
DATABASES

Syllabus: ER model, relational model (relational algebra, tuple

calculus), database design (integrity constraints, normal forms), query

languages (SQL), file structures (sequential files, indexing, B and B+

trees), transactions and concurrency control.

1. Introduction

Database is a collection of organized information so that it can easily be

searched, retrieved, managed and updated. A database management system

(DBMS) is a set of programs designed to manage a database. It enables

users to store, retrieve and modify information in a database with utmost

efficiency along with security features. DBMS is applicable to various

day-to-day fields such as transactions in banking; airline/railway/ hotel

reservations; maintenance of student information in schools/universities;

online retails; marketing and sales etc. It also allows its users to create

their own databases. Different types of DBMS are available such as

hierarchical, network, relational and object oriented.

1.1 Traditional File Processing Approach

File processing approach is generally more accurate and faster than the

manual database system. Each user is responsible for the defining and

implementation of the files required for the specific application. The

implementation of required files sometimes creates redundancy of data, for

example, one user keeps records for the savings account of the customer

and another user may create the loan account of the same customer. This

causes the duplicity of the records of the same customer. So, this practice

is not feasible for real time applications. There is a need of centralized

management of data. The data is created once and then accessed by

different users. The data should be shared for different transactions. It

should be self-describing in nature, which means the database system

contains not only data but it describes the description of the database

structure.

1.2 Database Management System

A database is a collection of related data. Data is a collection of raw facts

or figures, processed to form information. Database management system is

a collection of programs for the creation and maintenance of database. It is

an efficient and reliable approach to retrieve data for many users. It

provides various functions such as:

1. Redundancy control: It provides redundancy by removing

duplicity of data by following rules of normalization.

2. Data independence: It provides independence to application

programs from details of data representation and storage. It also

provides an abstract view of the data to insulate application code

from such details.

3. Data integrity: It promotes and enforces some integrity rules for

reducing data redundancy and increasing data consistency.

4. Concurrency control: It supports sharing of data, so, it has to

provide an approach for managing concurrent access of the database.

Hence, preserving the inconsistent state and integrity of the data.

5. Transaction management: It provides an approach to ensure that

either all the updates for a given transaction will execute or that none

of them would execute.

6. Backup and recovery: It provides mechanisms for backing up data

periodically and recovering from different types of failures, thus,

preventing loss of data.

7. Non-Procedural query language: It provides with query language

for retrieval and manipulation of data.

8. Security: It protects unauthorized access in the database. It ensures

the access to authorized users.

2. Components Of Database Systems

DBMS consists of several components, namely software, hardware, data,

procedures and data access language.These components are responsible for

the definition, collection, management and use of data within the

environment. Figure shows the components of database system. The

description of each component is as follows:

1. Software: It is the collection of programs used by the computers

within the database system. It is used to handle, control and manage

the database. It includes the following software:

 Operating system software like Microsoft Windows, Linux OS,

Mac OS.

 DBMS software such as Oracle 8I, MySQL, Access (Jet, MSDE),

SQL Server etc.

 Network softwares are used for sharing share the data of database

among multiple users.

 Application programs are developed like C++, VB, dotnet etc. are

used to access database in dbms. These are used to acces and

manipulate the data in the database.

2. Hardware: It consists of all system’s physical devices such as

computers, storage devices, I/O channels, electromechanical devices

etc. It also includes peripherals, such as, keyboard, mouse, modems,

printers, etc.

3. Data: It is the collection of facts. The database contains the data and

the metadata.

4. Procedures: There are the instructions and rules to design and use

the database system. These includes the following:

 Steps for the installation of DBMS

 Steps to use the DBMS or application program

 Steps for the backup of DBMS

 Steps to change the structure of DBMS

 Steps for the generation of reports.

5. Data access language: The users can use it to access the data to and

from the database. The function of data access language is the entry

of new data, manipulation of the existing data and the retrieval of the

existing data in the database. The most popular database access

language is SQL (Structured Query Language). Users can perform

these functions with the help of commands. The role of administrator

is to access, to create and to maintain the database.

6. People: Persons involved to access, to create and to maintain the

database are called users. These are of various types according to the

role performed by them (Fig.). These are as follows:

 System Administrator: The role of system administrator is to

supervise the general operations of DBMS.

 Database Administrator: The role of database administrator

(DBA) is to manage the DBMS.

 Database Designer: The role of database designer is to design the

structure of the database.

 Application Programmer: The role of application programmer is

to create the data entry forms, reports and procedures.

 End User: The role of end user is to use the application programs

by entering new data and manipulating and accessing existing

data.

3. DBMS Architecture

It is an approach to outlook the database by users. It is means for the

representation of data in an understandable way to the users. DBMS

architecture can be used to divide the whole system to related and

independent modules. It can be of 1-tier, 2-tier 3-tier or n-tier.

3.1 3-Tier Architecture

DBMS can be most widely used as 3-tier architecture. In this architecture,

the database is divided into three tiers depending upon the kind of users

(see Fig.).

1. Internal schema or physical level: It is also called Database

Tier. Database exists in this tier. It also includes query processing

languages, all relations and their corresponding constraints. It

describes the physical storage structure of the database.

2. Conceptual schema or logical level: It is also called Application

Tier. Server and program exists in this tier. It also describes the

structure of the database.

3. External schema or view level: It is also called Presentation Tier.

End user exists in this tier. An end user is capable of multiple

views of database. It also includes all views generated by

applications.

3.2 Data Independence

Data independence is defined, as the change at one level does not affect

the higher level. It is of two types:

1. Logical data independence: It is defined, as the change in

conceptual schema does not affect the external schema. For example,

if the format of the table changes, the data lies in the table should not

be changed.

2. Physical data independence: It is defined, as the change in internal

schema does not affect the conceptual schema. Thus, does not affect

the external schema. For example, if the storage system has been

changed, then it does not affect the logical structure of the database.

4. Data Models

Data model is a collection of tools, which describes data, relationships,

constraints and semantics. It gives the logical structure of the database. It

describes the relationship of data in the database. Data models are of

various types:

1. Relational Model: It is a collection of relations (tables). In

relational model, each table is stored as a separate file.

2. Entity—Relationship data model: This model is based on the

notion of real-world entities and relationship among them.

3. Object-Based data model: It defines the database as objects, its

properties and its operations. In this model, objects with the

similar structures comprise a class. The classes are organized into

hierarchies. The operations on these classes are performed through

methods.

4. Semi-Structured data model: It is also known as XML model.

This model is used to exchange data over the web. It uses

hierarchical tree structures. In this model, data can be represented

as elements by using tags.

5. Network model: In this model, data is represented as record

types. The data in this model has many-to-many relationship.

6. Hierarchical model: In this model, the data is represented as a

hierarchical tree structure.

4.1 Relational Model

The database in relational model is represented as a collection of relations

(tables). A relation is a kind of set. It is also a subset of a Cartesian product

of an unordered set of ordered tuples. Relational model was proposed by

E. F. Codd, which stores data in a tabular form. It consists of a table where

rows represent records and columns represent the attributes. It has various

terminologies as follows:

1. Tuple: It represents a single row of a table, which contains a single

record for that relation.

2. Relation instance: It represents a finite set of tuples in the relational

database system.

3. Relation schema: It represents the relation name, that is, table name,

attributes and their names.

4. Relation key: It represents the unique key for the relation or table.

Each row has one or more attributes, which can identify the row in

the table uniquely.

5. Attribute domain: It represents the predefined value scope of each

attribute.

4.1.1 Constraints in Relational Model

Constraints are the restrictions that one wishes to apply on database. The

following constraints are applied on relational model.

1. Key constraints: Each relation has at least one minimal subset of

attributes, which can identify a tuple uniquely.

 No two tuples have identical value for key attributes.

 Key attribute does not have NULL value.

2. Domain constraints: Attributes have specific domain values in real

world. For example, value of age can only be positive.

3. Referential integrity constraints: If a relation refers to a key

attribute of a different relation then that key element must exist.

 4.1.2 Relational Algebra

It is a procedural query language. It takes instances of relations as input

and returns instances of relations as output. Operators are used to perform

queries.

Fundamental operations of relational algebra are as follows (see Table):

1. Select: It is used to select rows from a relation. It is denoted by σ.

Syntax of select σp(r), r is relation and p is prepositional logic.

p uses connectors and operators ˄,˅,=,≠,<,>, ≤,≥.

For example, σempname= "John" (emp).

2. Project: It is used to project columns in a relation. It is denoted

by π . The duplicate tuples are automatically eliminated. Syntax of

projects πA (r), r is relation and A is the attribute name in a

relation.

For example, πempname, sal (emp)

3. Union: It returns a relation instance, which contains all tuples

occurring in the first relation or in the second relation. It is

denoted as R!∪S, where R and S are two relations. The duplicate

tuples are automatically eliminated. This operation is valid for the

following:

 Both relations must have the same number of attributes.

 Attribute domains must be compatible.

4. Intersection: It returns a relation instance, which contains all

tuples occurring in both relations. It is denoted as R ∩ S, where R

and S are two relations.

5. Set difference: It returns a relation instance, which contains all

tuples that occur in the first relation but not in the second relation.

It is denoted as R −S, where R and S are two relations.

6. Cartesian product: It returns a relation instance, which contains

all the fields of the first relation followed by all the fields of the

second relation. It is denoted as R×S, where R and S are two

relations.

7. Rename: It returns a relation but without any name. It is used to

rename the output relation. It is denoted as r.

8. Joins: It returns combined information from two or more

relations.

 Condition joins: It accepts a join condition c and a pair of

relation instances as arguments, and returns a relation

instance. It is denoted as σc (R×S).

 uijoin: It is a special case of condition joins where the

condition c contains equalities.

 Natural join: It is a Cartesian product of two relations. It is

denoted by ⋈.

4.1.3 Tuple Calculus

It is a non-procedural query language. In this, number of tuple variables is

specified. It is represented as { t | Condition}, where t is a tuple variable

and Condition is a conditional expression.

Preliminaries of tuple calculus are as follows:

1. Constants

2. Predicates

3. Boolean and, or, not

4. Ǝ there exists

5. ∀ for all

4.2 ER Model

ER model represents the conceptual view of a database. It describes the

relation of data to each other (Table). It was developed by Peter Chen in

1976. It views real world data as systems of entities and relationships. ER

model has three basic elements: entity, attribute and relationship. These are

discussed in the following sections.

4.2.1 Entity

Entities represent the real-world things. These are data objects which

maintain different relationships with each other, for example, Employee,

Department, etc. These are represented by means of rectangles.

Entity set is a collection of similar types of entities. For example, all

Employees set may contain all employees of all departments. Weak entity

depends on the existence of another entity. A weak entity cannot be

identified by its own attributes. It uses a foreign key combined with its

attributes to form the primary key. It is represented by means of double

rectangles.

For example, Details of Employee’s spouse, order item, etc.

4.2.2 Attributes

Attribute is a property, trait or characteristic of an entity, relationship or

another attribute. All attributes have values. A domain or range of values

can be assigned to attributes. For example, name, class, age are attributes

of the entity student. These are represented by ovals.

There are different types of attributes, listed as follows:

1. Simple attribute: Simple attributes contains atomic values. Atomic

values cannot be divided into sub parts. Examples are mobile number, roll

number.

2. Composite attribute: Composite attributes are composition of many

simple attributes. For example address can be divided into house number,

street number, locality and city.

3. Derived attribute: Derived attributes are those whose value is

derived from some other attribute in the database. For example, age

of person can be calculated from date of birth. Dotted oval is used to

represent derived attributes.

4. Single-valued attribute: Single valued attributes contain only one

value for that attribute. For example age for person, blood group.

5. Multi-value attribute: In this, an attribute may contain more than

one value. Multiple values are represented by double ovals.

For example contact number, email ids.

4.2.3 Relationships

It represents the association among entities in a specified way. For

example, employee entity has relation works at with department entity.

Relationships are represented by diamond-shaped boxes.

Some basic terminologies related to relationship are given below.

 As we have discussed, relations are the core components in

RDBMS, these relations are defined by two major characteristics–

relationship set and the degree of relationship, defined in the following

text.

1. Relationship set: Relationship of similar type is called

relationship set. It has attributes. These attributes are called

descriptive attributes.

2. Degree of relationship: It defines the number of participating

entities in a relationship. They are of the following types:

 Unary relationship (Degree 1): One entity participates. For

example,

 Binary relationship (Degree 2): Two entities participate. For

example,

 Ternary relationship (Degree 3): Three entities participate.

For example,

 n-ary relationship (Degree n): n entities participate.

3. Cardinality: It defines the number of instances of an entity, which

can be associated to the number of instances of other entity via

relationship set.

 One to one: One instance of an entity is associated with at most

one instance of another entity with the relationship. It is

represented as `1-1’.

 For example,

 One to many: One instance of an entity is associated with

more than one instance of another entity with the relationship.

It is represented as `1-N’. For example,

 Many to one: More than one instance of an entity is associated

with another entity with the relationship. It is represented as

`N-1’. For example,

 Many to many: More than one instance of an entity is

associated with more than one instance of another entity with

the relationship. It is represented as `N-N’. For example,

4. Generalization: It is a collection of entity sets, having similar

characteristics, brought together into one generalized entity. For

example, salaried and contract employees are generalized as

employee.

5. Specialization: It is the process of identifying subsets of an entity

set. It is a reverse process of generalization. For example,

employees are specialized as salaried and contract as shown in Fig

6.Aggregation: It allows a relationship set participate in another

 relationship set (see Fig).

5. Database Design

The design of a database consists of the following steps:

1. Identifying entities

2. Identifying relationships

3. Identifying attributes

4. Presenting entities and relationships: Entity relationship diagram (ERD)

5. Assigning keys

6. Defining the attribute’s data type

7. Normalization

5.1 Integrity Constraints

Integrity constrains are applied to maintain the consistency in a database.

This helps in providing the unique answer to a given query on the

database. For example, if the answer to particular query is `x’ then it

should be `x’ if such a query is carried out again (without adding/

deleting/modifying) on the same table.

1. Domain integrity: It defines a valid set of values for an attribute, for

example, length or size, data type, etc.

2. Entity integrity constraint: It defines that the primary keys cannot

be null. There must be a proper value in the primary key field.

3. Referential integrity constraint: It is specified between two tables.

It is used to maintain the consistency among rows between the two

tables.

4. Foreign key integrity constraint: There are two types of foreign

key integrity constraints:

 Cascade update related fields: Whenever the primary key of a

row in the primary table is changed, the foreign key values are

updated in the matching rows in the related table.

 Cascade delete related rows: Whenever a row in the primary

table has been deleted, the matching rows are automatically

deleted in the related table.

5.2 Normal Forms

Normalization is a technique of organizing the database tables, such that

they have minimum redundancy. Following are the normal forms that are

to be achieved for the process of normalization. The underlying concept is

that, if we say a table to be satisfying an `x’ level normal form, then it is

understood that it has also satisfied the `x-1’ level normal form.

1. First normal form: It defines that all the attributes in a relation

must have atomic domains.

2. Second normal form: It defines that every non-prime attribute

should be fully functionally dependent on prime key attribute. A

prime attribute is a part of prime key. The relation must be in the

First normal form.

3. Third normal form: It defines that no non-prime attribute is

transitively dependent on prime key attribute. The relation must be

in the Second normal form.

4. Boyce-Codd normal form: It defines that for any non-trivial FD,

X → A, then X must be a super key. It is an extension of the Third

normal form.

5. Fourth normal form: It defines that for every multivalued

dependency X →→ Y that holds over R, one of the following

statements is true: (a) Y is the subset of X and (b) X is a super

key.Also, sometimes called, Multi-valued Dependency Normal

Form (MDNF).

6. Fifth normal form: It denies that for every join dependency ▹◃

{R1, ..., Rn} that holds over R, one of the following statements is

true: (a) Ri = R and (b) the join dependency is implied by the set

of those FDs over R in which the left side is a key.

Also, sometimes called, Project-Join Normal Form(PJNF).

5.3 Attribute Closure

Set of all attributes functionally determined by X is called closure of X.

Closure set of X is denoted by X
+

Problem 1: Functional dependencies F = {A → B, B → C, C → D} is

given, find closure of A, B, C and D.

Solution:

Closure of A = A
+
= (A, B, C, D)

Closure of B = B
+
= (B, C, D)

Closure of C = C
+
= (C, D)

Closure of D = D
+
= (D)

5.4 Key

It is a minimum set of attributes used to differentiate all the tuples of the

table.

5.4.1 Superkey

It is a set of attributes that uniquely identifies each record in a table. It is a

superset of candidate key. In other words, let R be the schema and X be

the set of attributes over R. If closure of X (X
+
) determines all the

attributes of R, then X is called superkey.

Problem 2: Consider a schema R(ABCDE) and FDs {AB → C, C → D,

B → E}. Find superkey.

Solution:

Find closure set of (A, B, C, AB).

Closure of A = A
+
= {A}

Closure of B = B
+
= {B, E}

Closure of C = C
+
= {C, D}

Closure of AB = AB
+
= {A, B, C, D, E}

So, AB is the superkey.

5.4.2 Candidate Key

It is an attribute or set of attribute that can act as a primary key of a table

that uniquely identifies each record in a table. Every candidate key is a

superkey but not vice versa.

In other words, candidate key is the minimal superkey. If X is a superkey

and none of the proper subset of X is a superkey, then X is called the

minimal superkey or candidate key.

Problem 3: Consider a schema R(ABCDE) and FDs {AB → C, C → D, B

→ EA}. Find the superkey.

Solution:

Find closure set of (A, B, C, AB)

Closure of A = A
+
= {A}

Closure of B = B
+
= {B, E, A, C, D}

Closure of C = C
+
= {C, D}

Closure of AB = AB
+
= {A, B, C, D, E}

So, AB and B are superkeys. But only B is the candidate key.

5.4.3 Primary Key

It is one or more data attributes that uniquely identify an entity. It does not

allow null values.

1. Alternate key: The candidate key, which is not selected as a primary

key.

2. Composite key: It consists of two or more attributes.

3. Foreign key: It is an entity that is the reference to the primary key of

another entity.

5.5 Decomposition

It is required to eliminate redundancy from the schema. If a relational

schema R has redundancy in the data, then decompose R into two R1 and

R2 schema. There are two properties, which should be maintained when

we perform decomposition, it should be a lossless join as well as

dependency preserving.

5.5.1 Lossless Join

Let R be a relation schema and let F be a set of functional dependency

(FD) over R. R is decomposed into R1 and R2. R1 and R2 are called

lossless-join decomposition if R = R1▹◃R2 or if we can recover original

relation from the decomposed relation.

(a) Algorithm for finding decomposition is lossless:

Step 1: Union of all decomposed sub-relation should be equal to

relation R.

R1 ∪ R2 ∪ R3 ∪...∪ Rn . = R

Step 2: Any two sub-relations Ri and Rj can be merged into Rij
with R1 ∪ R2 only if

i. Ri ∩ Rj ≠ ∅ (null)

ii. Ri ∩ Rj = X then closure of X(X
+
) ⊇ Ri

or

Ri∩ Rj = X then closure of X (X
+
) ⊇ Rj

 Step 3: Repeat step 2 until `N’ relations become one relation. If `N’

 relations become single relation, then composition is called lossless,

 otherwise not.

Problem 4: Consider a schema R (ABCDEFGHIJ) and functional

dependencies {FDs = (AB → C, A → D, B → F, F → GH, D → IJ)} and

decompositions

(a) {D = (ABCDE, BFGH, DIJ)}

(b) {D = (ABCD, DE, BF, FGH, DIJ)}

Check whether the decomposition is lossless or not.

Solution:

(a) Given

R1 = (ABCDE)

R2 = (BFGH)

R3 = (DIJ)

Apply algorithm for lossless decomposition:

Step 1:

R1∪ R2∪ R3 ={(ABCDE) ∪ (BFGH) ∪ (DIJ)}= (ABCDEFGHIJ)= R

Step 1 satisfies the given condition, so it is true.

Step 2:

For R1 and R2:

R 1∩ R 2 =(ABCDE) ∩ (BFGH)= B

Find closure of B = B
+
 = {B, F, G, H}.

Condition (ii) is satisfied, so R1 and R2 can be merged together. After

merging R1 and R2,

R12 = (ABCDEFGH)

Now merge R12 and R3.

R 12 ∩ R 3 = (ABCDEFGH) ∩ (DIJ)= D

Find closure of D = D
+
 = {D, I, J}.

Condition (ii) is satisfied, so R12 and R3 can bemerged together. After

merging R12 and R3

R123 = (ABCDEFGHIJ)

So, R123 = R, therefore, it is lossless decomposition.

(b) Given that

R1 = (ABCD)

R2 = (DE)

R3 = (BF)

R4 = (FGH)

R5 = (DIJ)

Apply algorithm for lossless decomposition.

Step 1:

R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5= {(ABCD) ∪(DE) ∪(BF) ∪(FGH) ∪(DIJ)}

 = (ABCDEFGHIJ) =R

 Step 1 satisfies the given condition, so it is true.

Step 2:

For R1 and R2

R1∩R 2 = (ABCD) ∩ (DE)= D

Find closure of D = D
+
 = {D, I, J}.

Condition (ii) of step 2 does not satisfy, so R1 and

R2 cannot be merged together.

For R1 and R3

R 1∩R3 = (ABCD) ∩ (BF)= B

Find closure of B = B
+
 = {B, F, G, H}.

Condition (ii) of step 2 is satisfied, so R1 and R3 can be merged together.

After merging R1 and R3

R13 = (ABCDF)

For R13 and R4

R 13 ∩ R 4 = (ABCDF) ∩ (FGH)= F

Find closure of F = F
+
 = {F, G, H}

Condition (ii) of step 2 is satisfied, so R13 and R4 can be merged together.

After merging R13 and R4

R134 = (ABCDFGH)

For R134 and R5

 R 134 ∩ R 5 = (ABCDFGH) ∩(D IJ)=D

Find closure of D = D
+
 = {D, I, J}

Condition (ii) of step 2 is satisfied, so R134 and R5 can be merged together.

After merging R134 and R5

R1345 = (ABCDFGHIJ)

For R1345 and R2

R 1345 ∩ R2 = (ABCDFGHIJ) ∩(DE)= D

Find closure of D = D
+
 = {D, I, J}.

Condition (ii) of step 2 does not satisfy, so R1345

and R2 cannot be merged together.

So, finally we left with two decompositions which cannot be merged into a

single relation. So condition given in step 3 does not satisfy, therefore, it is

not lossless decomposition.

5.5.2 Dependency Preserving

All the dependency should be preserved after the decomposition of schema

R.

Let R be the relational schema with FD set F decomposed into R1, R2, R3,

..., Rn with FD sets F1, F2, F3, ...,Fn, respectively. The decomposition is

said to be dependency preserved if

F 1∪ F2 ∪ F 3 ∪...∪ Fn = F

And composition is called non-dependency preserved if

F 1∪ F2 ∪ F 3 ∪...∪ Fn ⊂ F

(a) Algorithm to check dependency is preserved or not:

Step 1: Find all the FDs of sub-relations.

Step 2: Check that all the FDs of relation F is covered by FDs of

subrelation in any form directly or indirectly.

Problem 5: Consider a schema R(ABCD) and FDs set F = (A → B, B →

C, C → D, D → A) and decompositions D = (AB, BC, CD). Check

decomposition is dependency preserving or not.

Solution:

Step 1: Find all the FDs of sub-relations.

To calculate indirect dependency, use closure property. In relation R1, we

have indirect dependency B → A. We have to first find closure of all

attributes in that decomposition (like in R1 we have A and B) by using FD

set F and then check that we are getting attribute A in closure of B. So

closure of B = B
+
 = ABCD. So we can write that indirectly as we have

three dependencies {B → A, B → C and B → D} but only B → A is valid

for R1 as we have only two attributes (A and B) in relation R1.

Step 2: Check that all the FDs of relation F is covered by FDs of sub-

relation in any form directly or indirectly.

(a) A → B (Directly covered by sub-relation FD)

(b) B → C (Directly covered by sub-relation FD)

(c) C → D (Directly covered by sub-relation FD)

(d) D → A (Indirectly covered by sub-relation FD by using {D → C then

C → B and then B → A}).

All the dependency is preserved, so it is dependency preserved

decomposition.

5.5.3 Relation between Two Functional Dependency (FD) Sets

Let F and G be two FD sets:

1. Set F and G are equal if and only if closure of

F(F
+
) = Closure of G(G

+
)

2. Set F and G are equal only if both of the below conditions satisfy:

 F covers G: All FD in G is logically implied by F.

 G covers F: All FD in F is logically implied by G.

3. If all FD in G is logically implied by F but all FD in F is not logically

implied by G then G ⊂ F.

Problem 6: Let there be two FD sets F and G, given as follows:

F = {A → B, B → C}

G = {A → B, AB → C, B → C, A → C}

Find the relation between both FDs.

Solution:

(a) F covers G:

 In our example, F covers G and vice versa. So F = G.

6. Query Languages (SQL)

SQL stands for Structured Query Languages, which is a standard computer

language for relational database management and data manipulation. It is

used to query, insert, update and modify data in the table. Some common

RDBMS that use SQL are Oracle, Microsoft SQL Server, Access, Ingres,

Sybase, etc. Raymond Boyce and Donald Chamberlin developed it in the

early 1970s at IBM, but commercially released by Relational Software Inc.

(now, Oracle Corporation) in 1979. Looking into the history it was the

software named- VULCAN, that was procured by Ashton Tate and then by

FoxPro and later was purchased by Microsoft. Other popular softwares

were/are — Clipper and Gupta Technologies.

6.1 SQL Commands

The SQL commands are used to interact with relational databases. These

commands can be classified into the following groups (see Tables)

1. Data Definition Language (DDL): It contains metadata, that is, data

about data. All the integrity constraints and data base schemas are

defined through DDL. These commands are used to create, modify

and delete database objects. CREATE, ALTER, TRUNCATE and

DROP are part of DDL. TRUNCATE command is used to delete

complete data from an existing table, while DROP command is used

to remove a table definition and all data, indexes, triggers and

constraints for a table.

 Syntax of create command

CREATE TABLE table_name(column1 datatype, column2

datatype, column3 datatype, columnN datatype, PRIMARY

KEY(one or more columns));

For example, create table instructor (INST_ID char(5), name

varchar(20),dept_name varchar(20), salary numeric(8,2));

 Syntax of alter command

ALTER TABLE table_name ADD column_name datatype;

ALTER TABLE table_name DROP COLUMN column_name;

ALTER TABLE table_name MODIFY COLUMN column_name

datatype;

ALTER TABLE table_name ADD CONSTRAINT Constraint

UNI (column1, column2...);

ALTER TABLE table_name ADD CONSTRAINT Constraint

CHECK (CONDITION);

ALTER TABLE table_name ADD CONSTRAINT PrimaryKey

PRIMARY KEY (column1, column2...);

For example, ALTER TABLE CUSTOMERS ADD GRADE

char(1);

 Syntax of truncate command

TRUNCATE TABLE table_name;

For example, TRUNCATE TABLE emp;

 Syntax of drop command

DROP TABLE table_name;

For example, DROP TABLE emp;

2. Data Manipulation Language (DML):

 DML is used to manipulate the data in database. It allows to insert,

 update and delete data items. SELECT, INSERT, DELETE and

 UPDATE are part of DML. Control statements BEGIN

 TRANSACTION, SAVEPOINT, COMMIT and ROLLBACK are also

 part of DML.

 Syntax of select command

SELECT * FROM table_name;

SELECT column1, column2, column FROM table_name;

For example, SELECT empno, ename FROM emp;

 Syntax of insert command

INSERT INTO TABLE_NAME

(column1,column2,column3,...columnN)] VALUES (value1,

value2, value3,...valueN);

INSERT INTO TABLE_NAME VALUES

(value1,value2,value3,...valueN);

For example, INSERT into emp (empno,ename, sal, dept)

VALUES (100, ABC,10000, Accounts);

 Syntax of delete command

DELETE FROM table_name WHERE [condition];

For example, DELETE FROM emp WHERE empno = 8;

 Syntax of update command

UPDATE table_name SET column1 = value1, column2 =

value2...., columnN = valueN WHERE [condition];

For example, UPDATE mp SET sal = 12000 WHERE empid = 8;

2. Data Control Language (DCL): To assign or revoke access rights

data control language is used. GRANT and REVOKE are used for

DCL.

 Syntax of grant command

GRANT privilege_name ON object_name TO {user_name |

PUBLIC | role_name} [with GRANT option];

For example, GRANT SELECT ON emp TO user1;

 Syntax of revoke command

REVOKE privilege_name ON object_name FROM {User_name

PUBLIC | Role_name};

For example, REVOKE SELECT ON emp TO user1;

7. File Structures
File structure mainly deals with how files are stored on the disk. Various

file organisations are described below.

7.1 Sequential Files
It is a file organisation system where every file record contains an attribute

to uniquely identify a particular record. Records are placed in a sequential

order with some unique key.

7.2 Indexing
Indexing is a data structure mechanism to efficiently retrieve records from

the database, for example, book index. It is defined based on its indexing

attributes. Indexing is of three types:

 1. Primary index: Indexing is based on ordering key field of file.

 2. Secondary index: Indexing is based on non-ordering field of file.

 3. Clustering index: Indexing is based on ordering non-key field of file.

Ordering field is the field on which the records of file are ordered. Ordered

indexing is of two types: dense index and sparse index.

1. Dense index: For every search key value in the database, there is

an index record. Index record has two parts: search key value and

the pointer. The pointer is pointed to the actual record.

2. Sparse index: In this no index record is created for every search

 key.

7.3 B Tree

A B tree is a data structure that stores data in such a manner that search,

insertions and deletions can be done in logarithmic time. B trees are a

general form of binary trees where a node can have more than one child.

The B-trees are efficient for those systems that read and write large blocks

of data, that is, databases and file systems.

B trees are self-balancing trees. All the leaf nodes are at the same level. A

B tree with order p has:

1. Root node may contain minimum 1 key

2. Minimum number of child =(p/2)-1

3. Maximum number of children = p

4. Maximum keys = p – 1

The order of B-tree can be found as follows:

p × P + (p – 1)(K + Pr) ≤ Block size

where p is order of the tree, P is the block pointer, Pr is the record pointer

and K is the key pointer.

Problem 7: The order of B-tree index is the maximum number of children

it can have. Suppose that a block pointer takes 6 bytes, the search field

value takes 9 bytes, record pointer takes 7 bytes and the block size is 512

bytes. What is the order of the B tree?

Solution:

Given that block size = 512 B; record pointer (Pr) = 7 B;

block pointer (PB) =6 B; key pointer (K) = 9B.

 So, we have

p × P + (p – 1)(K + Pr) ≤ Block size

6p + (p − 1)(9 + 7) = 512

 p = 24

7.4 B+ Trees

It supports multilevel indexing. The leaf nodes of B+ tree represent actual

data pointers. It ensures all leaf nodes are balanced, that is, at the same

height. Leaf nodes are linked using link list.

B+ tree structure is such that B+ tree is of order n and it is fixed for every

B+ tree.

The internal nodes contain at least [n/2] pointers, except the root node and

at most n pointers. Leaf nodes contain at least [n/2] record pointers, at least

[n/2] key values, at most n record pointers, at most n key values, and every

leaf node contains one block pointer P to point to next leaf node and forms

a linked list.

Order of internal nodes can be calculated as:

p × PB + (p − 1) × k ≤ Block size

Order of leaf nodes:

Pleaf × [k + Pr] + PB ≤ Block size

where p is the order of internal nodes, Pr is record pointer, PB is block

pointer, k is key pointer, Pleaf is the order of leaf nodes.

Problem 8: The order of an internal node in a B+ tree index is the

maximum number of children it can have. Suppose that a block pointer

takes 6 bytes, the search field value takes 9 bytes, record pointer take 7

bytes and the block size is 512 bytes. What is the order of the internal node

and leaf node?

Solution:

Given that block size = 512 B, record pointer (Pr)= 7 B,

block pointer (PB) = 6 B and key pointer (k) = 9 B.

Order of internal nodes:

p × PB + (p − 1) × k ≤ Block size

 6p + (p − 1)9 = 512

 p = 34

Order of leaf nodes:

Pleaf × [k + Pr] + PB ≤ Block size

Pleaf [9 + 7] + 6 = 512

Pleaf = 31

8. Transactions And Concurrency Control

Transactions are series of read and write operations on database. When

many users access same database at the same time, some control

mechanism is required by databases to stay in consistent state. Following

sections will provide description about transactions and their control

mechanism.

8.1 Transactions

It is a series of reads and writes of database objects. It maintains the

integrity of a database while running multiple concurrent operations.

Transactions have four properties that a DBMS must ensure to maintain

data. These are known as ACID properties:

1. Atomicity: Either all actions are carried out or none (no partial

transaction).

2. Consistency: After the execution of transaction, the database must

be in a consistent state (no concurrent execution of other

transactions).

3. Isolation: All the transactions are carried out and executed as the

only transaction in the system (no transaction will affect the

existence of any other transaction).

4. Durability: Persistence of data even if the system fails and

restarts.

8.2 Schedule

A chronological execution sequence of transactions is called schedule. It is

a list of actions reading, writing, aborting or committing from a set of

transactions. A schedule can have many transactions. Schedule can be

further divided into two types–serial schedule and concurrent schedule.

8.2.1 Serial Schedule

A schedule is called serial schedule if all transactions are executed in a

non-interleaving manner. Let there are two transactions T1 and T2

schedule S then schedule S is called serial schedule if one transaction

executes after another shown in Fig.

8.2.2 Concurrent Schedule

A schedule is called concurrent schedule if transactions are executed in an

interleaving manner or simultaneous execution of two or more

transactions. Let there be two transactions T1and T2 in a schedule S, then

schedule S is called concurrent schedule if both the transactions execute

parallel. One of the scenarios is shown in Fig.

8.2.3 Comparison between Serial and Concurrent Schedule

Table shows the comparison between serial and concurrent schedule.

8.2.4 Problems Occurring due to Concurrent Schedule

In concurrent schedule, more than one transaction is executed

simultaneously; and due to this some problem arises with concurrent

schedule given as follows:

1. WR problem (Read after Write): WR problem is also known as

dirty read problem or uncommitted read problem. Let there be two

transactions Ti and Tj of schedule S. If transaction Tj reads a data

item which is written by Ti, but till that time transaction Ti is not

committed, then WR problem can occur. If in transaction Ti rollback

or failure occurs, then database will be inconsistent due to

uncommitted read by Tj transaction (Fig.).

Example: Let value of data item A = 1000, X = 100 and Y = 200, then

transaction Ti will update the database with value 1100. Transaction Tj

Will read data item value as 1100. Transaction Tj will update database

with value 1300. As transaction Ti fails, the database value should be

1200. Therefore, this problem is known as uncommitted read problem or

dirty read problem.

2. RW problem (Write after Read): RW problem is also known

incorrect summary problem or unrepeatable read problem (Fig.). Let

there be two transactions Ti and Tj of schedule S. Transaction Ti read

a data item and Tj also read similar data item. Transactions Ti and Tj

both have write operation on that data item. If in both transactions,

read operation occurs before commit of the other transaction and

before writing back that data item in database by other transaction

then RW problem will arise.

Example: Let value of data item A = 100. Transaction Ti will read data

item with value 100 and update database with value 101. Transaction Tj

will read data item value as 100 because it will read before updating value

of data item A by transaction Ti. Transaction Tj will update database with

value 101. But data item `A’ value should be 102 because both the

transaction have commit successfully. Therefore, this problem is known as

unrepeatable read problem.

3. WW Problem (Write after Write): WW problem in concurrent

schedule is also known as lost update problem (Fig). Let there are

two transactions Ti and Tj of schedule S. Transaction Ti reads a data

item and updates it. Now, transaction Tj also writes similar data item

with some other value and transaction Tj commits successfully. After

commit of transaction Tj, transaction Ti will rollback. Thus, updated

value of data item by transaction Tj will be lost.

Example: Let the value of data item A=100. Transaction Ti read data item

and update database with value 200. Let transaction Tj updated database

with value 250 and commit successfully. After committing transaction Tj ,

transaction Ti rollback which set data item value to its initial value 100.

So, this problem is known as lost update problem.

8.3 Classification of Schedule Based on Recoverability

8.3.1 Irrecoverable Schedule

Let there be two transactions Ti and Tj of schedule S. If transaction Tj

reads a data item which is updated by transaction Ti and transaction Tj

commits before the commit (or rollback) of transaction Ti , then the given

schedule S is called irrecoverable schedule.

8.3.2 Recoverable Schedule

Let a schedule S have two Ti and Tj . If transaction Tj reads a data item

which is updated by transaction Ti and transaction Tj is not allowed to

commit (or rollback) before the commit (or rollback) of transaction Ti

, then the given schedule S is called recoverable schedule. Recoverable

schedule may suffer from uncommitted read, lost update and incorrect

summary problem.

8.3.3 Cascading Rollback Recoverable Schedule

Let there be four transactions (T1 ,T2 ,T3 ,T4) in a given schedule S. In

schedule S, if rollback of a transaction (T1) results in the rollback of the

other transactions (T2 ,T3 ,T4) (because of their dependency on each

other), then this is called cascading rollback.

If a schedule is recoverable and has no cascading rollback, then it is called

cascading rollback recoverable schedule. Incorrect summary and lost

update problems may exist in cascading rollback recoverable schedule.

Problems of no recoverability, Uncommitted Read problem (WR problem)

and cascading rollback problem do not occur in such schedule.

8.3.4 Strict Recoverable Schedule

Let a schedule S have two Ti and Tj . If S is called a strict recoverable

schedule then it satisfies these two conditions:

1. Schedule S should be cascading rollback recoverable schedule.

2. If one transaction Ti writes a data item `A’, then the other

 transaction Tj is not allowed to write on that data item.

Only incorrect summary problem (RW problem) may arise in strict

recoverable schedule. Irrecoverable, Uncommitted Read problem (WR

problem), lost update and cascading rollback problems do not occur in

such schedule.

8.3.5 Summary of Schedules Based on Recoverability

