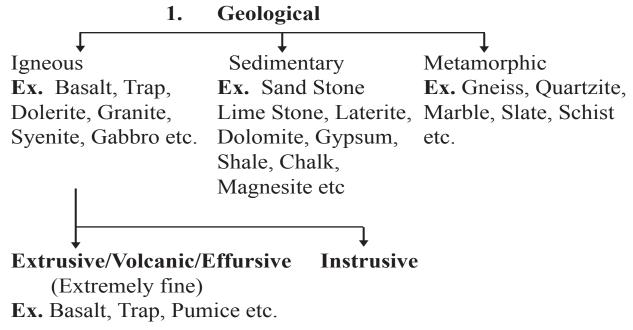
*

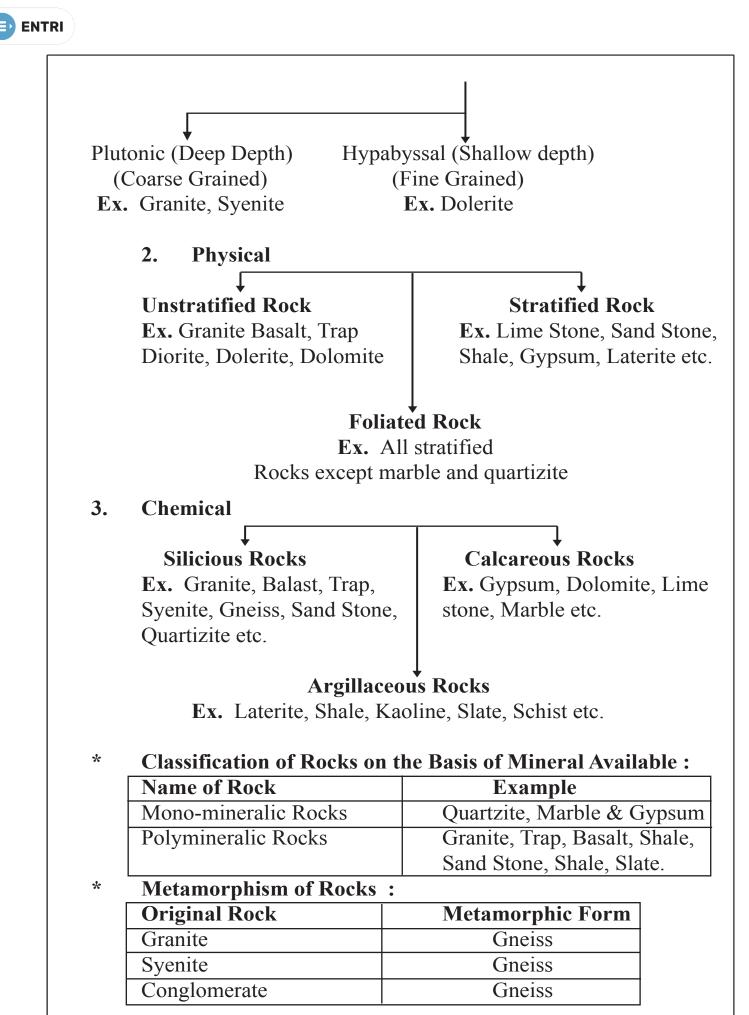
BUILDING MATERIALS

Rock Minerals

Quartz, Mica, Amphibole, calcite, feldspar etc.

Hardness based on Moh's scale :


Rock's Mineral Hardness


Talc	1)	Scratched
Gypsum	2)	by the finger nail
Calcite	3)	Scratched
Flourite	$ 4 \rangle$	by
Apatite	5)	Knife
Feldspar	6)	Scarcely scratched
Quartz	7∮	by knife
Topaz	8)	Not scratched
Corundum	9 }	by
Diamond	10)	knife

* Propterties of Minerals :

Cleavage	Measurement of the capability of some minerals to split along certain planes parallel to the crystal faces.
Streak	Colour of the mineral in powder form.
Lustre	Shine on the surface due to reflection of light of a
	mineral.

* Classification of Rocks :

Sand Stone	Quartzite
Lime Stone	Marble
Marl	Marble
Dolomite	Marble
Shale	Slate
Mud Stone	Slate
Dolerite/Basalt	Schist

* Tools Used in Quarrying of Stone :

	v 0	
Jumper	To make hole	
Scraping spoon	For Cleaning hole	
Dipper	For making deep ho	le
Priming Needle	To make space for f	use
Tamping Rod	For tamping of explosive	
	Length - 600 mm	Dia (ø) - 16 mm

* Steps for Blasting :

Boring \rightarrow Cleaning \rightarrow Charging \rightarrow Tamping \rightarrow Firing

* Quantity of Explosive :

 $N = [L.L.R (in m)]^2 \times 1.5$

 $(\text{in gm}) = \frac{[\text{L.L.R}(\text{in m})]^2}{0.08} = \frac{[\text{L.L.R}(\text{in cm})]^2}{61}$

* Explosive Material Used in Blasting :

Name of Explosive	Chemical Composition
Blasting Gelatine	Nitroglycerine 93% + Gun-cotton 7%
	Use : In deep wells, underground
	works, in wet conditions.
Gun Cotton	Cotton with the solution of (HNO ₃ +
(Most powerful)	H_2SO_4)
	Use : Where demolitions are required.
Dynamite	Nitroglycerine 75% + Fine sand 25%.
	Use : Both Under water and surface
	blasting.

Blasting/Gun powder	Pottasium nitrate 65% + Sulphur 15% +
	Charcoal powder 20%.
	Use : In quarrying large blocks
Rock-a-Rock	Potassium Chlorate 79% + Nitro benzol
	21%.
	Use : Under water and damp situation
	blasting.

* Stone crusher and equipment :

Crusher Type	Equipment
Primary	Jaw, Impact and Gyratory crusher and Hammer
	mill.
Secondary Tertiary	Roll Crusher, Cone crusher Ball mill, Roll mill
	and Rod mill.

* Specific Gravity of Various Types of Stone :

Name of Stone	Specific Gravity
Sand Stone	2.65 - 2.95
Marble	2.7 - 2.85
Granite	2.65 - 2.79
Basalt	2.6 - 3
Slate	2.72 - 2.89
Laterite	2 - 2.2
Lime Stone	2 - 2.75
Gniess	2.5 - 2.7

*

Various types of test and purpose for stone :

Type of Test	Determine for
Abrasion Test (By Dorry	Hardness and wearing resistance
Testing Machine)	
Attrision Test (By Deval	Hardness, Toughness and rate of
Testing Machine).	wearing resistance.
Crushing Strength Test	Compressive strength
(By C.T.M) (IS : 1121 - 1974)	
Smith's Test	Soluble minerals/ Muddy matter
Brad's Test	Frost resistance
Acid Test	Weather resistance

Crystallization Test	Durability
(IS : 1126 - 1974)	
Hardness Test (Moh's Scale)	Hardness
Impact Test (By Page Impact	Toughness
Machine)	
Water Absorption Test	% Voids (≯ 5%)
(IS : 1124 - 1974)	

* **Dorry Testing Machine Test :**

Friction Factor	Type of Rock
0 - 14	Soft rock
14 - 17	Medium hard
> 17	Hard rock

* Impact Test :

Toughness coefficient	Toughness
19 or More	Very tough
16 to 17	Moderate tough
16 or below	Poor tough

* Attrision Test :

Friction Co-efficient	Quality of Stones
2%	Good
3%	Medium
5% or More	Useless

* Common Brick Size :

Brick Classification	Usual Size	Nominal Size
Conventional/Traditional/	30 30	10
user Size	$9'' \times 4\frac{3^{\circ}}{8} \times 2\frac{3^{\circ}}{4}$	$9'' \times 4 \frac{1^{\circ}}{2} \times 3^{\circ}$
		or
		$(23 \times 11.4 \times 7.6)$ cm
Standard/Modular/	$(19 \times 9 \times 9)$ cm	$(20 \times 10 \times 10)$ cm
Normal Size		

E

Þ	Ε	Ν	Т	R	

*

Ingredients of Good Brick Earth :		
Ingredients	% in brick	
Silica (SiO ₂)	50 - 60	
Alumina (Al ₂ O ₃)	20 - 30	
Lime (CaO)	2 - 5	
Iron Oxide (Fe ₂ O ₃)	3 - 5	
Magnesia	<1	
Alkalies	<1	

*

Functions of Various Brick Ingredients:

Tunctions of various brick ingredients .			
Ingredients	Function		
Silica	Imparts Strength		
	Excess - Brittle (Due to loss of cohesion)		
Alumina	Impart plasticity		
	Excess - Cracks developed		
Lime	Used as flux (Reduce melting point)		
	Excess - over burnt and shape changed		
Iron Oxide	Red Colour, Used as Flux		
	Excess - Provide dark blur or blackish		
	colour.		
Magnesia	Yellow colour & prevent shrinkage.		
	Excess - Give yellowish colour.		

Preparation of Brick Earth Sequence : *

Unsoiling \rightarrow Digging \rightarrow Weathering \rightarrow Blending \rightarrow Tempering/Kneeding.

Burning Zone of Bricks : *

Burning Temperatur	e : 900 - 1200°C	
Dehydration Zone	Oxidation Zone	Vitrification Zone
400 - 650°C	650 - 900°C	900 - 1200°С

Efficiency of Kiln : *

Types of kiln	First Class Brick ountcome	Remark
Pazawah	50 - 60%	
Allahabad kiln	60 - 70%	Intermittent
Bull's Trench ki	ln 70 - 80%	Semicontinuous
Hoffman's kiln	80 - 90%	Continuous

1		RI	

*

Class of Brick on the Basis of Strength :	of Brick on the Basis	of Strength	•
--	-----------------------	-------------	---

Class	Strength
Grade AA	≮ 140 kg/cm ²
Grade A	≮ 105 kg/cm ²
Grade B	≮ 70 kg/cm ²
Grade C	

* Types of Refractory Bricks-

-, pes of meno	
Bricks	Composition
A aid Dafractory	Silica- 95-97%
Acid Refractory	Lime- 1-2%
	Magnesia- 85% (max)
Basic Refractory	CaO- 25% (max)
	Silica- 5.5% (max)
Neutral Refractory	Chrome + Iron ore + Bauxite
incultar Kellactory	ore + Silica + Magnesia

* Efflorescence Test-


According to IS 3495 (Part	-III) : 1992
White Patches	Alkalies
up to 10%	Slight
10 - 50%	Moderate
> 50%	Severe
Presence in large amount	Serious

*

Sample Required for Various Brick Test-

Bricks Test	I.S. Code	No. of Sample
Compressive strength test	3495-Part I	6
Water absorption test	3495-Part II	5
Efflorescence test	3495-Part III	-
Warpage test	3495-Part IV	10
Dimension test	1077	20

* General Data about Bricks-

r			
Types of Bricks	Water	Compressive	Use
	absorption	Strength	
	(%)	(Kg/cm^2)	
1 st Class	≤ 20	> 105	Facing work R.B.
			slab
2 nd Class	\leq 22	> 70	Hidden Structure
3 rd Class	> 25	> 35	Temporary brick
			masonry
4 th Class(Jhamma	10-12	350	Bricks ballast lime
or overburnt			concrete foundat-
bricks)			ion road metals
Perforated Bricks	15	70	Partition Wall
(IS 2222)			

Hollow Bricks (IS 3952)	20	35	For making heat proof, sound proof damp proof walls
Paving Bricks (IS 3583)	< 5	350	Road pavement
Soling Bricks (IS 5779)	<20	50	Soling of road
Refractory Bricks (IS 6902)	4-10	350	Kiln lining, furna- ce boiler combu- stion
Engineering Brick Class-A	4-5	>125	D.P.C
Class-B	7	75	Multistorey building

* Lime Obtained After Calcination-

Pure lime stone	Pure lime
Dolomite	Magnesia lime
Kankar	Hydraulic lime
Chalk	Pure lime
Gypsum	Pure lime
Calcined lime stone	Quick lime
Calcinated dolomite stone	Non-hydraulic lime

* The compositions of Bogue's compound in different type of cements-

Chemical/Bogue's	Composition/Average	Function
Component	Composition	
C ₃ S (Alite)	$25-50\% \approx 42\%$	7 days hardness &
		strength
C ₂ S (Belite)	$20-40\% \approx 32\%$	Ultimate strength
C ₃ A (Celite)	5-11% ≈ 10.5%	Flash set
C ₄ AF (Felite)	$8-14\% \approx 9\%$	Poorest cementing
		value

- Cement reaction is an exothermic reaction

* Classifica	tion of lime as	per B.I.S. (I.S.	. 712)	
\downarrow	\downarrow	\downarrow	\downarrow	\longrightarrow
1. Class A	2. Class B	3. Class C	4. Class D	5. Class E
- Eminently	- Semi-hydrau	lic - Fat lime	- Magnesium	- Kankar
hydraulic lime	lime	- In plaster	- In white	lime
- Uses in hydra-	- In masonary	work	washing and	- In masonry
ulic structure	and lime-con	crete	finishing of	mortar and
- Compressive	- Compressive	strength	plastering	lime-concrete
strength of 28	of 28 days-1	7.5kg/cm ²		
days-28 kg/cm	2	-		
- Initial setting t	ime 2 hours			
and final settin	g time 48 hours	5		

* Chemical Components of Portland Cement-

Oxide/Composition/Average	Function
Composition	
Lime (CaO)	Strength & soundness control
$60-65\% \approx 63\%$	
Silica (SiO ₂)	Due to excess reduces strength
$17-25\% \approx 20\%$	
Alumina (Al_2O_3)	Responsible for quick setting excess
$3-8\% \approx 6\%$	of its lowers strength
Iron oxide (Fe ₂ O ₃)	Used as flux
$0.5-6\% \approx 3\%$	
Magnesia (MgO)	Imparts colour & hardness
0.1 -4% $\approx 1\%$	
Gypsum $2-5\% \approx 4\%$	Used as retarder
Sulphur (SO ₃)	Impart soundness
$1-3\% \approx 1\%$	
Alkalies $0.2-1\% \approx <1\%$	Used as flux & imparts effloresc-
	ence

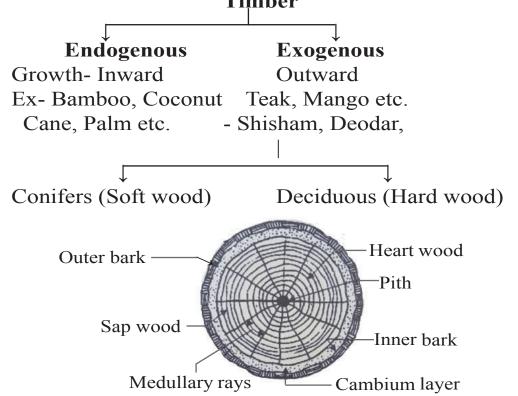
* Decreasing order of Bogue's compound based on the following properties:

Properties	Order
Strength	$C_3 S > C_2 S > C_3 A > C_4 AF$
Reaction with water	$C_3A > C_4AF > C_3S > C_2S$
Heat of hydration	$C_3 A > C_3 S > C_4 AF > C_2 S$
Rate of hydration	$C_4 AF > C_3 A > C_3 S > C_2 S$

*

Water required for hydration-

- Bound water = 23% weight of cement
- Gel water = 15% by weight of cement
- Total minimum for complete hydration = 38%


* Required Consistency for various cement test-

Test Performed	Water %
Initial & final setting time test	0.85P
Soundness test	0.78P
Compressive strength test	$\left(\frac{P}{4}+3.5\right)\%$
Tensile strength test	$\left(\frac{P}{5}+2.5\right)\%$

* Reduction in Compressive Strength of Cement due to aging:-

Period	Reduction in Strength
3 months	20%
6 months	30%
12 months	40%
24 months	50%

* Classification on the Basis of Growth-Timber

Page - 11

Item description	Feebly hydraulic Moderate hydrau		Eminently hydraulic
	lime	lime	lime
% impurities	05 to 10%	11 to 20%	21 to 30%
Slacking action	Few minutes	1 or 2 hours	1 day or more
Setting action	3 week or more	1 week or more	1 days or more
Hydraulicity	Feebly	Moderate	Eminently
Use	Used for ordinary	For superior type	Use in very damp
	masonry work	of masonry work	places

* Setting Time of Cement & Use-

Cement type	Setting time		Use
	Initial	Final	
Rapid Hardening	30 Min.	10 Hrs.	Bridge, road maintenance or
Cement (IS:8041)			repairing work
High Alumina	30-120	5 Hrs.	Precast structure, refractory
Cement (IS:6452)	Min.		bricks, used where chemical
			attacks are more
Quick Setting	5 Min.	30 Min.	Foudation, basement, under
Cement			water structure, mass concrete
			raft foundation
Low heat cemnent	60 Min.	600 Min.	Mass conc. work such as Dam
Portland Pozzolana	30 Min.	600 Min.	Running water structure foun-
Cement			dation, basement
(IS:1489 P-1)			
Super Sulphate	30 Min.	600 Min.	RCC pipes, where sulphate
Portland Cement			attack is more, Hydraulic
(IS:6909)			structure
Sulphate resisting	30 Min.	600 Min	Sea water works, sewers,
Cement(IS:12330)			lining of canals
Portland Slag	30 Min.	600 Min.	Mass concreting used as OPC
Cement			
(IS:455-1989)			
White Cement	-	-	Plaster, ceiling ornamental
Coloured Cement			works Terrazo floor
(IS:8042)			
Hydrophobic	-	-	Water tight structure in base-
Cement(IS:8043)			ment
Masonry Cement	90Min.	24 Hrs.	Masonry works
(IS:3466)			

*

Minimum Surface Area of Various Cement-				
Cement Type	Min. Surface Area (In cm²/gm)			
OPC	2250			
PPC	3000			
LHC	3200			
RHC	3250			
НАС	2250			
SSC	4000			
Hydrophobic cement	3500			

* Macro Structure of Exogenous Tree :

Terms	Brief definition
Medulla (Pith)	The innermost part or core of the stem of a tree.
Heart wood	Death portion of the tree
Sap wood	Outer layers of a log of wood
Cambium	To growth wood cells
Bark	Protect the wood against mechanical damage.
Transverse septra	The vascular tissue which Encloses the pith.
(Medullary rays)	
Annual rings	A cellular tissue and woody fibre arranged in
	distinct concentric circle.

Classification of lime as per B.I.S. (I.S. 712)

	t		Ļ		ţ		ţ		
1.	Class A	2.	Class B	3.	Class C	4.	Class D	5.	Class E
*	Eminently Hydraulic lime	*	Semi-hydraulic lime	*	Fat lime	*	Magnesium lime	*	Kankar lime
*	Uses in Hydraulic structure	*	In masonary work and lime-concrete	*	In plaster	*	In white washing and Finishing of plastering	·	In masonry mortar and lime-concrete.
*	Compressive strength of 28 days - 28 kg/cm ² .	*	Compressive strength of 28 days - 17.5 kg/cm ²						

- * Initial setting time 2 hours and final setting time 48 hours.
- *

Properties of a Good Timber :

Density	540 kg/m ³
Specific gravity	1.54
Moisture content	10 - 12%
Shrinkage	0.1 - 0.3% along fibres
Swelling	0.1 - 0.8% along length
Sound Conductivity	2 - 17 time more than air

Page - 13

* At 12% Moisture Content :

Shear strength	6.5 - 14.5 N/mm ²		
Bending strength	10.2 - 18.2 N/mm ²		
Compressive strength	30 - 77.5 N/mm ²		
Tensile strength	80 - 190 N/mm ²		

ASCU Treatment-Developed by Forest Institute Dehradun *

* Timber can be made fire resistant by Sir Abel's Process.

* Various Use of Timber :

Guava	Scientific instruments
Babool	Agricultural Instruments
Mulberry	Sports Goods
Jackfruit	Musical instruments
Benteak	Boat

Ingredients of Paint :

Properties

*

	*	Metallic oxide is the principal constituent.
Se	*	Zinc white is weather resistant.
Base	*	Aluminium powder used for all aluminium paints
	Ex :	White lead, Red lead, Zinc oxide, Aluminium oxide,
		Iron oxide, Lithophone etc.
der	*	Holds the constituent of paint and spread over surface.
Bin	*	If forms the body of the paint.
icle/	*	Linseed oil is the most widely used as vehicle.
Driers/Plasticizers/Solvent/ Vehicle/Binder	Ex	: Linseed oil, Nut oil, Poppy oil and Tung oil.
ht/ ers	*	Used to thin the paints, increase the covering properties.
vent/ nner	*	Turpentine is used extensively.
So Th	Ex	: Petroleum, Spirit, Naptha, Benzene, Turpentine oil etc.
izers	*	Accelerate drying of the vehicle.
astic	*	Quantity limited to 8%
rs/Pl	*	Red lead is best for prime coat over steel.
Drie	Ex	: Letharge (Oxidized lead), Lead accetate [Red lead (Pb ₃ O ₄)]
	*	Reduce weight, increase durability.
ultrants/ enders	*	Best Adultrant is Barium Sulphate.
ten	Ex	: Barium Sulphate, Calcium Carbonate, Magnesium Silicate &
A d Ex		Silica.

*	Col	ouring Pig	ments-					
		np black, Iv		Black				
	Prus	ssian blue,	Indigo	Blue				
	Chr	ome yellow	, Yellow orche	Yellow				
	Bur	nt umber, E	Burnt Sienna	Brown				
	Veri	nillion, Re	d lead	Red				
	Cop	per sulphat	te, Chromium oxide	Green				
	Whi	ite lead, Lit	hophone	White				
*	Ing	redients fo	r Different Types of 1	Paint-				
	-		um Paints-					
		Base	Aluminium powder					
		Vehicle	Spirit or Oil Varnish					
		Use	Painting in Poles, To	ower, Meta	l roofs & Storage			
			tanks etc.					
	-	Asbestos	/ Fire proof Paints-					
		Base	Asbestos minerals					
		Use	Stopping leakage in	slopy roof	s, painting of gutters			
			etc					
	-							
		Base	Natural Aspha	lt or residu	al bitumen			
		Solvent/7	Thinner Mineral spirit	or Neptha.	It is alkali resistant.			
	-	Plastic P	aint-					
		Base	Plastic powder					
		Thinner	Water					
		Uses	Interiors of auditori	um, showro	ooms and offices.			
	- Cellulose Paints-							
		Base	Methyl or Ethyl Cel	llulse				
		Vehicle	Petroleum					
		Use	Painting cars, ships	and aeropl	anes.			
	-	Cement]	Paints [IS:5410]-					
		Base	White or coloured c	ement (<6	5%)			
		Vehicle	Water					
		Use	Exterior surface of	building				
	-	Enamel						
		Base	White Zinc, White I	Lead				
		Thinner	Varnish					
		Use	Acid resistance, alk	alis & wate	er proof]			

Luminous Paints-

Base	Calcium Sulphide
Thinner	Varnish
Use	Metal surface & sign board

* Type of Varnishes-

- Oil Varnish-

Solvent	Linseed Oil
Resinous material	Copal or Amber
Use	For exposed work

Turpentine Varnish-

Solvent	Turpentine Oil
Use	Interior work used

- Spirit Varnish-

Solvent	Alcohol
Resinous material	Lac or shellac

- Flat Varnish- Was as a resinous material.

Water Varnish-

Solvent	Boiled water
Resin material	Lac or Shellac
Use	In picture or map