// Conclusion

Index</>



</>
Why Learn SQL?
</> SQL is a highly sought-after skill in the IT industry.

</> It is widely used in data analysis, business intelligence, 

and web development.

</> SQL is easy to learn and has a simple syntax.

Relational Databases
</> A relational database is a collection of tables that are 

related to each other.

</> Each table represents a specific entity, such as a 

customer, product, or order.

</> Tables are connected through relationships, such 

as primary keys and foreign keys.

Introduction to SQL
What is SQL?
</> SQL stands for Structured Query Language, and 

it is used to manage data in relational databases.

</> It is a standard language that allows users to 

create, update, and retrieve data from databases.



</>
Introduction to SQL
SQL Syntax
</> SQL uses a specific syntax for querying databases.

</> A SQL statement is composed of keywords, clauses, 

and expressions.

</> SQL statements are terminated with a semicolon (;)



</>
The SELECT statement is used to retrieve data from one 
or more tables in a database. It specifies the columns to 
retrieve and the table to retrieve them from. The basic 
syntax of the SELECT statement is:



SELECT column1, column2, ... FROM table_name;



The "SELECT" keyword is followed by the name of the 
columns to retrieve, separated by commas. The "FROM" 
keyword is followed by the name of the table to retrieve 
the data from.


SQL Basics

Select Statement



</>
The WHERE clause is used to filter data based on a 
specific condition. It is used in conjunction with the 
SELECT statement to retrieve only the rows that meet the 
specified condition. The basic syntax of the WHERE 
clause is:



SELECT column1, column2, ... FROM table_name WHERE 
condition;



The "WHERE" keyword is followed by the condition that the 
data must meet. The condition can be a simple 
comparison, such as "column_name = value", or it can 
be a complex expression, such as "column_name LIKE 
'%value%'".


SQL Basics
Where Clause



</>
The ORDER BY clause is used to sort data in ascending or 
descending order based on one or more columns. It is 
used in conjunction with the SELECT statement to retrieve 
data in a specific order. The basic syntax of the ORDER BY 
clause is:



SELECT column1, column2, ... FROM table_name ORDER 
BY column_name ASC/DESC;



The "ORDER BY" keyword is followed by the name of the 
column to sort the data by. The "ASC" keyword is used to 
sort the data in ascending order, while the "DESC" 
keyword is used to sort the data in descending order.


SQL Basics
Order By Clause



</>
The GROUP BY clause is used to group data based on a 
specific column or columns. It is used in conjunction with 
the SELECT statement to retrieve data grouped by one or 
more columns. The basic syntax of the GROUP BY clause 
is:



SELECT column1, COUNT(column2) FROM table_name 
GROUP BY column1;



The "GROUP BY" keyword is followed by the name of the 
column or columns to group the data by. The COUNT 
function is used to count the number of occurrences of 
each value in the specified column.


SQL Basics
Group By Clause



</>
The JOIN statement is used to combine data from two or 
more tables based on a common column. It is used in 
conjunction with the SELECT statement to retrieve data 
from multiple tables. The basic syntax of the JOIN 
statement is:



SELECT column1, column2, ... FROM table1 JOIN table2 
ON table1.column_name = table2.column_name;



The "JOIN" keyword is used to combine data from two or 
more tables. The "ON" keyword is used to specify the 
column or columns that the tables are joined on.


SQL Basics
Join Statement



</>
An INNER JOIN returns only the rows from both tables that 
match the join condition. In other words, only the rows 
that have matching values in both tables are included in 
the result.



Example:

Consider the following two tables:



Table1: Orders


SQL Basics
Inner Join



</>
To retrieve a list of all orders and their respective 
customer names, we can use an INNER JOIN:



SELECT Orders.OrderID, Orders.OrderDate, 
Customers.CustomerName

FROM Orders

INNER JOIN Customers



ON Orders.CustomerID = Customers.CustomerID;


Table2: Customers

SQL Basics



</>
Note that only the rows that have matching values in 
both tables are included in the result. The order with 
OrderID 4 is associated with the customer John because 
both have the same CustomerID value of 1.


SQL Basics
The result of the above query will be:



</>
An OUTER JOIN returns all the rows from one table and 
the matching rows from the other table. There are three 
types of OUTER JOINS: LEFT OUTER JOIN, RIGHT OUTER JOIN, 
and FULL OUTER JOIN.

The LEFT OUTER JOIN returns all the rows from the left 
table and the matching rows from the right table. If there 
are no matching rows in the right table, the result will 
contain NULL values.

SQL Basics
Outer Join

LEFT OUTER JOIN



</>
SQL Basics
Example:

Consider the following two tables:



Table1: Employees

Table2: Departments

To retrieve all the employees and their respective 
departments, including those employees who do not 
belong to any department, we can use a LEFT OUTER 
JOIN:



</>Note that the last row contains NULL values for both the 
EmployeeName and DepartmentName columns, since 
there is no matching row in the Departments table for 
the employee with no department.


SELECT Employees.EmployeeName, 
Departments.DepartmentName

FROM Employees

LEFT OUTER JOIN Departments

ON Employees.DepartmentID = 
Departments.DepartmentID;



The result of the above query will be:


SQL Basics



</>
The UNION statement is used to combine the results of 
two or more SELECT statements into a single result set. 
The columns in each SELECT statement must have the 
same data type, and the number of columns in each 
SELECT statement must be the same.

Example:

Consider the following two tables:


Table1: Students

Table2: Courses

SQL Basics
UNION Statement



</>Note that the last row contains NULL values for the 
StudentName column, since there is no matching row in 
the Students table for the English course.


To retrieve a list of all students and courses, we can use 
a UNION statement:



SELECT StudentName, CourseName FROM Students

INNER JOIN Courses ON Students.CourseID = 
Courses.CourseID

UNION

SELECT NULL, CourseName FROM Courses

WHERE CourseID NOT IN (SELECT CourseID FROM 
Students);



The result of the above query will be:


SQL Basics



</>
These functions operate on a group of rows and return a 
single value. The common aggregate functions in SQL 
are COUNT, SUM, AVG, MAX, and MIN. For example, to 
calculate the total sales amount for a specific product, 
you can use the SUM function as follows:

SQL Functions
Aggregate Functions

These functions perform mathematical calculations on 
the given values. Some examples of mathematical 
functions in SQL are ABS (absolute value), ROUND 
(rounding off), and MOD (modulus). Here is an example 
of using the ROUND function to round off a decimal 
value:


This will return the value 3.14, rounded to 2 decimal 
places.

Mathematical Functions



</>
These functions manipulate strings or character data. 
Some commonly used string functions in SQL are 
CONCAT (concatenation), SUBSTRING (substring 
extraction), and LENGTH (length of a string). Here's an 
example of using the CONCAT function to concatenate 
two strings:


These functions manipulate date and time values. 
Examples of date and time functions include DATE (date 
format), YEAR (extract year from a date), and NOW 
(current date and time). Here is an example of using the 
NOW function to get the current date and time:


SQL Functions
String Functions

Date and Time Functions
This will return the value "HelloWorld".


This will return the current date and time in a standard 
format.




</>
These functions convert one data type to another. Some 
common conversion functions in SQL are CAST (explicit 
conversion), CONVERT (implicit conversion), and 
TO_CHAR (convert to character). Here's an example of 
using the CAST function to convert a string value to an 
integer:


This will return the value 123 as an integer.


SQL Functions
Conversion Functions



</>
A subquery is a query that is nested within another 
query. The results of the subquery are used by the outer 
query to perform further processing. Subqueries are 
often used to retrieve data based on a condition that is 
not easily expressed using a single query. Here's an 
example of a subquery to retrieve the names of all 
customers who have placed orders:

Example: SELECT customer_name FROM customers 
WHERE customer_id IN (SELECT customer_id FROM 
orders);


A view is a virtual table that is created by a query. It can 
be used like a table in SQL queries, but it does not store 
any data on its own. Views are often used to simplify 
complex queries or to provide controlled access to 
sensitive data. Here's an example of creating a view to 
retrieve the names and email addresses of all 
customers:

Example: CREATE VIEW customer_emails AS SELECT 
customer_name, email FROM customers;


SQL Advanced Concepts
Subqueries

Views



</>
An index is a data structure that is used to speed up 
queries by providing quick access to data based on a 
specific column or set of columns. Indexes are often 
used on columns that are frequently used in WHERE 
clauses or JOIN operations. Here's an example of 
creating an index on the "product_name" column in the 
"products" table:



Example: CREATE INDEX product_name_index ON 
products (product_name);


SQL Advanced Concepts
Indexes



</>
SQL Advanced Concepts

A transaction is a sequence of one or more SQL 
statements that are executed as a single unit of work. 
Transactions are used to ensure that all the statements 
in a sequence are executed successfully, or none of 
them are executed at all. Transactions are often used in 
applications that require data consistency, such as 
banking or e-commerce. Here's an example of a 
transaction that transfers funds from one account to 
another:



Example:

BEGIN TRANSACTION;

UPDATE accounts SET balance = balance - 500 WHERE 
account_id = '123';

UPDATE accounts SET balance = balance + 500 WHERE 
account_id = '456';

COMMIT;


Transactions



</>
A stored procedure is a set of SQL statements that are 
stored in the database and can be called by other SQL 
statements or by an application. Stored procedures are 
often used to simplify complex operations or to enforce 
business rules. Here's an example of creating a stored 
procedure to insert a new customer into the "customers" 
table:



Example: 

CREATE PROCEDURE add_customer (IN name 
VARCHAR(50), IN email VARCHAR(50))

BEGIN

  INSERT INTO customers (customer_name, email) 
VALUES (name, email);

END;


SQL Advanced Concepts
Stored Procedures



</>
A trigger is a special type of stored procedure that is 
automatically executed in response to a specific event, 
such as an INSERT, UPDATE, or DELETE operation on a 
table. Triggers are often used to enforce business rules 
or to audit changes to data. Here's an example of 
creating a trigger to record changes to the "orders" table:



Example: CREATE TRIGGER orders_audit AFTER INSERT, 
UPDATE, DELETE ON orders

FOR EACH ROW

BEGIN

  INSERT INTO orders_audit (event_time, event_type, 
order_id) VALUES (NOW(), 'INSERT', NEW.order_id);

END;


SQL Advanced Concepts
Triggers



</>
To create a new database in SQL, you can use the 
CREATE DATABASE statement followed by the database 
name. For example, to create a database named 
"mydb", you can use the following SQL command:


Hands-On Examples
Creating a Database

To create a new table in a database, you can use the 
CREATE TABLE statement followed by the table name and 
column definitions. For example, to create a table 
named "customers" with columns for customer ID, name, 
and email, you can use the following SQL command:



Creating Tables



</>
To insert data into a table, you can use the INSERT INTO 
statement followed by the table name and column 
values. For example, to insert a new customer into the 
"customers" table, you can use the following SQL 
command:


To update existing data in a table, you can use the 
UPDATE statement followed by the table name, column 
values, and condition. For example, to update the email 
address of a customer with ID 1 in the "customers" table, 
you can use the following SQL command:



Example: UPDATE customers SET email = 
'john.smith@newemail.com' WHERE customer_id = 1;


Hands-On Examples
Inserting Data

Updating Data



</>
To delete data from a table, you can use the DELETE 
FROM statement followed by the table name and 
condition. For example, to delete a customer with ID 1 
from the "customers" table, you can use the following 
SQL command:


To query data from a table, you can use the SELECT 
statement followed by the column names and table 
name. For example, to retrieve the names and email 
addresses of all customers from the "customers" table, 
you can use the following SQL command:


Hands-On Examples
Deleting Data

Querying Data



</>
To create a view in SQL, you can use the CREATE VIEW 
statement followed by the view name and SELECT 
statement. For example, to create a view named 
"customer_emails" that retrieves the names and email 
addresses of all customers from the "customers" table, 
you can use the following SQL command:

Hands-On Examples
Creating Views



</>
Hands-On Examples

To create a stored procedure in SQL, you can use the 
CREATE PROCEDURE statement followed by the procedure 
name and SQL statements. For example, to create a 
stored procedure named "add_customer" that inserts a 
new customer into the "customers" table, you can use 
the following SQL command:



Example: 

CREATE PROCEDURE add_customer (IN customer_id 
INT, IN customer_name VARCHAR(50), IN email 
VARCHAR(50))

BEGIN

  INSERT INTO customers (customer_id, 
customer_name, email)

  VALUES (customer_id, customer_name, email);

END;


Creating Stored Procedures



</>
SQL (Structured Query Language) is a domain-specific 
language used for managing relational databases. It 
consists of a set of commands used for creating, 
modifying, and querying databases and their contents. 
Some key concepts of SQL include data types, operators, 
functions, subqueries, views, indexes, transactions, stored 
procedures, and triggers.

SQL allows users to perform a wide range of operations 
on their databases, including creating tables and views, 
inserting, updating, and deleting data, and querying 
data using various operators and functions. Advanced 
concepts in SQL include subqueries, views, indexes, 
transactions, stored procedures, and triggers, which can 
provide greater control over data management and 
processing.


Summary of Key Concepts



Thank you

Trusted by 1 crore students


