

1. Let A, B and C be non -empty sets and let X = (A-B)-C and Y = (A-C)-(B-C). Which one of the following is TRUE?

- a) X = Y
- b)  $X \subset \subset Y$
- c)  $Y \subset\subset X$
- d) None of these

## **Solution**

$$X = (A - B) - C$$

$$= (A \cap B') - C$$

$$=$$
 ( A  $\cap \cap$  B')  $\cap \cap$  C'

$$= AB'C'$$

$$Y = (A - C)-(B-C)$$

$$= (A \cap C') - (B \cap C)$$

$$= (A C') - (BC')$$

$$= (A \ C') \ \cap \cap \ (BC')'$$

$$= (A \ C') \ \cap \cap \ (B' + C)$$

$$= (A C') .(B' + C)$$

$$= AC'B' + AC'C$$

Therefore X = Y

2. Let  $T: R^2 \rightarrow R^2$  be a linear transformation such that T(1,2)=(2,3) and T(0,1)=(1,4). Then T(5,6) is ?

- a. (6,-1)
- b. (-6,1)
- c. (-1,6)
- d. (1,-6)

we have to find: T(1,0)

$$T(1,0) = T\{(1,2)-2(0,1)\}$$

$$= T (1,2)-2 T (0,1)$$

$$=(2,3)-2(1,4)$$

$$=(2,3)-(2,8)$$

$$=(0, -5)$$

$$T(5,6) = T\{5(1,0)+6(0,1)\}$$

$$= 5T(1,0) + 6T(0,1)$$

$$=5(0, -5)+6(1,4)$$

$$=(0, -25)+(6,24)$$

$$=(6,-1)$$

# 3. Remainder when 97! is divided by 101 is

- A. 15
- B. 16
- C. 17
- **D.** None of these

# **Solution**

If p is prime then  $(p-1)! \equiv -1 \pmod{p}$ 

101 is prime

```
(101-1)! \equiv -1 \pmod{101}

(100)! \equiv -1 \pmod{101}

100 \times 99 \times 98 \times 97! \equiv -1 \pmod{101}

ie, -1 \times -2 \times -3 \times 97! \equiv -1 \pmod{101}

since 100 \pmod{101} = -1, 99 \pmod{101} = -2 and 98 \pmod{101} = -3

6 \times 97! \equiv 102 \pmod{101}, remove negative

97! \equiv 17 \pmod{101} and \frac{102}{6} = 17
```

4. An insurance company classifies insured policyholders into a accident prone or non-accident prone. Their current risk model works with the following probabilities. The probability that an accident prone insured has an accident within a year is 0.4. The probability that a non-accident prone insured has an accident within a year is 0.2 . If 30% of the population is accident prone, What is the probability that a policy holder will have an accident within a year?

- A. 0.12
- В. **0.26**
- C. 0.65
- D. 0.75

### **Solution**

A1:1: Policy holder will have an accident within a year

A: Policy holder is accident prone.

$$P(A1=P(A1/A)P(A)+P(A1/Ac)(1-P(A)$$

$$=0.4\times0.3+0.2(1-0.3)0.4\times0.3+0.2(1-0.3)=0.26$$

probability that he/she is accident prone?

5. An insurance company classifies insured policyholders into a accident prone or non-accident prone. Their current risk model works with the following probabilities. The probability that an accident prone insured has an accident within a year is 0.4. The probability that a non-accident prone insured has an accident within a year is 0.2. If 30% of the population is accident prone. Suppose now that the policy holder has had an accident within one year. What is the

04

a. 
$$\frac{1}{14}$$

b. 
$$\frac{3}{14}$$

c. 
$$\frac{5}{14}$$

d. 
$$\frac{6}{14}$$

A1: Policy holder will have an accident within a year.

A: Policy holder is accident prone

$$P(A1) = P(A1/A) P(A) + P(A1/A^{C})(1-P(A))$$

$$=0.4\times0.3+0.2(1-0.3)=0.26$$

$$P(A/A1) = \frac{P(A)P(A1-A)}{P(A1)}$$

$$= \frac{0.3 * 0.4}{0.26} = \frac{6}{14}$$

6. Two dice are rolled. Consider the events A={sum of two dice equals 3}, B={Sum of two dice equals 7} and C={at least one of the dice shows a 1}

What is P(A/C)?

a. 
$$\frac{2}{11}$$
 b.  $\frac{3}{11}$ 

c. 
$$\frac{5}{11}$$

d. 
$$\frac{10}{11}$$

## **Solution**

Sample space,  $S\{(i, j)| i,j=1,2,3,4,5,6\}$  with each outcome equally likely.

$$A=\{(1,2),(2,1)\}$$

$$C = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),((3,1),(4,1),(5,1),(6,1)\}$$

$$P(A/C) = \frac{P(A \cap C)}{P(C)}$$

$$=\frac{2}{11}$$

7. Two dice are rolled. Consider the events A={sum of two dice equals 3}, B={Sum of two dice equals 7} and C={at least one of the dice shows a 1}

# What is P(B/C)?

- a.  $\frac{1}{11}$
- b.  $\frac{2}{11}$
- $c.\frac{3}{11}$
- d.  $\frac{4}{11}$

## solution

Sample space,  $S\{(i,j)|i,j=1,2,3,4,5,6\}$  with each outcome equally likely.

$$B=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$$

$$C = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),((3,1),(4,1),(5,1),(6,1)\}$$

$$P(B/C) = \frac{P(B \cap C)}{P(C)}$$

$$=\frac{2}{11}$$

# 8. The value of $\sqrt{(-16)}$ is ?

- a. -4i
- b. 4i
- c.-2i
- d. 2i

## **Solution**

$$\sqrt{(-16)} = \sqrt{16} \times \sqrt{(-1)} = 4i$$

# 9. The value of $\sqrt{(-49)} + 3\sqrt{(-4)} + 2\sqrt{(-9)}$ is ?

- A. 19i
- B. -19i
- C. 17i
- D. -17i

## **Solution**

$$\sqrt{(-49)} + 3\sqrt{(-4)} + 2\sqrt{-9} 
= \sqrt{(49)} \times \sqrt{(-1)} + 3\sqrt{(4)} \times \sqrt{(-1)} + 2\sqrt{(9)} \times \sqrt{(-1)}$$

```
=7i+6i+6i
=19 i
```

# 10. The curve represented by $im(z^2)=k$ , where k is a non zero real number is ?

A. A pair of straight line

B. An ellipse

C. A parabola

D. A hyperbola

Solution

let 
$$z=x+iy$$
  
 $z^2=(x+iy)$   
 $z^2=x^2-y^2+2xyi$   
 $Im(z)=k$   
 $2xy=k$   
 $xy=k/2$  which is a hyperbola.

# 11. How many prime numbers lie between 1 and 30?

A. 8

B. 9

C. 10

D. 11

**Solution** 

Prime numbers between 1 and 30 are: 2,3,5,7,11,13,17,19,23,29

View Details

# 12. The sum of squares of distinct common prime factors of 120, 210 and 330 is?

A. 34

B. 38

C. 39

D. 46

### Solution

Prime factors of  $120=2\times2\times2\times3\times52\times2\times2\times3\times5$ Prime factors of  $210=2\times3\times5\times72\times3\times5\times7$ Prime factors of  $330=2\times5\times5\times12\times5\times5\times1$ 

Common distinct primes=2,3,5

The sum of squares of distinct common prime factors = $2^2+3^2+5^2=38$ 

# 13. Which of the following group of numbers has least prime numbers?

- A. From 20 to 40
- B. From 30 to 50
- C. From 40 to 60
- D. From 60 to 80

- From 20 to 40 primes: 23, 29, 31 and 37
- From 30 to 50 primes:31, 37, 41, 43 and 47
- From 40 to 60 primes:41, 43, 47, 53 and 59
- From 60 to 80 primes:61, 67, 71, 73 and 79

# 14. A polynomial of degree p has ....

- A. Only one zero
- B. At least p zeroes
- C More than p zeroes
- D. Atmost p zeroes

#### **Solution**

A polynomial's maximum number of zeroes equals the polynomial's degree.

# 15. Zeroes of $p(x)=x^2-27$ are ?

- A.  $\pm 3 \sqrt{3}$
- B.  $\pm 9 \sqrt{3}$
- C.  $\pm 7\sqrt{3}$
- D. None of the above

### **Solution**

$$X^2 - 27 = 0$$

$$\Rightarrow$$
 x<sup>2</sup>=27

$$\Rightarrow x = \sqrt{(27)}$$

$$=\pm 3\sqrt{3}$$

# 16. If a quadratic polynomial's discriminant is D, is greater than zero, the polynomial has ....

- A. Two real and equal roots
- B. Two real and unequal roots
- C. Imaginary roots
- D. No roots

### **Solution**

If the discriminant of a quadratic polynomial D > 0 then the polynomial has real and unequal roots.

If the discriminant of a quadratic polynomial D = 0 then the polynomial has real and equal roots.

If the discriminant of a quadratic polynomial D < 0 then the polynomial has imaginary and unequal roots.

# 17. What is the domain of the function $f(x)=x^{1/3}$ ?

- A. Domain is  $(2,\infty)$
- B. Domain is  $(-\infty,1)$
- C. Domain is  $[0,\infty)0,\infty$
- D .None of the above

### **Solution**

A square root function is not defined for negative real numbers.

Hence any value less then zero is not possible. Hence the domain is  $[0,\infty]$ .

### 18. The domain of a function is ......

- A. The maximal set of numbers for which a function is defined
- B. The maximal set of numbers which a function can take values
- C. It is a set of natural numbers for which a function is defined
- D. None of the above

### **Solution**

The domain of a function is the maximal set of numbers for which a function is defined.

# 19. The range of a function is .....

- A. The maximal set of numbers for which a function is defined
- B. The maximal set of numbers which a function can take values
- C. It is a set of natural numbers for which a function is defined
- D. None of the above

### **Solution**

The range of a function is the maximal set of numbers which a function can take values.

### 20. If f: A→B will be an into function if

- A. Range(f)  $\subset$  B
- B. f(a)=B
- C.  $B \subset f(a)$
- D.  $f(b) \subset A$

### **Solution**

If f:  $A \rightarrow B$  will be an into function if range(f)  $\subset B$ .

# 21. Consider the nonempty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ?

- A. Symmetric but not transitive
- B. Transitive but not symmetric
- C. Neither symmetric nor transitive
- D. Both symmetric and transitive

### **Solution**

Consider the non empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is Transitive but not symmetric.

# 22. The maximum number of equivalence relation on the set $A=\{1,2,3\}$ are ?

- A. 12
- B. 2
- C. 3
- D. 5

### **Solution**

```
Ans: 5 R_1 = \{(1,1),(2,2),(3,3)\}
R_2 = \{(1,1),(2,2),(3,3),(1,2),(2,1)\}
R_3 = \{(1,1),(2,2),(3,3),(1,3),(3,1)\}
R_4 = \{(1,1),(2,2),(3,3),(2,3),(3,2)\}
R_5 = \{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),3,2)\}\}
```

# 23. An injection is a function which is .....

- A. Many-one
- B. One-one
- C. Onto
- D. None of these

### **Solution**

One-one functions are known as injection.

Onto function are known as surjective function.

A function which is both surjective and injective is called bijective

# 24. A function f:X→Y is one-one if , ........

- A.  $f(x_1)\neq f(x_2)\forall x_1,x_2\in X$
- B. **if**  $f(x_1) = f(x_2)$  **then**  $x_1 = x_2 \ \forall x_1, x_2 \in X$
- C.  $f(x_1)=f(x_2), \forall x_1, x_2 \in X$

D. None of the above

### **Solution**

In one-one function every element in A should have unique image in B. Thus two images are equal means their pre images are same.

- 25. A function is defined by mapping f: A→B such that A contains m elements and B contains n elements and  $m \le n$ , then the number of one-one functions are ....
  - A. nCm ×m!
  - B.  $nC_m \times n!$
  - C. 0
  - D. n + m

### **Solution**

From n elements in B we need to select m elements and arrange them in all ways. So the answer is  $nC_m \times m!$ .

- 26.A function is defined by mapping f:A→B such that A contains m elements and B contains n elements and m>n, then the number of one-one functions are .....
  - A.  $nC_m \times m!$
  - B.  $nC_m \times n!$
  - C. (mn)! D. **0**

#### **Solution**

Since m > n at least some elements should have same image. So there will not any one-one function.

- 27. Let X be a non-empty set and R be set of real numbers then  $d:X\times X\to R$  is called.....
  - A. Metric
  - B. Distance function

  - C. Metric spaceD. Both (a) and (b)

### **Solution**

Let X be a non-empty set and R be set of real numbers then  $d:X\times X\to R$  is called metric or distance function.

(X, d) is called metric space, when the distance function d satisfies some reasonable properties.

- 28. Which of the following is incorrect for a distance function d?
  - A.  $d(x,y) \ge 0$
  - B. d(x,x)=d(y,y)
  - C. d(x,y)=d(y,x)
  - D.  $d(x,y)+d(y,z) \le d(x,z)$

### **Solution**

Properties of distance function d:

For any  $x,y \in X$ 

- $d(x,y) \ge 0$
- $d(x,y)=0 \Rightarrow x=y$
- $\overline{d(x,y)} = d(y,x)$
- $d(x,z) \le d(x,y) + d(y,z)$

# 29. For a metric d on a non empty set X, the metric space is represented as:

- $\begin{array}{ll} \mathsf{A.} & (\mathbf{X}, \mathbf{d}) \\ \mathsf{B.} & (\mathsf{d}, \! \mathbf{X}) \end{array}$
- C.  $(X, d) \rightarrow R$
- D.  $X:X\rightarrow d$

#### **Solution**

A metric space is a pair (X,d), where X is a set and d:X×X is a map which satisfies some properties. For any  $x,y \in X$ 

- $d(x,y) \ge 0$
- $d(x,y)=0 \Rightarrow x=y$
- d(x,y)=d(y,x)
- $d(x,z) \le d(x,y) + d(y,z)$

# 30. The space (Rn, d) is called....?

- A. Real metric space
- B. n-dimensional Euclidean space
- C. n-dimensional real space
- D. None of these

## Solution

The space (Rn,d) is called an n-dimensional Euclidean space.  $d:R_n \times R_n \rightarrow R$  is defined by, d(x,y)=||x-y||

# 31. What is the radius of the circle $x^2 + y^2 - 6y = 0$ ?

- A. 2
- B. 3
- <u>C</u>. 4
- D. 5

### **Solution**

 $X^2+y^2-6y=0$ By completing the square

$$x^2 + y^2 - 6y + 9 = 9$$

$$x^2+(y-3)^2=3^2$$

Standard equation of a circle with centre at (h, k) is

$$(x-h)^2+(y-k)^2=r^2$$

So, 
$$r=3$$

32. What are the coordinates of the centre of the curve  $x^2 + y^2 - 2x - 4y - 31 = 0$ ?

### **Solution**

$$x^2 + y^2 - 2x - 4y - 31 = 0$$

$$x^2-2x + y^2-4y-31=0$$

By completing the square

$$(x-1)^2+(y-2)^2=36$$

Standard equation of the circle with centre (h, k) is

$$(x-h)^2+(y-k)^2=r^2$$

$$h=1$$
 and  $k=2$  centre=  $(1,2)$ 

33. A circle whose equation is  $x^2 + y^2 + 4x + 6y - 23 = 0$  has its centre at ?

### **Solution**

$$X^2 + y^2 + 4x + 6y - 23 = 0$$

By completing the square

$$X^2+4x+2^2+y^2+6y+3^2=23+2^2+3^2$$

$$(x+2)^2+(y+3)^2=6^2$$

Standard equation of a circle with centre at (h,k) is  $(x-h)^2+(y-k)^2=r^2$ 

So, 
$$h=-2$$
 and  $k=-3$  centre= (-2,-3)

34. What is the radius of the circle with equation  $X^2-6x+y^2-4y-12=0$ ?

- A. 3.46
- B. 7
- C. 5
- D. 6

**Solution** 

$$X^2-6x+y^2-4y-12=0$$

By completing the square

$$X^2-6x+3^2+y^2-4y+2^2=12+2^2+3^2$$

$$(x-3)^2+(y-2)^2=5^2$$

Standard equation of a circle with centre at (h,k) is

$$(x-h)^2+(y-k)^2=r^2$$

So, 
$$r=5$$

35. What is the value of  $\lim_{y\to 2} (y^2 - 4)/(y-2)$ 

- A. 2
- B. 4
- C. 1
- D. 0

**Solution** 

$$\lim_{y\to 2} (y^2 - 4)/(y-2)$$
  
=  $\lim_{y\to 2} (y - 2)(y+2)/(y-2)$ 

$$=2+2=4$$

36. What is the value of  $\lim_{y\to\infty} 2y 2/y$ ?

- A. 0
- B. 1
- C. 2
- D. ∞

**Solution** 

Any number divided by  $\infty$  gives 0.

$$\lim_{y\to\infty} 2/y$$

$$= 2/\infty = 0$$

37. What is the value of  $\lim_{x\to 4} (x^2 - 2x - 8)/(x-4)$ ?

- A. 0
- B. 2
- C. 8

# D. 6

# **Solution**

$$\lim_{x\to 4} (x^2 - 2x - 8)/(x-4)$$
$$\lim_{x\to 4} (x-4)(x-2)/(x-4) = 6$$

# 38. What is the value of $\lim_{x\to 3} (x^2-9)/(x-3)$ ?

- A. 0
- B. 3
- C. ∞
- D. 6

## **Solution**

$$\lim_{x\to 3} \frac{(x^2-9)}{(x-3)}$$
  
 $\lim_{x\to 3} \frac{(x-3)(x+3)}{(x-3)} = 6$ 

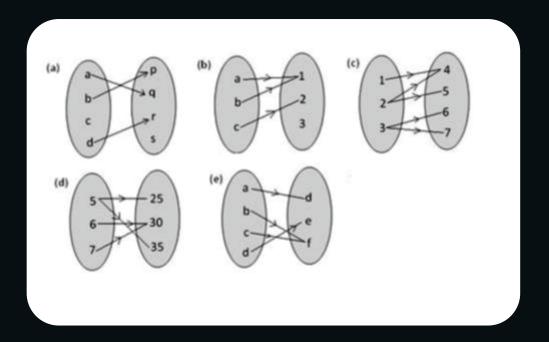
# 39. Which of the following relation is functions?

- A.  $R_1 = \{(1,7),(2,7),(4,7),(6,7)\}$
- B.  $R_2 = \{(1,2),(1,3),(1,4),(1,5)\}$
- C. R<sub>3</sub> ={(x,y),(y,z),(z,t),(t,v)}
- D. None of the above

## **Solution**

R<sub>3</sub>= $\{(x,y),(y,z),(z,t),(t,v)\}$  every element in the domain has unique image in the range.

# 40.which of the arrow diagram represent functions



A. a, b, c, e

B. b, c, d, e

C.c, d

D. b, e

### **Solution**

A function is a mapping which assigns for every value in the domain one and only one value in the range.

- In (a) not all value in the domain are assigned a value in range.
- In (b) and (e) every value in the domain one and only one value in the range.
- In (c) and (d) value in the domain has multiple range values.
- 41. Given f(x)=3x-1, find the value of f(-2)?
  - A. -5
  - B. -7
  - C. 7
  - D. -5

### **Solution**

$$f(-2) = 3 \times -2 - 13 \times -2 - 1$$
  
=-6-1= -7

- 42. If A, B and C are any three sets then  $A-(B\cup C)=?$ 
  - A.  $(A-B)\cup(A-C)$
  - B. (A-B)UC
  - C. (A−B)∩C
  - D.  $(A-B)\cap (A-C)$

# **Solution**

$$A-(B\cup C) = A\cap (B\cup C)'$$
  
= $A\cap B'\cap C'..(1)$   
 $(A-B)\cap (A-C)=(A\cap B')\cap (A\cap C')$   
= $A\cap B'\cap C'..(2)$   
 $(1)=(2)$ 

# 43. Which of the following statement is true?

- (i) If a subset  $A \subset X \diamondsuit \subset \diamondsuit$  is closed in X, then every sequency of points of A that converges must converge to a point of A
- (ii)Both **♦** and X are closed in X
  - A. Only (i) follows
  - B. Only (ii) follows
  - C. Both are true
  - D. None of the above is true

- (i) If a subset  $A \subset X$  is closed in X, then every sequence of points of A that converges must converge to a point of A
- (ii)Both φ and X are closed in X

A set is open if every point in is an interior point.

A set is closed if it contains all of its boundary points.

# 44. Which of the following statement is true?

- A.  $A \subset A^-$  for any set A
- B. If  $A \subseteq B$  then  $A \subseteq B$  as well
- C. The set A is closed iff A<sup>-</sup>=A
- D. All of the above

#### **Solution**

- A⊂A for any set A
- If  $A \subseteq B \subseteq$  then  $A \subseteq B \subseteq$  as well
- The set A is closed iff A = A
- A is the smallest closed set that contains A.
- The closure of A is itself.

# 45. For any set A, $(A^{-})^{-} = ?$

- <u>A</u>. A
- B. A
- C. U
- Д. φ

### **Solution**

Let 
$$U = \{1,2,3,4,5,6\}$$

$$A=\{1,2\}$$

$$A'=U-A=\{3,4,5,6\}$$

$$(A')'=U-(U-A)=\{1,2\}=A$$

# 46. Let A be any set and A<sup>0</sup> be the interior of A then which of the following is true?

- A.  $A^0 \subset A$  for any set A
- B. If  $A \subseteq B$  then  $A^0 \subseteq B^0$  as well
- C. The set A is open iff  $A^0=A$
- D. All the above

## **Solution**

 $A^0 \subset A$  for any set A

If  $A \subset B$  then  $A^0 \subset B^0$  as well The set A is open iff  $A^0 = A$ 

- 47. Let A be any set and  $A^0$  be the interior of A then  $(A^0)^0 = ?$ 
  - A. A
  - B. A<sup>0</sup>
  - C. U
  - D. ф

### **Solution**

- Let A be any set and  $A^0$  be the interior of A then .  $(A^0)^0 = (A^0)$
- $(A^0)^0$  is an open set so it must be equal to its own interior
- (A<sup>0</sup>) is the largest open set contained in A
- (A<sup>0</sup>) is equal to A iff A is open
- 48. Which of the following are groups?
  - A.  $(Q^+, *)$
  - B. (Z,+)
  - C.  $(R \{0\}, *)$
  - D. All the above

### **Solution**

- An algebraic system (G, ) consisting of a non empty set G together with a binary composition is called a group if the following axioms are satisfy.
  - 1. Associative property
  - 2. Existance of identity element
  - 3.existence of inverse
- All the above are examples of groups.
- 49. Number of elements in a group is called.... of that group.
  - A. Range
  - B. Array
  - C. Order
  - D. Frequency

# **Solution**

Number of elements in a group, G is called order of that group. It is denoted by |G| or O(G).

- 50. The order of a group G is denoted as .....?
  - A. O(G)
  - B. |G|
  - C. e(G)

#### D. Both A and B

### **Solution**

Number of elements in a group, G is called order of that group. It is denoted by |G| or O(G).

# 51. Let G be a group then the least positive integer n is said to be the order of an element if,

- A. a=e
- B. na=e
- C. an=e
- D. ae=0

### **Solution**

- Let G be a group then the least positive integer n is said to be the order of an element if, an=e.
- Let G be a group and  $g \in G$ . We say g has finite order if  $g^n = e$  for some integer n.
- In abelian group t the order of each element divides the size of the group

# 52. R is called a ring with unit element if,

- A. If  $\exists 1 \in \mathbb{R}$  such that  $1.a = a.1 = a \ \forall a \in \mathbb{R}$
- B. If  $\exists 1 \in \mathbb{R}$  such that  $1+a=a+1=a \ \forall a \in \mathbb{R}$
- C. If  $\exists 1 \in \mathbb{R}$  such that  $1.a=a.1=0 \ \forall a \in \mathbb{R}$
- D. If  $\exists 1 \in \mathbb{R}$  such that  $1.a=a.1=1 \ \forall a \in \mathbb{R}$

### **Solution**

R is called a ring with unit element if, If  $\exists 1 \in R$  such that  $1.a=a.1 = a \forall a \in R$  Usually unit element of R is denoted by 1.

Let (R, +, .) be a ring and a,b,c are any three elements of R, then a.0=0.a=0

a.(-b) = -(a.b) = (-a).b

## 53. If the multiplication of the ring R is such that a.b= b.a $\forall a,b \in \mathbb{R}$ , then R is known as...?

- A. Additive ring
- B. Inverse ring
- C. Commutative ring
- D. Non commutative ring

### **Solution**

If the multiplication of the ring R is such that a.b= b.a  $\forall a,b \in R$ , then R is known as commutative ring.

Boolean ring: If  $x^2=x$  for all  $x \in R$ 

# 54. Suppose R is the set of integers positive, negative and 0, + is the usual addition and '.' is the usual multiplication then which of the following is true?

- A. R is a commutative ring with unit element
- B. R is a commutative ring without unit element
- C. R is a not a commutative ring.
- D. None of the above

#### **Solution**

Suppose R is the set of integers positive, negative and 0, + is the usual addition and '.' is the usual multiplication then R is a commutative ring with unit element.

R is a commutative ring if a.b=b.a ∀a.b∈R

- 55. Suppose R is the set of even integers under usual operations of addition and multiplication, then which of the following is true?
- A. R is a commutative ring with unit element
- B. R is a commutative ring but has no unit element
- C. R is not a commutative ring
- D. None of the above

### **Solution**

R is a commutative ring but has no unit element.

An element u in R is called a unit element of R if it has a multiplicative inverse in R. Here there is no unit element in R since R is the set of even integers under usual operations of addition and multiplication.

# 56. If R is a ring in which $a^4 = a \forall a \in \mathbb{R}$ , then,....?

- A. R is commutative
- B. R is not commutative
- C. R is zero ring
- D. None of these

### **Solution**

```
(ab)^4=ab.ab.(ab)^2
= aabb.ab.ab
=a<sup>2</sup>b<sup>2</sup>.ab.ba
= a<sup>2</sup>b<sup>3</sup>.a.ba
= a<sup>2</sup>b<sup>2</sup>.ba.a
= a<sup>2</sup>b<sup>4</sup>.a.a(b<sub>4</sub>=b,\forallb∈R)
= a<sup>2</sup>.b.a.a= a<sup>3</sup>ba
= a<sup>4</sup>b
=a.b
```

# 57. Let $T:R^3 \to R^3$ be a linear transformation defined by T(x,y,z)=(x+y,y+z,z+x) for all $(x,y,z) \in R^3$ . Then

- A. Rank(T)=0 and Nullity(T)=3
- B. Rank(T)=2 and Nullity(T)=1
- C. Rank(T)=1 and Nullity(T)=2
- D. Rank(T)=3 and Nullity(T)=0

### **Solution**

$$T(x,y,z)=(x+y,y+z,z+x)$$

Null space (T)= 
$$\{(x,y,z) \in \mathbb{R}3 : T(x,y,z) = (0,0,0)\}$$

- $= \{(x,y,z) \in \overline{R_3: (x+y,y+z,z+x)=(0,0,0)\}} \Rightarrow y=z=0$
- : Null space  $(T) = \{(0,0,0)\}$
- $\therefore$  dim Null space(T) = Nullity =0.  $\therefore$ Rank(T)+" Nullity"(T)=n

Rank(T)+0=3

 $\Rightarrow$  Rank(T)=3

# 58. Consider a function f(z)=u+iv defined on |z-i|<1| where u and v are real valued functions of y. Then f(z) (x) is analytic for $u=x^2+y^2$

A. 
$$u=x^2+y^2$$

- B.  $u=e^{xy}$
- C.  $u = \ln(u = x^2 + y^2)$
- D None of the above

## **Solution**

Analytic  $\Rightarrow \Rightarrow$  Both real part and imaginary part is harmonic.

A) 
$$u_x=2x_yu_y=2y$$

$$u_{xx}=2,u_{yy}=2$$

 $u_{xx}+u_{yy}=2+2\neq0\Rightarrow u$  is Not harmonic

∴ $u=x^2+y^2$  ∴is not a real part of any analytic function

B)  $u_{xx}+u_{yy}\neq 0 \Rightarrow u$  is Not harmonic

 $\Rightarrow$ u=e<sub>xy</sub>  $\Rightarrow$  is not a real part of any analytic function.

C)

uyy+uyy=0, u is harmonic

$$f'(z)=u_x-u_y$$

$$= (2x)/(x^2 + y^2) - I(2y)/(x^2 + y^2)$$

```
put x=z, y=0
```

$$f'(z) = 2/z$$
.

Option C is true

59. If f(x) is differentiable in the interval (2,5)(2,5) where f(2)=1/5 and f(5)=1/2, then there exist a number C, 2<C<5 for which f'(c) is

- A. 1/2
- B. 1/5
- C. 1/10
- D. 10

### **Solution**

Mean Value Theorem

f is differentiable on (a,b)

By mean value Theorem, 
$$\exists \in (a,b) \Rightarrow f'(c) = (f(b)-f(a))/(b-a)$$
  
Here  $f(2)=1/5, f(5)=1/2$ 

$$\Rightarrow$$
f'(C)=(f(5)-f(2))/(5-2)

$$=(1/2-1/5)/3=(3/10)/3$$

$$=1/10$$

$$\Rightarrow$$
f'(C)=1/10

ANS :(C)

60. How many four digit even numbers have all four digits distinct?

- A. 2240
- B. 2296
- C. 2620
- D. 4536

## **Solution**

If is fixed in fourth position

⇒ Number of 4 digit even Numbers =  $9 \times 8 \times 7 = 50$ 

Ending with 2,4,6 or 8

 $\Rightarrow$  Number of 4 digit even Numbers =  $8 \times 8 \times 7 \times 4 = 1792$ 

 $\therefore$  Total number of 4 digit Numbers = 504+1792=2296 ANS: (A)

61. A card is drawn from a well shuffled pack of 5252 cards. The probability that the card drawn is a queen of clubs or a king of hearts is.

- A. 1/26
- B. 1/52
- C. 1/13
- D. 1/2

### **Solution**

Probability of getting a queen of clubs = 1/52

Probability of getting a king of heart = 1/52

P (queen of clubs or king of heart) = 1/52 + 1/52 = 1/26 ANS: (A)

62. If a function f is monotonic on [a,b], then the set of discontinuities of f is.

- A. empty
- B. finite
- C. countable
- D. [a,b]

### Solution

Set of all discontinuities of a monotone functions almost countable.

(C) True.

ANS :(C)

63. Let A be the set of all rational numbers in the interval [0,1], and  $\alpha$  be the Lebesgue measure of A, then  $\alpha$  is equal to.

- A. zero
- B. one
- C. infinity
- D. none of these

## **Solution**

 $A = \{x: x \in [0,1] \cap Q\}$ 

A is countable.

Every countable set has measure zero

 $\therefore$  Measure (A)=  $\alpha = 0$ 

ANS: (A)

64. The harmonic conjugate of the function ex cosy+ ey cosx +xy is.

- A.  $e^x \sin y e^y \sin x + \frac{1}{2}(x^2 + y^2)$
- B.  $e^x \sin y + e^y \sin x + \frac{1}{2}(x^2 + y^2)$
- C.  $e^x \sin y + e^y \sin x \frac{1}{2}(x^2 + y^2)$
- D. none of these

## **Solution**

$$U_x = e^x \cos y + e^y \cos x + xy$$

$$U_y = -e^x \sin y + e^y \cos x + x$$

$$By CR equations, u_x = u_y$$

$$v = e^x \sin y - e^y \sin x + (y^2/2) + \varphi(x)$$

$$v_x = -u_y$$
On solving these equation
$$\varphi'(x) = -x$$

$$\varphi(x) = (-x^2/2) + c$$

 $v = e^x \sin y - e^y \sin x - \frac{1}{2}(x^2 - y^2) + c$ 

65. The value of the integral  $\int 1/(z^2 + 4) dz$  around the circle |z-i|=2 oriented in counter clockwise direction is,

- A. 0
- Β. π
- C.  $\pi/2$
- D. 4

#### **Solution**

$$|-2i-1|=3>2,-2i$$
 lie outside  $|2-i|<2$ 

By cauchy Integral formula value of integral  $=2\pi i f(2i)$ 

=
$$2\pi i.f(2i)$$
  
= $\pi/2=\pi/2$ 

66. Which of the following is not a topological property

- A. Openness
- B. Closeness
- C. Connectedness
- D. Boundedness

### **Solution**

Boundedness is not a topological property

- Topological property means property preserved under homeomorphism.
- Eg: (0,1) and  $(1,\infty(1,\infty))$  are homeomorphic but (0,1) is bounded and  $(1,\infty(1,\infty))$  is not bounded.

# 67. The residue of $f(z) = e^{2z}/(z+1)^2$ at z=-1 is,

- A. 2e
- B. 2 C. 2/e<sup>2</sup> D. e

# **Solution**

 $\lim_{z\to -1} f(z)$  is Not defined.

$$\Rightarrow$$
z=-1 is a pole.

 $\lim_{z\to -1}(z+1)^2 e^{2z}/(z+1)^2$  not equal to zero

z=-1 is a pole of order 2.

Res[f(z),z=-1]=
$$\lim_{z\to -1} d/dx(z+1)^2 e^{2z}/(z+1)^2 = 2/e^2$$

# ANS:(C)

# 68. The radius of convergence of the series $\sum 2^{-n}z^{2n}$ is

- A. 1 B.  $\sqrt{2}$
- C. 2
- D. ∞

### **Solution**

Radius of convergence  $1/R = \lim_{n\to\infty} (a_{2n})^{1/2n}$ 

$$=\lim_{n\to\infty} (2^{-n})^{1/2n}$$

$$1/R = 1/\sqrt{2}$$

Radius of convergence  $R=\sqrt{2}$ ANS:(B)

# 69. The number of abelian groups (up to isomorphism) of order 24 is

- A. 2
- B. 3

- C. 8
- D. None of these

$$24 = 2^3 * 3^1$$

Hence, the number of abelian groups of order 24 up to isomorphism is,

$$p(3) \times p(1)$$

- $= 3 \times 1$
- = 3

# 70. Number of left cosets of the subgroup <18> of Z<sub>36</sub> is

- A. 18
- B. 36
- C. 44
- D. none of these

## **Solution**

Z<sub>36</sub> is a cyclic group.

$$H=(18)=\{0,18\}$$

$$O(H)=O(\langle 18 \rangle )=2$$

$$G = Z_{36}, O(G) = 36.$$

Number of left coset= [G : H] = order(G)/order(H) = 36/2 = 18

# 71. If U denotes the set of units in the ring of rational numbers Q, then

- A.  $U=\{1\}$
- B. U is empty
- C. U={1,2}
- D. U consists of all non-zero elements of Q

# **Solution**

$$x=3 \in Q$$
,

$$x^{-1} = 1/3 \in Q$$
.

$$xx^{-1}=1=x^{-1}x$$

 $\Rightarrow$ 3 is a unit

(A), (B),(C) False.

$$\forall x \neq 0 \in \mathbb{Q}, 1/x \in \mathbb{Q}$$

 $\therefore$  Every non zero element of  $\theta$  are units.

ANS: (D)

72. The characteristic of the ring C of complex numbers is

- A. zero B. one
- C. infinity
- D. none of these

### **Solution**

Characteristic of a ring is the least integer  $n \in Z$  such that  $n \cdot a = 0 \ \forall a \in R$ 

$$\therefore$$
Char(C) =0

ANS: (A)

73. If the dimensions of the subspaces U and V of the vector space W are respectively 5 and 6 and dim $(U \cap V) = 1$ , then dim(U + V) is equal to

- A. 4
- B. 10
- **C**. 7
- D. none of these

### **Solution**

 $U+V \subseteq W$  and

$$\dim(V_1+V_2)=\dim(U)+\dim(V)-\dim(U\cap V)$$

Given,  $\dim(U)=5$ ,  $\dim(V)=6$  and  $\dim(U\cap V)=1$ 

$$\dim(U+V)=\dim(U)+\dim(V)-\dim(U\cap V)$$

$$= 5+6-1=10$$

74. If gcd(a, b) = d, then  $gcd(\frac{a}{d}, \frac{b}{d})$  is equal to

- A.  $\frac{ab}{d}$ B. d
- C.  $d^2$
- D. 1

# **Solution**

$$\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{\gcd(a,b)}{lcm(d,d)}$$

$$=\frac{d}{d}$$

$$=1$$

75. The differential equation of the family of all concentric circles centred at the origin

A. 
$$y + x \frac{dy}{dx} = c$$

A. 
$$y + x \frac{dy}{dx} = c$$
  
B.  $y - x \frac{dy}{dx} = c$   
C.  $x + y \frac{dy}{dx} = c$ 

C. 
$$x + y \frac{dy}{dx} = c$$

# **Solution**

The equation of circles having centred at origin is:

$$X^2 + y^2 = r^2$$

Differentiating w,r,to x we get

$$2x + 2y \frac{dy}{dx} = 0$$

$$x+y \frac{dy}{dx} = 0$$

or, 
$$x+y \frac{dy}{dx} = c$$
, where c is a constant

76. The number of integers n ,  $1 \le n \le 10$  such that  $\phi(n) = \phi(2n)$ , where  $\phi(n)$  is the Euler Totient function, is

- A. 1
- B. 2
- C. 3
- D. 4

# **Solution**

$$\phi(1)=1, \phi(2)=1, \phi(3)=2, \phi(4)=2, \phi(5)=4$$

$$\phi(6)=2$$
,  $\phi(7)=6$ ,  $\phi(8)=4$ ,  $\phi(9)=6$ ,  $\phi(10)=4$ 

Hence we get,

$$\phi(1)=\text{phi}(2)$$

$$\phi(5)=\text{phi}(6)$$

$$\phi(5) = phi(10)$$

Number of n such that  $\phi(n) = \phi(2n)$  is 3

77. The differential equation of the family of circles touching the y - axis at the origin is

A. 
$$X^2 + y^2 - 2xy \frac{dy}{dx} = 0$$

A. 
$$X^{2} + y^{2} - 2xy \frac{dy}{dx} = 0$$
  
B.  $X^{2} + y^{2} + 2xy \frac{dy}{dx} = 0$   
C.  $X^{2} - y^{2} - 2xy \frac{dy}{dx} = 0$   
D.  $X^{2} - y^{2} - 2xy \frac{dy}{dx} = 0$ 

C. 
$$X^2 - y^2 - 2xy \frac{dy}{dx} = 0$$

D. 
$$X^2 - y^2 - 2xy \frac{dy}{dx} = 0$$

# **Solution**

Circle touching y - axis at origin.

 $\Rightarrow\Rightarrow$  centre of the circle lies on the x -axis.

Centre is of the form (a,0)

Radius = a.

Equation of the circle is given by,

$$(X-a)^2 + (y - )^2 = a^2$$

$$\Rightarrow x^2 + y^2 - 2ax = 0....(1)$$

To find the differential equation we want to remove the constant 'a' by differentiating (1)

Hence differentiating (1) with respect to x,  $2x + 2y\frac{dy}{dx} - 2a = 0$ 

$$, 2x + 2y \frac{dy}{dx} = 2a$$

$$x + y \frac{dy}{dx} = a$$

Substituting in (1)

$$\Rightarrow$$
  $x^2 + y^2 - 2x(x + y\frac{dy}{dx}) = 0$ 

$$= x^2 - y^2 + 2x y \frac{dy}{dx} = 0$$

78. The value of m such that the equation  $xu_{xx}+mu_{xy}+yu_{yy}-2u_x=0$  is parabolic is

A. 
$$xy$$
B.  $\sqrt{(xy)}$ 

D. 
$$-2\sqrt{(xy)}$$

## **Solution**

$$Au_{xx}+Bu_{xy}+Cuyy = 0$$
 is parabolic if B2-4AC=0

Given 
$$xu_{xx}+mu_{xy}+yu_{yy}-2u_x=0$$

$$A=x$$
,  $B=m$ ,  $C=y$ 

$$B^2-4AC=0 \Rightarrow m^2-4xy=$$

$$m=\pm\sqrt{4xy}$$

$$m=\pm 2\sqrt{(xy)}$$

79. Let R be a relation on  $Z^+ \times Z^+$  such that  $((a,b),(c,d)) \in \mathbb{R}$  iff a-d=b-c. Which of the following is true about R?

- A. Reflexive but not symmetric
- B. Symmetric but not reflexive
- C. Both reflexive and symmetric
- D. Neither reflexive nor symmetric

### **Solution**

$$(a,b),(c,d)\in R \Leftrightarrow a-d=b-c$$

$$\Rightarrow$$
-(d-a)=-(c-b)

$$(d-a)=c-b$$

$$\Rightarrow ((c,d),(a,b)) \in R$$

⇒R is symmetric

$$a-b \neq b-a$$

 $\Rightarrow$  not reflexive.

**80.** If  $\alpha,\beta,\gamma$  are the roots of  $2x^3+x^2-2x-1=0$ , then the value of  $\alpha^2+\beta^2+\gamma^2=?$ 

$$2x^3+x^2-2x-1=0$$
 have roots  $\alpha,\beta,\gamma$ 

Let 
$$f(x) = 2x^3 + x^2 - 2x - 1$$

Then 
$$f(1)=2+1-2-1=0$$
. Hence  $x-1$  is a root of  $f(x)$ .

On dividing 
$$2x^3 + x^2 - 2x - 1$$
 by  $x - 1$  we get the other roots  $x = -1/2$ ,  $x = -1$ 

Hence 
$$\alpha^2 + \beta^2 + \gamma^2 = 9/4$$

# 81. The domain of the function f defined by $f(x) = \frac{\sqrt{x}}{(x-3)(x-5)}$

A. 
$$(-\infty, -5) \cup (-5,3) \cup (3,\infty)$$

B. 
$$(-\infty,5)\cup(3,\infty]$$

C. 
$$(-\infty, -5) \cup (-5, 0]$$
  
D.  $(-\infty, 3) \cup (3, \infty)$ 

D. 
$$(-\infty,3)$$
U $(3,\infty)$ 

### **Solution**

$$f(x) = by f(x) = \frac{\sqrt{x}}{(x-3)(x-5)}$$
 is not defined when x>0,x=3,x=-5

Hence the domain = 
$$(-\infty, -5) \cup (-5, 0](-\infty, -5) \cup (-5, 0]$$

# 82. Which of the following sets of functions is countable?

1) 
$$\{f \mid f: N \rightarrow \{0,1\}\}$$

2) 
$$\{ f \mid f : \{0,1\} \to N \}$$

3) { 
$$f | f : N \rightarrow \{0,1\}$$
,  $f(1) \le f(2)$ 

4){ 
$$f | f : \{0,1\} \rightarrow N$$
,  $f(0) \le f(1)$ 

- A. 1 and 3
- B. 2 and 4
- C. 1 only
- D. 2 only

### **Solution**

 $|N|=X_0$  countable.

$$|\{0,1\}|=2$$

Number of functions from f:  $A \rightarrow B = |B|^{|A|}$ 

- 1) Number of functions =  $2^{X}$  uncountable.
- 2)  $x^2_0$  is countable
- 3) Uncountable
- 4) Subset of a countable set is countable

83. The equation of the plane that passes through (1,2,3) and parallel to the plane 4x+5y-3z=7 is

- A. 3x+4y-3z=7
- B. 4x+5y-3z=5
- C. 5x-4y+z=3
- D. 4x+5y-3z+7=0

# Solution

The equation of the plane parallel to 4x+5y-3z=7 is given by 4x+5y-3z+b=0

It passes through (1,2,3)

$$\Rightarrow$$
4.1+5.2-3.3+b=0

$$\Rightarrow$$
-b= 4+10-9

$$b=-5$$

Hence the equation of the plane is = 4x+5y-3z-5=

84. For what value of k is the the function  $f(x) = \frac{1 - \cos 2x}{2x \cdot x}$  when x not equal to zero and f(x) = k when x = 0 continuous at x = 0?

- **A**. 0
- B. 12
- **C**. 1
- D. 2

### **Solution**

Continuous at x = 0

$$\Rightarrow \lim_{x\to 0} \frac{1-\cos 2x}{2x \cdot x} = k$$

$$\Rightarrow \lim_{x\to 0} \frac{2sin2x}{2x.x} = k$$

$$\Rightarrow \lim_{x\to 0} \frac{4\cos 2x}{4x} = k$$

$$\Rightarrow \lim_{x\to 0} \cos 2x = k$$

Hence k=1

85. The value of the integral  $\int \frac{\cos(\frac{1}{x})}{x^2} dx$  over the range  $1/\Pi$  to  $2/\mathbb{Z}$ ?

- A. -1 B. 0 C. 1 D. 2/2

### **Solution**

Let 
$$u = 1/x$$

Then 
$$du = -1/x^2 dx$$

Hence on integrating over the range  $1/\Pi$  to  $2/\mathbb{Z}$ 

$$= 0 - 1 = -1$$

86. The number of different symmetric square matrices of order n with each element being either 0 or 1 is

- A.  $2^n$ B.  $(2^n)^2$ C.  $2^{((n(n+1))/2})$
- D. 2n + 1

## **Solution**

Number of free elements = 1+2+3+4+....n= n(n+1)/2

Each free variable has two choices  $\{0, 1\}$ 

Total number of matrices = 2((n(n+1))/2)

87.  $\lim_{n\to\infty} (1/(n^2+1)) + (2/(n^2+1)).....(n/(n^2+1))$  is

- A. **0** B. 1
- C. 2
- D. e

# **Solution**

$$\lim_{n\to\infty} (1/(n^2+1)) + (2/(n^2+1))......(n/(n^2+1))$$

$$\lim_{n\to\infty} (1/(n^2+1)) + \lim_{n\to\infty} (2/(n^2+1)) \dots \lim_{n\to\infty} (n/(n^2+1)) = 0$$

88. Let  $\sum X_n$  be a series of real numbers. Which of the following is true ?

- A. If  $\sum X_n$  is convergent then  $\sum_{n=1} x_n$  is absolutely convergent.
- B. If  $\sum X_n$  is divergent then  $\{X_n\}$  does not converge to 0
- C. If  $x_n \rightarrow 0$  then ,  $\sum_{n=1} x_n$  is convergent.
- D. If  $\sum_{n=1}^{\infty} X_n$  is convergent, then  $X^2$ <sub>n</sub> as  $n \to \infty$

### **Solution**

- a) False
- b) False. Ex:  $\{1/n\} \rightarrow 0$  but  $\sum 1/n$  diverges
- C) False: ex:  $1/n \rightarrow 0$  but  $\sum 1/n$  is divergent
- d) True,

 $\sum x_n$  convergent  $\Rightarrow$  lim  $x_n=0$ 

- $\Rightarrow$  lim  $X_n$  lim  $X_n=0$
- $\Rightarrow$ lim  $X^2_n=0$

89. The value of  $\sqrt{i} + \sqrt{(-i)}$  is

- **A**. 0
- B. 1
- D.  $\sqrt{2}$

# **Solution**

$$\sqrt{I} + \sqrt{(-i)} = x$$

Then 
$$X^2 = (\sqrt{i} + \sqrt{(-i)})^2$$

$$X^2 = 2$$

$$x=\sqrt{2}$$

# 90. The function $f(z) = (e^z + 1)/(e^z - 1)$ has

- A. A removable singularity at z = 0
- B. A simple pole at z = 0 with residue 1
- C. A simple pole at z = 0 with residue 2
- D. An essential singularity at z = 0

### **Solution**

$$f(z) = (e^z + 1)/(e^z - 1)$$

$$\lim_{z\to 0} (z-0)f(z) = \infty \Rightarrow \text{ pole at } z=0 \text{ (simple pole )}$$

$$\lim_{z\to 0} (z-0)f(z) = \lim_{z\to 0} (e^z + 1)/(e^z - 1)$$

=
$$\lim_{z\to 0} (z-0)f(z) = \lim_{z\to 0} (ze^z + e^z + 1)/(e^z)$$

$$=0+1+1=2$$

91. The bilinear transformation which maps the points z=1,-i,1 into the points w=i,0,-I is

- A. i(1-z)/(1+z)
- B. i(1+z)/(1-z)
- C. (z-i)/(1+iz)
- D. (z+i)/(z-i)

### **Solution**

Consider the option D.

$$W = (z+i)/(z-i)$$

$$Z=1$$
,  $w = (1+i)/(1-i) = i$ 

$$z=-i, w=0$$

$$z=-1,w=(-1+i)/(-1-i)=-i$$

Hence the option D is correct.

92. The value of the integral  $\int (e^{-z}/(z+1)) dz$  where c is the circle  $|z| = \frac{1}{2}$  is

- Α. 2πί
- B. 2πie
- C. 0
- D. 4πi

$$\int (e^{-z}/(z+1) dz$$
 where c:|z| = 1/2

$$z+1=0 \Rightarrow z=-1$$
 is the singular point.

But 
$$z=-1$$
 lies outside c

$$\int (e^{-z}/(z+1) dz = 0$$

# 93. Let F be a field of order 256. Then

- A. F has a subfield of order 8
- B. F has a subfield of order 16
- C. F has a subfield of order 32
- D. F has a subfield of order 64

### **Solution**

Subfield of a field of order  $p^n$  is given by = {  $Fp^m$ : m is a divisor of n}

Subfield of  $\{F_2^3 = \{\{F_2^3 : m \text{ is a divisor of } 8\}\}$ 

$$= \{ F_2^1, F_2^2, F_2^4, F_2^8 \}$$

$$= \{ F_2, F_4, F_{16}, F_{256} \}$$

# 94. Which of the following is not true?

- A. Every cyclic group is abelian
- B. Every group of odd oder is cyclicC. The order of a cyclic group and that of its generating element are same
- D. Every subgroup of a cyclic group is cyclic

### **Solution**

These are some of the results related to the cyclic groups.

Every cyclic group is abelian

Every subgroup of a cyclic group is cyclic

The order of a cyclic group and that of its generating element are same

Group of odd order need not be cyclic

# 95. Which of the following is countable?

- A. Set of all functions from  $R \rightarrow \{0,1\}$
- B. Set of all functions from  $N \rightarrow \diamondsuit \rightarrow \{0,1\}$
- C. Set of all finite subsets of N
- D. Set of all subsets of N

### **Solution**

1)Set of all functions from  $R \rightarrow \{0,1\}$  is uncountable. Since any function from  $R \rightarrow \{0,1\}$  is a sequence whose elements are either 0 or 1. Hence Uncountable.

2)Set of all functions from  $N \rightarrow \{0,1\}$  is uncountable. Since any function from  $N \rightarrow \{0,1\}$  is a sequence whose elements are either 0 or 1 . Hence Uncountable.

 $4)|P(N)| \ge |N|$ . Hence uncountable

# 96. The order of the element (1,2) in $Z_5 \times Z_{10}$ is

- A. 5
- B. 10
- C. 15
- D. 20

### **Solution**

Order of (1,2) in  $(Z_5 \times Z_{10}) = lcm$  { order of 1 in  $Z_5$ , order of 2 in  $Z_{10}$ }

$$=$$
lcm $(5,5)=5$ 

# 97. The splitting field of the set of polynomials $\{x^2 - 2, x^2 - 3\}$ over Q is

- A.  $Q(\sqrt{2})$
- B.  $Q(\sqrt{3})$
- C.  $Q(3\sqrt{2})$
- D.  $Q(\sqrt{2},\sqrt{3})$

### **Solution**

$$X^2 - 2 = 0$$
 hence  $x = \sqrt{2}$ 

$$X^2 - 3 = 0$$
 hence  $x = \sqrt{3}$ 

Splitting field =  $Q(\sqrt{2}, \sqrt{3})$ 

# 98. The gcd of 3+4i and -4+3i in the integral domain (Z[i],+,.) is

- A. 3+4i
- B. -4+3i
- C. Both A and B
- D. Neither A nor B

$$(3+4i)/(-4+3i) = ((3+4i)(-4-3i))/((-4+3i)(-4-3i))$$

$$=(-2-9i-16i+12)/(16+9)$$

$$= -25i/25 = -i \in \mathbb{Z}[i]$$

Hence 
$$(3+4i)/(-4+3i)$$
,  $(-4+3i)/(3+4i) \in \mathbb{Z}[i]$ 

Both true.

# 99. Which of the following is not true?

- A. If A is a m×n matrix and B is an n×p matrix, then rank(AB) $\leq$ min(rank(A),rank(B))
- B. If A is a  $m \times n$  matrix and B is a non singular matrix, then rank(AB) = rank(A)
- C. If A is a m×n matrix and B is an n×p matrix, then rank(AB) $\leq$ rank(A)
- D. If A is a m×n matrix and B is an n×p matrix, then rank(AB)=min(rank(A),rank(B))

### **Solution**

If A is a m×n matrix and B is an n×p matrix, then rank(AB) $\leq$ min(rank(A),rank(B))

If A is a  $m \times n$  matrix and B is a non singular matrix, then rank(AB) = rank(A)

If A is a m×n matrix and B is an n×p matrix, then rank(AB) $\leq$ rank(A)

rank(AB)≤min(rank(A),rank(B))

100. Let W be the solution space of the system of homogeneous equations 2x+2y+z=0.3x+3y-2z=0.x+y-3z=. The dimW is

- A. 0
- B. 1
- C. **2** D. 3

### **Solution**

Corresponding matrix is given by

$$[w] = \begin{bmatrix} 2 & 2 & 1 \\ 3 & 3 & -2 \\ 1 & 1 & -3 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & -3 \\
0 & 0 & 7 \\
0 & 0 & 7
\end{bmatrix}$$

$$\approx \begin{bmatrix} 1 & 1 & -3 \\ 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence rank = 2

# **THANK YOU**

Trusted by over 1 crore students



