
DIFFERENTIAL EQUATION

An ordinary differential equations is that in which all the differential 
coefficients all with respect to a single independent variable. Thus the equation 
(a) to (d) are all ordinary differential equations. (e) is a system of ordinary 
differential equations.
   A partial differential equations is that which there are two or more 
independent variables and partial differential coefficients with respect to any 
of them. The equations (f) and (g) are partial differential equations.
   The order of a differential equation is the order of the highest derivative 
appearing in it. The degree of a differential equation is the degree of the 
highest derivative occurring in its, after the equation has been expressed in a 
form free from radicals and fractions as far as the derivatives are concerned.
Solution of a Differential Equation
A solution 9or integral) of a differential equation is a relation between the 
variable which satisfies the given differential equation.
For example,  y = ce   (i)

x³
3
__

is a solution of                 = x²y   (ii)dy
dx
___

   The general (or complete) solution of a differential equation is that in which
 the number of arbitrary constants is equal to the order of the differential
equation. Thus (i) is a general solution of (ii) as the number of arbitrary
constants (one constant c) is the same as the order of the equations (ii) (first 
order).
   Similarly, in the general solution of a second order differential equation, 
there will be two arbitrary constants.
   A particular solution is that which can be obtained from the general solution 
by giving particular values to the arbitrary constants.
For example,  y = 4e   

x³
3
__

is a particular solution of the equation (ii), as it can be derived from the 
general solution (i) by putting c = 4.
   A differential equation may sometimes have an additional solution which 
cannot be obtained from the general solution by assigning a particular value to 
the arbitrary constant. Such a solution is called a singular solution and usually
is not of much practical interest in engineering.



Equations of the First Order and First Degree
   It is not possible to analytically solve such equations in general. We shall, 
however discuss some special methods of solution which are applied to the
following types of equations.
1. Equations where variables are separable.
2. Homogenous equations
3. Linear equations
4. Exact equations
In other cases, the particular solution may be determined numerically.

Variables Separable
   If in an equation it is possible to collect all functions of x and dx on one side
and all the functions of y and dy on the other side, then the variables are said 
to be separable. thus the general form of such an equation is f(y) dy =ϕ(x) dx
  Integrating both sides, we get ∫ f(y) dy = ∫ ϕ(x) dx + c as its solution.

Homogeneous Equations
Homogeneous equations are of the form         =dy

dx
f(x, y)
ϕ(x, y)

___ ______

where f(x, y) and ϕ(x) ϕ(x, y) homogeneous functions of the same degree in x 
and y.

Homogeneous Function :
An expression of the form a0x   + a1x      y + a2x      y² + ....... + anY   in which 
every term is of the nth degree, is called a homogeneous function of degree n. 
This can be rewritten as x   [a0 + a1 (y/x) + a2 (y/x)² + ..... + an (y/x)  ]
   Thus any functions f(x, y) which can be expressed in the form x   f(y/x), is 
called a homogeneous function of degree n in x and y. For instance x³ cos (y/x)
is a homogeneous function of degree 3 in x and y.
   To solve a homogeneous equation

n - 1 n n - 2 n 

n n 
n 

1. Put y = vx, then        = v + xdy
dx
___ dy

dx
___

2. Separate the variables v and x, and integrate.

Leibnitze linear equation
The standard form of a linear equation of the first order, commonly known as 
Leibnitz’s linear equation, is

dy
dx
___ + Py = Q where P, Q are arbitrary functions of x   (i)

To solve the equation, multiply both sides by e      so that we get∫ Pdx



dy
dx

 d
dx

___ ___.e       + y(e      P) = Qe       i.e.       (ye      ) = Qe∫ Pdx ∫ Pdx ∫ Pdx ∫ Pdx ∫ Pdx

Integrating both sides, we get ye       = ∫ Qe       dx + c as the required solution∫ Pdx ∫ Pdx

Bernoulli’s Equation

The equation        + Py = Qy   (i)
dy
dx
___ n

where P, Q are functions of x, is reducible to the Leibnitz’s linear and is 
usually called the Bernoulli’s equation
To solve (i), divide both sides by y  , so that y         + Py      = Q         (ii)n -n dy

dx
___ 1 - n

Put y      = z so that (1 - n) y          =1 - n -n dy
dx
___ dz

dx
___

Eq. (ii) becomes                 + Pz = Q. ..    1
1 - n
____ dz

dx
___

or        + P(1 - n)z = Q(1 - n),dz
dx
___

which is Leibnitz’s linear in z and can be solved easily.
Exact Differential Equations
1. Definition : A differential equation of the form M(x, y)dx + N(x, y)dy = 0 
    is said to be exact if its left hand member is the exact differential of some 
    function u(x, y) i.e. du = Mdx + Ndy = 0. Its solution, therefore, is u(x, y) 
    = c.
2. Theorem : The necessary and sufficient condition for the differential 
    equations Mdx + Ndy = 0 to be exact is

∂M
∂y
___ = ∂N

∂x
___

3. Method of solution : It can be shown that, the equation Mdx + Ndy = 0 
    becomes
  d[u + ∫ f(y)dy] = 0
    Integrating u + ∫ f(y) dy = 0
    But u = ∫ Mdx and f(y) = terms of N not containing x
           The solution of Mdx + Ndy = 0 is
    ∫ Mdx + ∫ (terms of N not containing x) dy = c

. ..

(Provides of course that the equation is exact i.e.                  )∂M
∂y
___ = ∂N

∂x
___

Linear Differential Equations (Of n   Order)
Definitions
   Linear differential equations are those in which the dependent variable its 

th



derivatives occur only in the first degree and are not multiplied together. The
general linear differential equation of the n    order is of the formth

d  y
 dx

d     y
dx

d      y
dx

+ p1             + p2              + . . . . + PnY = X
n n - 1

n - 1n
n - 2

n - 2
___ ___ ___

where p1 , p2 , . . . , pn and X are functions of x only
   The complete solution (C.S) of (iii) is y = C.F + P.I
Thus in order to solve the equation (iii), we have to first find the C.F i.e. the 
complementary function of (i) and then the P>I i.e. a particular solution of (iii)

. ..

Operator D Denoting       ,         ,        etc., so that d
dx

d²
dx²

d³
dx³

___ ___ ___

dy
dx

d²y
dx²

d³x
dx³

___ ___ ___= Dy        = D²y         = D³y etc., the equation (iii) above can be written in 

the symbolic form.
(D  + k1 D      + .... + kn)y = Xn n - 1 

i.e.  f(D)y = X
where f(D) = D   + k1 D      + ... + kn i.e. a polynomial in D.
Thus the symbol D stands for the operation of differential and can be treated 
much the same as an algebric quantity i.e. f(D) can be factorised by ordinary 
rules of algebra and the factors may be taken in any order. For instance

n n - 1 

d²y
dx²

dy
dx

____ ___+ 2         - 3y = (D² + 2D - 3)y
 = (D + 3) (D - 1)y or (D - 1) (D + 3)y

Rules for Finding the Coplementary Function

where k’s are constants.
The equation (i) in symbolic form is
(D  + k1 D      + k2 D      + ..... + kn) y = 0    .... (ii)
Its symbolic co-efficient equated to zero i.e
D  + k1 D      + k2 D      + . ... + kn = 0
is called the auxiliary equation (A.E) Let m1 , m2 , ..., mn be its roots. Now 4 
cases arise
Case I : If all the roots be real and different, Then (ii) is equivalent to
   (D - m1) (D - m2) ...... (D - mn) y = 0     ... (iii)
   

To solve the equation          + k1              + k2               + kn y= 0  ... (i)d  y
dx

d      y
dx

d      y
dx

n 
n 

n - 1 
n - 1 

n - 2 
n - 2 

____ ______ ______

n n - 1 n - 2 

n n - 1 n - 2 

Now (iii) will be satisfied by the solution of (D - mn) y = 0, i.e. by
dy
dx
___ - mn y = 0



This is a Leibnitz’s linear and I.F = e
  Its solution is ye        = cn , i.e. y = cn e
Similarly, since the factors in (iii) can be taken in any order, it will be satisfied 
by the solutions of 
(D - m1) y = 0, (D - m2) = 0 ets., i.e. by y = c1 e      . y = c2 e         etc
Thus the complete solution of (i) is y = c1 e      + c2 e       + .... + cn e      .... (iv)
Case II : If two rootd are equal (i.e. m1 = m2 ), then (iv) becomes
 y = (c1 + c2)e      + c3 e       + .... + cn e
 y = Ce      c3 e      + .... + cn e
      [     c1 + c2 = one arbitrary constant C]
Case III : If one pai of roots be imaginary, i.e
  m1 = α + iβ
  m2 = α - iβ
  Then the complete solution is
 y = c1 e            + c2 e           + c3 e      + .... + cn e
     = e   (c1 e     + c2 e     ) + c3 e      + ... + cn e
    = e   [c1 (cos βx + i sin βx) + c2 (cos βx - i sin βx)] + c3 e     + .... + cn 
    [     By Euler’s Theorem, e = cos θ + i sin θ]
    = e   (c1 cos βx + c2 sin βx) c3 e      + .... + cn e
 where C1  = c1 + c2 
 and   C2 = i(c1 -c2 )

-mnx 
-mnx . .. mnx 

m1x m2x 
m1x m2x mnx 

m1x m3x mnx 
m1x m3x mnx 

. ..

(α + iβ)x (α - iβ)x m3x mnx
αx iβx -iβx m3x mnx
αx m3x mnx

. ..

αx m3x mnx

Rules For Finding The Particular Integral

which in symbolic form is (D  + k1 D      + k2 D      + .... + kn) y = X

Consider the equation            + k1               + k2               + ...... + kn y= Xd  y
dx

n 
n 

____ d      y
dx

n - 1 
n - 1 ______ d      y

dx
n - 2 

n - 2 
______

n n - 1 n - 2 

P.I =                            1
D  + k1 D     + k2 D      + .... + kn n n - 1 n - 2 
___________________________. ..

Case I . When X = e
Since   De    = ae
   D²e    = a²e
   . . . . . . . . . .
   . . . . . . . . . .
   D  e    = a   e

ax

ax

n

ax

ax ax

ax n ax

   (D  + k1 D     ... + kn)e    = (a  + k1 a      .... + kn ) e
i.e. f(D) e    = f(a) e
Operating on both sides by

n n - 1 ax n n - 1 ax
ax ax

  1
f(D)
____ . f(D)e    =           . f(a)e  1

f(D)
____ax ax



or   e    = f(a)          e  1
f(D)
____ax

  1
f(D)
____

ax

by ÷ f(a). ..

. .. e    =          e    provided f(a) ≠ 0   (i)ax   1
f(a)
____ ax

If f(a) = 0, the above rule fails and we proceed further.
It can be proved that in that case,

  1
f(D)
____ e    = x ax   1

f '(a)
____ e       ..... (ii)   ax

If f '(a) = 0, then applying (2) again, we get   1
f(D)
____ e    = x² ax   1

f "(a)
____ e       providedax

f" (a) ≠ 0      .... (iii)
and so on.

Case II : When X = sin(ax + b) or cos (ax + b)
  1
f(D²)
____ sin (ax + b) =             sin (ax + b) provided f(-a²) ≠ 0   1

f(-a²)
_____

If f(-a²) = 0, the above rule fails and we can prove that,
  1
f(D²)
____ sin (ax + b) = x             sin (ax + b) provided f '(-a²) ≠ 0   1

f '(-a²)
_____

If  f '(-a²) =            . sin(ax + b) = x²              sin (ax + b), provided f "(-a²) ≠ 0  1
f(D²)
____   1

f "(-a²)
____

and so on.

Similarly   1
f(D²)
____ cos(ax + b) =             cos(ax + b), provided f(-a²) ≠ 0    1

f(-a²)
_____

If f(-a²) = 0,   1
f(D²)
____ cos(ax + b) = x .             cos(ax + b), provided f '(-a²) ≠ 0    1

f '(-a²)
_____

If f '(-a²) = 0,   1
f(D²)
____ cos(ax + b) = x² .             cos(ax + b), provided f "(-a²) ≠ 0    1

f "(-a²)
_____

and so on ....
Case III : When X = x m

Here    P.I =          x   = [f(D)]ˉ¹ x  1
f(D)
____ m m

Expand [f(D)]ˉ¹ in ascending powers of D as far as the term in D   and operate 
on x   term by term. Since the (m + 1)   and higher derivatives of x   are zero,
we need not consider terms beyond D

m
m th m

m

P.I =          e    V = e                   V  1
f(D)

      1
f(D + a)

___ ___ax ax
When X = e    V, where V is a function of x.ax


