WALK

An alternating sequence of vertices and edges, that begin and ends with a vertex.
Ex : 1b2e5h4

Trail: A trail is a walk without repeated edges.
Ex: 1b2f314h5e2g4

Path: A path is a walk without repeated vertices.
1b2£3i4h5

Closed walk: A walk if the first and last vertices are same.
1b2e5d6al

Open walk: A walk if the first and last vertices are different.

Circuit or Cycle: A circuit is a path which ends at the vertices it begins.
1b2e5d6al

NOTE: By default walk 1s open walk.

Euler Graph:
A graph containing all the edges and no edges is repeated and having Closed walk
is called Euler graph.

Euler graph

Euler graph

Result: A connected graph is Euler graph if degree of every vertex is even.
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Universal graph (Not Euler graph)

An open walk containing all the edges of the graph and no esge is repeated called
Universal graph.

Result: A connected graph is called Universal Graph if there are two exactly two
vertices of off degree.

3 2
2 3
Universal Graph

- If H-cycle exist then H-path should be preset.
- If G 1s a connected Homiltonial graph with n vertices.

1. No. of vertices in Hamiltonian cycle = n
2. No. of edges in Hamiltonian cycle = n
3. No. of vertices in Hamiltonian path =n
4. No. of edges in Hamiltonian path =n - 1
5. The degree of any vertex in H-cycle = 2
Simple Graph
— 3 cycle
— 5 cycle
— 4 cycle
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Simple cycle graph with n vertices

\Y% e

d(v)

Cn n n

2

Hamiltonian Graph

Graph

O

A circuit containing all the vertices and no vertex is repeated except starting and

Hamiltonian H-Path
cycle

O
. :>i
O
U

O\

H-path

H-Path (Hamiltonian Path) : A path containing all the vertices and no vertices is

repeated.

Cycles of length 3, 5,7, 9, odd cycles
Cycles of length 4, 6, 8, 10, even cycles
Planner Graph

Cross over
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Planar representation of a graph:
Drawing a graph in a plane without crossing.
A graph having planar representation in a plane is called Planar graph.

[v-e+r=2]|
— 11 V:j
@ @ 4-4+2=2
2=2
Planar Graph -
v=4
E=6
- r=4
[4-6+4=2]

The planar representation of planar graph divided entire plane lato regions or
faces.

Degree of a region
The number of edges in the boundary of a region is called its degree.

Region Degree
1 3
2 3
3 3
4 3

IVth region — Exterior region or unbounded region
Other region are Interior or bounded region.

Euler Formula
In any connected planar graph G with
A% Vertices

E Edges
r Regions
We have [v-e+r=2]|
1. The sum of degrees of regions = twice the number edges.

2 deg (ri) = 2|E|
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2. Simple planar graph, minimum degree of region = 3
> deg (r) =2e
3+3+343 - +3<2e

3. 2=v-e+r

2e
<v-e+-—
2<v-e 3

6<3v-e

In a simple connected planar graph with minimum degree of region = 3 — (assume
in problem)
For planarity check v-e+r=2

3r<2e

e<3v-6

Q. ks is planar or not?

ks v=>5
— n(n-l))
E—lO( 5
1. v-e+r=2
5-10+r=2
r=7
2. 3r<2e
3r<2x10

21 <21 — Not Possible

3. e<3v-6
10<3x5-6
10<9 —  Not possible
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So ks is non-planar graph.

NOTE:
In a simple connected planar graph with minimum degree of region = k — any
then results

v-etr=2

kr<2e

o k(v-2)
— (k-2)

% — ( ; Minimum degree of region = 4

NOTE: In any Bi-particle graph minimum degree of region = 4

Q. k33 1is planar or not?
k3 3 contain
v=6;E=9

1. v-et+tr=2

6-9+r=2 =

2. Minimum degree of region = 4
4r < 2e
4x5<2x9 = 20<18 —  Not possible
k(v-2)
< Y4
3. e < k-2)
4(6 -2) 4 x4
e=< (4—_2) = e=< 5
9<8 —  Not possible

So k 3.3 is non planar graph.
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NOTE:

ks and k3 3 both are known as Kuratowski’s graph.

ks and k3 3

1. Both are non-planar.

2. Both are regular

3. Both gives a planar graph if an edge or a vertex is removed.
4. ks 1s a non-planar graph with smallest number of vertices.
5. k3.3 1s anon-planar graph with smallest number of edges.

Kuratowski’s Result
A graph G is planar if it does not contain any graph Homeomarphic to ks or k3 3.

Matching:-
The set of non-adjacent edges.
a
O ) M1 = {a}
d b M2 :{% cczé
Mj = {b,
e © 3 =1

C

Matching number — (a’(G))
Maximum no. of non-adjacent is called Matching number.

@(G) =2

{f, g, h}
fa,1, h}
@’(G) =3

Edge Covering
The set of edges which can cover all the vertices of positive degree.
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Ei ={a, b, c, d} E; ={e,b,c} +1
E; = {a, ¢}
E; = {b, d}

Edge Covering Number (B’(G)):-
Minimum number of edges which can cover all the vertices of positive degree + numbei
of isolated vertices (If any)

El = {a, i, h, G}
p(G) =4

E ={e,b,c} +1

p(G)=4
NOTE :
In a simple graph with 20 vertices the matching number = 8, then edge covering no.
(a) 10 (b 12 (c) 14 (d) 20

In a simple graph with n vertices matching no. (a’(G) + edge covering number (B’(G))
=n
8+n=20 — n=12

Independent set — Set of Non-adjacent vertices

Vi = {1}
Vo ={1, 3}
V3 ={2,4}
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Independance number (a(G)) :-
The maximum no. of non-adjacent vertices.

a(G)=2

Vertex Covering
The set of vertices which can cover all the edges.

Vertex Covering Number — (B(G))
Minimum number of vertices which can cover all the edges.

D @)
© @

A simple graph with n vertices a(G) + B(G)=n

Graph Coloring Problem
Coloring the vertices of the graph such that adjacent vertices have different color (or)
no. of two adjacent vertices having same color.

Red Blue
Blue Red

Chromatic Number (x(G)) :-

Minimum number of colors required to color the graph.
Graph (G) 1G)
Nn (Null graph) 1
ey 2 Even cycle
(n>3) 3 Odd cyclg
Kn (Complete graph)] n
Kmn (Bipartite graph) 2
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The following statements are equivalent
(I) G is bi-partite (2) G s 2-colorable (x(G) =2)
(3) Everycycle in G is even cycle

Ex:
GATE 2004 E
Solution
G Cy
Qr XG) =2
C 2
S)) C

1

Ex:

GATE : 2001 ﬁ

Solution
)
1 x(G) =3
G 62 G
GATE : 2002 C

(a) 3 (b) 4
C () 5 (d o6
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Solution

Answer = B

TREE
A tree is a connected acyclic graph i.e. connected and having number cycle.
- The following statements are equivalent

1.  Connected and acyclic graph.
2. Connected and has (n - 1) edges.
3. Acyclic and has (n - 1) edges.
4. There 1s exactly one path between any two vertices.
5. Minimally connected.
EX: Tisatree with: 4 vertices of degree 2; 2 vertices of degree 3; and remaining

vertices of degree 1. How many vertices of degree 1 are there?

Solution: 4 vertices of degree 2 =4 x2 =28
2 vertices of degree 3 =2 x3 =6
x vertices of degree 1 =x x 1 =x

6+x x+ 14

Number of edges = (6 +x)-1=5+x
Sum of degree = 2e

14+x=2(5+x)
x =4 - Number of vertices of degree 1

Q. Tisatree with: 6 vertices of degree 2; 3 vertices of degree 3; and remaining
vertices of degree 1
(1) How many vertices of degree 1 are there?
(2) How many vertices are there?

Solution: 5 Vertices

NOTE: Every tree is Bi-partite (n > 2)
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Spanning Tree

D O D (4
. :>
O © © ©

The spanning tree of connected simple graph is a spanning subgraph which is a tree.

Construction of Spanning Tree
DFS (Depth First Search)
At a given opportunity we go to next higher level and back track, if needed.

Q.  Which of the following sequence of vertices are not traversed by DFS?

A) 1 2 3 4 5 @ 1 5 4 2 3
@©© 1 2 4 5 3 m 1 2 5 4 3
(A) (B)

9 .
(5 j Unnecessary back tracking
. A~

We avoid Un-necessary backtracking in DFS

BFS (Breadth First Search)
At a given opportunity complete the level and then move to next level.

Which are not possible using BFS?

A 1 2 5 3 4
@) 1 2 5 4 3
c© 1 5 2 4 3
m 1 2 4 5 3
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(A) [ |

Delete ‘1’ and explore its children

2] 5]
Delete ‘2’ and explore its children

15[3[ 4]
Delete ‘5’ and explore its children

13]4]
Delete ‘3’ and explore its children

ADJACENCY GRAPH
Let G = (V, E) be a simple graph with n vertices
the adjacency matric of G AG =[mjj Jyxn

M = {O Ifedge {i,j} E
Y 1 Ifedge {i,j} E

1 2 3 4
170 1 1 1
211t 0 1 0
AG= 311 1 0 o
411 0 1 0

i, jth entry in AG gives the number of paths of length ‘I’ from vertex i to vertex ‘j’.

AZ=A-A

o 1 1 110 1 1 1
1 0 1 offt o 1 o
AG=11 1 o0 oll1t 1 0o o
1 0 1 oflt o 1 o
1 2 3 4
113 1 2 1
211 2 1 2
2 —
AG 312 1 3 1
411 2 1 2

A& — the i, jth entry in A gives the number of paths of length 2 between i and j.
A — thei, jth entry in Ag gives the number of paths of length 3 between i and j.

| —2—1 1—2-3]
1—3—1 ) 3path |4 3>pat
| —4—1
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Graph Theory Problems
GATE : 2016
Q.  The minimum number of colours that is sufficient to vertex-colour any planar
graph is ?

Solution:
kg > Red Blue

Q o Every planar graph can color with 4 colors that means

‘ four colours are sufficient to properly color any planar
A graph.
Blac ow

GATE : 2003

Let G be an arbitrary graph with n nodes and k components. If a vertex is removed from
G, the number of component in the resultant graph must necessarily lie between

(@) kandn (b) k-landk+1 (¢c) k-landn-1 (d) k+1landn-k

o o
o o)
k=1 k=8
°© o © A""
k=3
k=4
[k-1,n-1]

Q.  Consider an undirected random graph of eight vertices. The probability that there
1s an edge between a pair of vertices is %2. What is the expected number of un-
ordered cycles of length three?

=Xxp ()

=8C3 x%x%x % =7
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Q.  Consider an undirected graph G where self loops are not allowed. The vertex set
of Gis {(1,)): 1<1<12,1 <)< 12}
There is an edge between (a, b) and (c, d)
ifla -«¢c|<land|b-2|<1

The number of edges in this graph is ?
Solution
(1,1) (1,2)
4 x3=2E
E=6
(2,1) (2,2)
4x3 +2x5=2E = 12+10=2E = E=11
5 5
4 (1,1) — (1,2) — (1,3) — (1,4) 4
5@2,1) — (2,2) — (2,3) — (2,4) 5
4 3,1) — (3,2) — (3, 3)—(34)4
5

4x3+6x5+2x8 =2E
= 12+30+16=2E = 42+16=2E = 58=2E = E=29

Generalize this

(L) — (1,2) — — — (1,11) — (1, 12)
| | > |
21 — 22 — — — @10 — (2,12)
|
(3, 1) | |
\‘ | |
(11,1) — (11,2) — — — (11,11 — (11,12)
| > ] | >
(12, 1) — (12,2) — — — (12,11) —(i2,12)
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From above diagram
(1)  The four corner vertices have each 3 degrees which gives 4 x 3 = 12 degrees.
(2)  The 40 side vertices have 5 degrees each contributing a total of 40 x 5 =200
degrees.
(3) The 100 interior vertices each have 8 degrees contributing a total 100 x 8 = 800
degrees
50 total degrees of the graph
12 +200 + 800 = 1012 degree
1012=2E
E = 500

Directed Graph (Di-Graph)

G=(V,E)
V = Vertex set {V1, V,, V3, -—---- , Vi)
E = Edge set {E1, E, E3, -------- , En)

Indegree : The number of edges incident into the vertex.
Outdegree: The number of incident out of the vertex.

First theorem of the directed graph : -

In a directed graph
Vertex In  Out
1 0 )
2 1 1
3 2 0
4 11
4 4

The sum of indegree is = the sum of outdegree = the number of edges in the graph

Strongly Connected
A directed graph is strongly connected if there is a path from a to b and from b to a where
a and b are vertices in the graph.

Strongly connected because there is a path between any two vertices in this directed graph.

Weakly Connected : -
A directed graph is weakly connected if there is a path between every two vertices in the
underlying undirected graph.
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not strongly connected
there is no direct path from a to b in this graph.
It is weekly connected.

FOREST:

- A forest is an undirected acyclic graph

- A forest is an undirected graph, all of whose connected components are trees.
- The graph consists of a disjoint union of trees.

k=2

GATE : 2014
If G is a forest with n vertices and k connected components, how many edges does G
have?

(2) L%J (b) (%_‘ © n-k d n-k+1

Line Graph L(G) : -

The line graph L(G) of graph H is constructed as follows:

1. For every edge in G there is a vertex in L(G).

2. Two vertices in L(G) are adjacent if their corresponding edge in G are adjacent.

— line graph of a cycle is cycle.
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NOTE:
Minimum degree 9; Maximum degree A

2 1

o =1

5 1 A =2

Result: In any graph G = (V, E) with V - vertices, E - Edges.
2e
<=2 <A
d < v S

WHEEL (n > 3)
When we add an additional vertex to the cycle (Cn, n > 3) and connect this new vertex
to each of the n vertices in G, by new edges.

W3 Wy

Q. A connected planar simple graph has 20 vertices each of degree 3.
How many regions does a representation of this planar graph split the plane?

Solution:
>, deg (V) =2 [E|
= 20 x 3 =2E = E =30
V-E+r=2

= 20-30+r=2 = r=12

Diameter of Graph
The diameter of graph is the maximum distance between pair of vertices.

(B
(O

Diameter = 3

BC — CF — FG @B O ® @
G
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Radius of Graph
The minimum among all the maximum distance between a vertex to all other vertices.

©
(O

Radius =2
BC — CF
B»D O & ¢ BC — CE
BC — CD
@ BC — CA
GATE : 2015
Let G be a connected planar graph with 10 vertices. If the number of edges on each face
is three, then the number of edges in G is ?
Answer:
Number of vertices = 10; d(r) =3
Number of edges = ?; (e)=7?
V-et+tr =2
10-e+r=2 = r=e¢-8 —(1)
Y d(r;)=2e
Ir=2e = rZ% E—
Put r value in (1)
2
S =e-8 = e=24
Alternate: e <3V-6

e<3x10-6 = 6<24

Perfect matching:-
It is matching with some special property and it cover all the vertices.

uncovered Perfect matching
Matching
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GATE : 2004
Q. How many perfect matching are there in a complete graph of 6 vertices?
(a) 15 (b) 24 (c) 30 (d 60

Number of Perfect matching
=5x3x1=15

The number of perfect matching in complete graph

m-1)(n-3)(n-5)(n-7) ------—--

where n is error.

Functions
A function f from set A to set B is a rule which assign every element of set A to a unique
element of B.

F:A— B (F maps Ato B)

A B A B ~—
] .
5 || .
3
Function Not a function Not a function

f: A— B Function
A={1,2,3} B=1{1,2,3,4,5,6}

f(x) = 2x
A B
Ex:- f:2t =27 (2% = set of positive integers)

f(x) =x - 3; Is a function?
f(1)=1-3=-2&2*
So it is not a function.
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Ex:- F:2—>2 (2 =setofintegers)

f(x)=x-3
Yes, it is a function.
A B
f
f:A—B

A — Domain of the function; B — Co-domain of the function
y = f(x) - Image of x under f.

y = f(x), than x is called Preimage ofy.

Image of (a) =1

, Image of (b) =1
Image of (¢) =2

Preimage of (1) = {a, b} Preimage of (2) = {c}
Preimage of (3) = Not Preimage
Domain = {a, b,c} Co-domain = {1, 2, 3, 4} Range = {1, 2}

Range : The range of f is the set of all images of elements of A

ONE-ONE Funcion (Injective function)

o

If azb then f(a) # f(b)
If b#c then f(b) # f(c)
If f(a) =f(b) then a=b

Q. f:R—R (R = set of real numbers)

f(x)=x+3 fis one-one

f(lh)y=1+3=4; {f(0)=0+3=3; f(-1)=-1+3=2
1 1 7

(=237

-1 2

0 3

1 7

2 2

1 4
One-One
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a#b but f(a)=f(b)

So not one-one
ONTO Function (Surjective Function)
A B A B
onto function not onto

In onto every element has preimage from B to A.

Ex: f:z—>2z  (z=setofintegers)
f(x) =2x + 3, then f'is

(a) only one-one (b) onlyonto (c) both one-one and onto
(d) none
Z z
4
. 6  does not have any preimage. So, not onto.
8
f(1)=2x1+3=5 f2Q)=2%x2+3=7

Only one-one
y=2x +3 (y in terms of x)

2x+3 =y = 2x-y-3 = X=y_2 (x in terms of y)
Puty=2
2-3 -1
X = —5 = 7and2. So, not onto
GATE : 2004

Q.  Consider the mapping function f; and f; as described below
f1 :R— R defined by f(x)=x*>+x, xand R
fr:z—z f(y)=2zY,yandz
R : set of real numbers; z: set of integers
then what about f] and f,?
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fl .

®7®—» does not have any preimage

f-1)=(-12+(-1)=1-1=0; f(0)=(0)+0=0
Not one-one
So, not onto.

fr:

—= 1

f(-1) =2-1 = 5 and 2. It is not a function.

GATE : 2005

Q.  Consider the following functions from 2 to 2, where 2 is the set of integers.

s1 : f(x) = x3 1s one to one but not onto.
n
s, 1 f(n) = ’%} 1s onto but not one-one.
(a) sq only (b) s» only (c) both (d) none

Solution:  s; =f(x) =x°

but 2 has no mapping. So not onto.

onc-once

sy 1strue

—
=

onto but not one-one
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Q.  Find the inverse of the following functions
A B
‘i f: "
onto
U
B A
[
not a function
A B B .1 A
a £ 1 f:1> 1 f a
b 2 2 1
Rule : f-1exist if f is one-one and onto.
Q. 1. fx)=x+3 find f-1(x)?
y =x + 3 (y in terms of x)
X =Yy -3 (xin terms of y)
f-1y)=y-3
fl)=t-3
flx)=x-3
| |
| |
2. f(x)=2x+3
-3
y=2x+3 — X = YT
-3 -3
£l =452 ==
3. T =757 Y = x+4
3-4y
xy +4y =2x+3 = Xxy-2x=3-4y = X =730

Page - 24



1 3-4y 1 3-4x
=y =57 = X =53
Q. GATE : 2005
f:RxR—>RxR
f(X:y):(X+Y:X_Y); f (X7Y):?
Solution:
fix,y)=x+y,x-y)
(Z1=Z2):(X+Y9X_Y)
X-y=zy ——1D)
2X:=Zr+22 .
(z1,2,) in terms of x and y
_ 21t
)
put x in equation in (I)
z\tzy
7 tyTz
_ Z1t2zy  _ 221-721-2zp  71- 7y
y=12-—5 2 )
_(z1tzy zy- Zz)
oy =132 1
-1 _ ZI+Z2 Z1- 7y ). -1 _ (X+y X-y)
f (Zl s Z2) ( 2 s 2 ) s f (X7 Y) 2 ’ 2
Ex:- f:RXxR—>R xR
f(X:y):(2X+an'ZY); f'l(X,y):?
Solution: 2x+y=z; x 1 — (1)
X-2y =29 X 2 ——(2)
2xty=12]
2x -4y =27y 21 - 22,
Sy=2z,-2z5 = y="35
: 2xty
put y 1n anyone X = 3
2x + -
-1 _ y X 2y)
ey = (P, X
Result: fis a function from A to B
|A|=n IB|=m
Q. 1. If f is one-one
(@) n<m (b) n>m (c) n=m (d)

none
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Ans.

n=3 m=3
'y =

Y n<m
one-one = n=m

n

Answer. (a) m

If f 1s onto then
(a) n<m (b) n>m (c) n=m (d)  none

Answer. (b)

If f 1s one-one and onto
(a) n<m (b) n>m (c) n=m (d)  none

n<m — one-one
= Both = n=m
n>m — onto

one-one and onto function are also called Bijecttion.

Let G be a complete undirected graph on 6 vertices. If vertices of G are labeled,
then the number of distinct cycles of length 4 in G 1s equal to
(a) 15 (b)y 45 (c) 90 (d) 360

(b)
- From 6 vertices we can select 4 distinct vertices in 6¢4 = 15 ways.
Now, with 4 vertices, we can form only 3 distinct cycles.

So, total number of distinct cycles of length 4 = 15 x 3 =45

- Number of cyclic permutations of n objects = (n - 1)! and for n =4,
we get 31 = 6 ways.
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But number of distinct cycles in a graph is exactly half the number of cyclic
permutations as there is no left/right ordering in a graph. For example
a-b-c-danda-d-c-b are different permutations but in a graph they form
the same cycle. So answer is 45.

IV. The number of possible function |A|=n, |B|=m, possible functions =m™n

4

4

4 Number of possible functions = 4* = 64
3 4

Ex: |A|=3; IB|=15
Number of functions =53 = 125

GATE : 1996

Suppose X and Y are sets and |X| and |Y] are their respective cardinalities. It is given
hat there are exactly 97 functions from X to Y, then

(a) IX|=1, |Y|=97 (b) IX|=97, |Y|=1 (c) 1X|=97, [Y|=97
(d) None

Solution. (a)
Y|® =@©97) =97

Q. Number of one-one function between |A|=n IB| =m

(@) n (b) m (c)  mp, (d)  nppy

n permutations of m elements

Mpp
Al =2 B =2
.: 1 . ’
<
one-one one-one
2p, =2
m :
* Number of onto functions > mc, (-1)' (m-i)?
i=0
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Ex: |A|=3 B =2
2c (2-0P-2¢ (2-1y+ =1x23-2(1) = 8-2=6
Ex: |Al=n IB|=2

then number of onto functions = 2" - 2
If is valid if B contain only two elements.

Composite Function:

f: A—»B and g: B—C
gof :A— C gof(x) = g f(x)
A B C
()
gof(x)
Q. f:A—-B g:B—>C
gof: A — C defined
But fog not defined here.
Q. f:R —R g:R—R

Both fog and gof are defined
But fog # gof (need not be equal)

Ex: f:R—R g:R—R

f(x) = x? gx)=x+1

gof(x) = g(f(x)) =x* + 1 fog(x) = f(g(x)) = (x + 1)
Important Result:

(1) If fand g one-one then the composition (gof) function is also one-one.
—  If fand g onto function then gof is onto.

A B C
gof()=g(fa) = g(l)=1¢

not on to
gof (b) =g (f(b)) = g2) =m
A C
gof
gof is one-one and onto

onto but
not oge-one
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2. — If gof is one-one then f will be one-one
— If gof'is onto then g will be onto
gof is one-one and onto then f is one-one and g is onto.

GATE : 2001
Let f: A — B be a function, and let E and F be subsets of A. Consider the following
statements about images.

s; :f(EUF)=f(E) Uf(F) so:f(ENF) =f(E)n f(F)
(a) only sy is correct (b)  only s, is correct
(c) both sy and s, are correct (d) none of sy and sy is correct
Solution: A B A={l1,2}
f E= {1}
F={2}
f(E)=a f(F)=a
EUF={l1,2} EnF={}
f(EUF) = {a} f(ENF) ={}
f(E)U f(F) f(E) N f(F)
au a = {a} ana
s1 1s correct. so s» 1s false.
GATE : 2015
The number of onto functions (surjective functions) from set x = {1, 2, 3,4} tosety =
{a, b, c} 1s ?
Ans. 36
GATE : 2015

Let X and Y denote the sets containing 2 and 20 distinct objects respectively and F

denote the set of all possible functions defined from X and Y.

Let f be randomly chosen from F. The probability of F being one-one is ?
X Y

Total number of functions = 20> = 400
Number of one-one function = mp, = 20p, = 380

2 : . 380
20 Required probability = ———=0.95
400
Relations
Relation on set A
R<AXA cardinality of |A X A| =n?
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A=1{1,2,3,4} A=1{1,2,3,4}
AxXA={1,1)2,2)3,3) 4 4 (1,2) (1,3 (1,492, 1H)(2,3)2,49 3, 1)@3,2)
(3,4)(4,1)(4,2) (4,3)}
— universal relation.
¢ = { } — empty relation on A
‘="or A ={(1,1)(2,2)(3,3) 4, 4)}
< ={L2)(13)HL,D2, 32 DG, D}
>={2,D)GE,1)(3,2)4,1)(4,2) 4, 3)}
<=4 1D(1,2)(1,3)(1,4)(2,2)(2,3) (2,4 3,3) 3,49 4,4}
=={(L1D21)2,2)3,1)(3,2)(3,3)4,3) 4, D}
‘f\’ ={1, 1D 1,2)(1,3)(1,4) (2,2) (2,4) (3,3) (4, 4)}

divides

A Relation R on A is

1. Reflexive
If (a,a) e R MagA
Yes —> A XA, A, <, >, divides No — ¢, <, >
R; = {(1, 1) (2,2) (3, 3)} Not reflexive

2. Irreflexive
A relation R on set A i1s called Irreflexive
If (a, a) and R MagA R [IR
Yes — ¢, <, > < | X
No > AXA A < >0\ IRIR

Vv | X

R ={1LD22G3} TR
Not Irreflexive ~

3. Symmetric
A Relation R on set A is called symmetric
If (a, b) e R then (b, a) e R where (a, b) € A
Yes - A XA, d, A No — <, >, <, >\
Ry ={(1,2) (2, 1) (1, 3)} Not symmetric

Asymetric

If (a, b) e Rthen (b, a) ¢ R where a, band A
Yes — ¢, <, > No—->AxXA A< >, 1

Ry ={(1,2)(2,1)(1,3)} Not Asymmetric

‘¢’ empty relation is both symmetric and asymmetric.

Antisymmetric
If (a,b)e Rand (b,a) e R then a=b where a, b e A
Yes — ¢, A, <,>, <>\ No —>A XA
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NOTE: I allow only Reflexive pairs but don’t allow symmetric pair.

Ry ={(1,3)} Ry ={(1, 1) (1, 3)}
Asymmetric Antisymmetric
Antisymmetric Not Asymmetric

4. Transitive
If(a,b)eRand (b,c)e R then(a,c)eR wherea,b,cecA
YCS _)AX Aa (I)a Aa <9 >3 S) 23 \
Ry ={(1,3)(3, 1)} Not transitive
Ry ={(1,3)3, 1), 1)} Not transitive
(1,3) G, 1 G, D (1,3)

(1, 1) 3,3)

Ry ={(1,3)3, 1) (1, 1)(3,3)

Let R, R1, Ry be Relations on A

R, R1, Ry R-1 RiNR» R1U R2
1. Reflexive Reflexive N
2. Irreflexive 4 v N4
3. Symmetric N4 N4 N4
4. Antisymmetric N4 X
5. Asymmetric v v X
6. Transitive N4 v X
A={1,2,3}
R1 ={(L, 2)} Ry ={(2, D}
T T
Asymmetric Asymmetric

RiUu Ry ={(1,2)(2, 1)} Not Asymmetric

Ex:
Ry ={(1,2)} Antisymmetric Ry ={(2,1)} Antisymmetric
RiURy ={(1,2)(2,1)} Not Antisymmetric

NOTE:

l. Union of Asymmetric relation need not be Asymmetric.

2. Union of Antisymmetric relation need not be Antisymmetric.

3. Union of transitive relation need not be transitive.
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Closure
1. Reflexive closure of R (Ry) :-
Smallest reflexive relation containing R
Ex:  A={1,2,3} R={(1,1)(2,2)(2,3)} A={(1,1)(2,2) 3, 3)}
Rr :RUA
(LD (2,223} {(LD2.2)G3)
={(1, 1 (2,2)(3,3) (2, 3)}
T
Reflexive
2. Symmetric Closure (Rs )
Rs =RUR-!
3. Transitive Closure:
A=1{1,2,3,4} R={(1,2)(2,1)(3,4) 4, 3)}
Warshall’s Algorithm
1 2 3 4 1 2 3 4 .
1 O 1 O 0 1 0 1 0/( .?MOdlﬁed as ¢ 1 ’
MO 21 0 0 0 2 (1] ©O—0 0
R 3]0 0 0 1 3—fo+—0—0
4 (0 O 1 0 40106 )
Modified as ‘1> 1 E 3 4.
1 (0 1 0 0
1 2t [1] 0 0]
Mk = 3 lgTor—%
4 .G 1 (i.
1 2 3 4
- —o-
2 ), L\ O
M — L U V)
R s o4 o] 1]
410 0 |1 @AModiﬁed as ‘1’
1 2 3 4
1- o—TFof
M3 _ 2 V) G_;Modiﬁedas‘l’
R=3 10 o0 O
400 0 1 |1




1 2 3 4
I1fr 1 0 O
4 211 1 0 O
M= 300 0 1 1
400 0 1 1
= {1, 1DA,2)(2,1)(2,2) 3,3)(3,4) (4,3) (4, 4)}
Mr Di-graph
Reflexive
o o &4 4
0O 1 O
0 0 1 (ﬁ
All diagonal entries must be one. Loop at every vertex.
Irreflexive
All diagonal entries must be zero. ‘No loop’
Symmetric
Mg = Mg! @‘@ loop allowed
Asymmetric No loops
aji =0andajj =1thenaji =0
(1#))
={1,2,3}; R={(1,2) (1, 3)} No edge from b to a.
0 1
=lo] 0o o
0 0 O
Antisymmetric
ajj = 1 then aji =0
1#)) No edge from b to a

Equivalence Relation

A relation R on set A is said to be equivalence relation if the relation R i1s reflexive,
symmetric and transitive.

Ex:

(1). A={1,2,3,4} R={(1,1)(2,2)(3,3)(4,4)}
1. Reflexive 2. Symmetric 3. Transitive
R is an Equivalence relation.
It is smallest equivalence relation.
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2). A={1,2,3,4}
(1L, 1D (1,2)2,1)(2,2)(3,3) 3,4 (4, 3) (D]

1. Reflexive 2. Symmetric 3. Transitive

Equivalence Class:-
Let R be an equivalence relation on A and let a € A. The equivalence class of a,
denoted by (a) or a is defined as

[a]={beA|(a,b) e R}

Ex:
A={1,2,3,4} R1={(1,1)(2,2)(3,3) 4, 4)}
[1]={1}; [2] = {2}; [3]=1{3}; [4] = {4}
Ry ={(1,1)(1,2)(2,1)(2,2)(3,3)(3,4)(4,3) (4,4)
[1]= {1, 2}; [2] = {1, 2}; [3]= {3, 4}; [4] = {3, 4}
Properties

(I) aea] because of reflexive property.
(2) bela]thenacg]b]

(3) Dbe[a]then [a] =[b]

(4) [a]=[b]or[a]~ [b]=¢

Partition of a set:

A#o P£bd={A1,A2 A3, ccoreee.n. Ant Ai #0¢
is called partition of A if
() A=AIUAU A3 ............ An

)  AiNAj =¢ (#))

Ex: A={1,2,3,4} P={(1,2)(3,4)}
() {1,2}u{3,4 = {1,2,3,4}
2 L,2in 3.4 =0

2-Part Partition
Q.  Which of the following is not a valid partition?

(@ {1}, {2}, {3}} (b) {1}, {2}, {3}, {4}}

© {{L,2,3,4}} (d) {1, 2}, {3}, {3,4}}
(a) — 3 part partition (b) — 4 part partition  (c) — 1 part partition
(d) Not a valid partition
Ex: A={1,2,3,4} R={(1, 1)(2, 2)3, 3)(4, 4)}

[1]1={1}; [2] = {2}; [3] ={3}; [4] = {4}

P= {15, {25, {35, 143}
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Ex: A=1{1,2,3,4}
(1, 1D(A,2)(2,1)(2,2)(3,3) (3,4) (4,3) (4, 4);
[1]1= 11,2} =[2] [3]1= 13,4} =[4]
P={{1, 2}, {3,4}} — 2 part partition

Given an equivalence relation ‘R’ on set A, we can find a unique partition on A

— the part of partition are distinct equivalence classes —— (1)
Ex: A=1{1,2 3,4} P={{1}, {2}, {3}, {4}}
{1} = {1, D} 2} = {2, 2)} 3} =G, 3)}

{4} - {4, 4)}
Equivalence relation: {(1, 1) (2, 2) (3, 3) (4, 4)}

Ex: A=1{1,2,3,4} P={{1,3}, {2,4}}
1,37 = (1, D(1,3) 3, 1) (3, 3)3
2,4} >(2,2)(2,4) (4,2) (4,2)
ER={(1,1)(1,3)(3,1)(3,3)(2,2)(2,4) (4, 4) (4,2)}

Given a partition P on set A we can find a unique equivalence relation on A — (2)
from (1) & (2)

The exist a one to one correspondance between number of partition on A and

number of equivalence relation on A.

If|A| =n then

Number of equivalence relation on A = Number of partitions on A = Bell number (Bn)

A= {1} A={l1,2}
E-R={(1, 1)} ER={(I,1)(2,2)}
[1]= {1} E-R={(1,1(1,2)(2,1)(2,2)
1 Partitions = {{1}, {2}}
1- Partition ———
2 Partition
Let |[A|=n
1. Total number of relations = 21"
2. Total number of reflexive relations = 2@~ 1)
3. Total number of irreflexive relations = 22~ 1)
n(n+1)
-+ Total number of symmetric relations =2 2
n(n-1)
5. Total number of asymmetric relations =3 2
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n(n-1)
6. Total number of antisymmetric relations = 2™- 3 2
7. Transitive = No closed formula
l. Total number of relations:- A= {1, 2}
AxA={1,1)(1,2)(2,1)(2,2)}
(1,1 [ (1,2) | (2,1) |(2,2)
¥ ! ! ¥
2 2 2 2 = 24 =16 Relations
Selected
Not selected
Number of relations: - |A|=n |A X A| =n?
1 2 3 n n?
(I, D]12,2)|3,3)|---| (m,n)| (1,2) | 2, D)|---] -
l i y l I} i l
- =

n? times
2
Number of relations = 2™ = number of subsets of A x A

2. Number of reflexive relations:-

(17 1) (27 2) ___(na n) (192) -
IR g
1 1 1

\/ 2 n®-n

these must be present

l

(D x 2™ =™ M= pn(- D)

A={1,2}
Number of reflexive relations = {(1, 1) (2, 2)}
={(1, 1D (2,2)(1,2); = {1, 1D (2,2) @2, 1);

={1,1)(2,2)(1,2) (2, 1)
22(2-1):4

3. Number of Irreflexible relations
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these must be absent

(1)1 x 2= = pnin -1

1 2 n n?
(L, 2,2) | --- (n,n) | (1,2) -
! ! I l

Number of symmetric relations
Ri=¢; Ro={(l, D}
Rs=1{(1,2) (2, 1)(2,2)};
R7=4{(1,2) 2, D};

Total = 8

n(n+1)

2

2x3
=92 2

2 2?=38

5.

A={l,2}
R1={(1,2)} Ry ={(2, D} Ry ={(1,2)(2, 1)}
=¢
22(2-1)_ 4
4. Number of symmetric relations
1 2 n n?
(17 1) (29 2) -t (na n) (192) (27 1) (1a 3) (33 1) -
¥ ¥ ! N ! ¥
2 2 2 % X 2 2
v X
X v
N—
!
\/
n
2 n*-n
2 2
n+0*-n 2n+n?-n n’+n n(n+1)
2 2 =2 2 = 2 =2 2
A={1,2}

Number of asymmetric relation : -

Ry ={(2,2)}; R4={(1,2)(2, D, D}
Re =1{(1,2) (2, 1) (1, 1) (2, 2)};
Rg ={(1, 1) (2, 2)}
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1 2 n n?
(17 1) (29 2) -'-(Il, Il) (192) (29 1) T
I I i “
1 1 1
these must be absent
3
n’-n \/
n 2
(1 >33 gl
n--n
=3 2 2
A=1{l1,2} 4
Ry ={(1,2)} 372 =3=3
Ry ={(2, 1)}
R3 =¢
6.  Number of antisymmetric relation
n2
(17 1) (27 2) ___(na Il) (19 2) (29 1)
! l l NN
2 2 2
21’1
n?-n \2/
=20 x3 2 3 - én

Q. Consider a set containing n elements then how many relations are
symmetric as well as reflexive.

Solution: n(n - 1)
Number of symmetric relations 2" x2 2

Number of symmetric and reflexive
nn-1) n(n-1)
(Hx2 2 =2 2
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Bell Number:
|Al=n
Number of partitions on A = Number of equivalence relations on A = By

n

Bl’l - Z S(n,r)
r=1
s(n, r) is defined as s(n,1)=s(n,n)=1
s(n,r)=s(n-1,r-1)+rs(n-1,r)

B, = le s(l,r) =s(1,1) =1

=1

B, = i s(2,1) =s2,1)+s(2,2) =1+1=2

=1

3

B;= > s@3,r) =s@,1)+s(3,2)+s(3,3) =1+3+1=5
r=1

$s(3,2)=s3-1,2-1)+2s3-1,2) =s(2,1)+2s(2,2) =1+2x1
=3

B4 =15

Ex: A=1{1,2,3}

Number of partition on A = B3

(a) 1 (b) 2 (c) 5 (d) 15
Answer. (c)

Partial Ordered Relation (POR)
(I) Reflexive (2) Antisymmetric (3) Transitive

QIl. ‘<’ Relationon 2 is
(a) Reflexive (b) Antisymmetric (c¢) Transitive
(d) Partial order relation

Reflexive: a<a
Antisymmetric: a<b&&b<a = a=b
Transitive: a<b&&b<c = a<c
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Partial Order Relation
Ex: ‘\’Relation on 2 1s
(a) onlyreflexive (b) only antisymmetric

(d) POR
Reflexive o
o not defined so not reflexive.
Antisymmetric
-1 1
_1 - -1 _1 = -1

but 1 #-1 not antisymmetric
Transitive
LAy 2 Int transiti
b ¢ = - Integer ransitive
So, option (¢) is true.
— set of positive integer

Q. ‘I’relationon 27 is

(d) POR
Yes, it is POR.

Q. ‘C’onP(s)
(d) POR
Reflexive: Every set is subset of itself.

ACA

A 1s set and R 1s relation on A

R R

Reflexive Reflexive
Antisymmetric | Antisymmetric
Transitive Transitive
POR POR

(c)

(a) onlyreflexive (b) only antisymmetric

(a) onlyreflexive (b) only antisymmetric

only transitive

(c) only transitive

(c) only transitive

Antisymmetric: A CB but B € A so it is antisymmetric.
Transitive: ACB && BCCsoACC. Itis transitive. So itis POR.
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Comparable:-
Let <A, %> be a poset
Two element a, b of set A are said to be comparable if either

adb or bl%a
T T
related to related to
or or
comparable comparable

Ex: A={l1,2,3,4}, <
2, 3 are comparable 2<3
(4, 1) are comparable 4 £ 1butl <4
Every pair of element is comparable here.
Toset.

Ex: A=1{l1,2,3,4},
1/2 — comparable; 2/4 — comparable;

2,3 — comparable X  because % X
=%
Poset.

Total Ordered Set (TOSET):-
A poset <P, & > in which every pair of element are comparable is called Toset.
A=1{1,2,3,4,5}, <

1<2<3<4<5

totally\cfomparable

Hasse Diagram:-
Ex: A=1{l1,2,3,4}, <
4

— TN T W

Hasse diagram of Toset is like a chain.
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Ex: A={1,2,3,4},°
4

|
2 3

|~
1
A=1{1,2,3,4,5,6,7,8,9, 10}, °\’ — divide relation.

8

|
10 4 6 9

Ex: A=1{2,3,6,12, 24,36}, °\’ (divide)
Number of lines in H.D.

24 36
N
12
| Number of lines = 5
6
7N\
2 3
Dy = set of all positive divisor, m, n and 27 — <Dy, 1> 1is a poset

(a) a/a Reflexive
(b) a/b and b/a then a = b (Antisymmetric)
(¢) a/b, b/c then a/c (Transitive)

<Dg, 1> construct Hasse diagram.
Dgs ={1,2,4, 8}

—_— N Bk~

Ex: <T, @> T is having 6 elements. |T| = 6, number of lines in H.D.
(@ 3 (b) 4 () 5 (d 6
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NOTE: Hasse diagram of a toset is like a chain.

a
|
b
|
c Number of elements = n
| then number of lines =n - 1
d
|
e
|
f
Q. The Hasse diagram for following set with division <P, 1> poset.

A=1{2,3,5,7}, ‘" (divides)
and number of lines = ?

Solution:
(o]

2 3 5 7
Number of lines = 0

Ex: <D3ze, 1>
Number of positive division of 36 = {1, 2, 3,4,6,9, 12, 18, 36}
36

4/12\6/18\9
A
L

Ex: A={l1,2} <P(s), € > poset
P(s) = {¢, {1}, {2}, {1, 2}}
{1,2}
/\
{1} {2}

N
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Ex: A={l,2,3} <P(A),C >
try at home
{1, 2,3}

I

{1,2} {2,3} {1,3}

>

iy 2y {3

Special Elements
Maximal and minimal elements
An element of a poset is called minimal if it is not greater than any element of the poset.
1.e., a 1s minimal if there 1s no element b € s such that b o a
T

related to
By default maximal and minimal elements are top and bottom elements respectively in
the Hasse diagram.

C
maximal = d b d maximal = ¢
b ¢ minimal = a minimal = a, d
a — bottom a

(3)  {2,3,5,7}, V (divide)

(o] o (o] o]
2 3 5 7
Maximal elements = 4; Minimal elements = 4

—  Every poset has a maximal and minimal elements — false

Ex: <2, >isaposet

Maximal — No maximal; Minimal — No minimal
—  Every finite poset has atleast one maximal and minimal element — True
—  Maximal and minimal elements, if exist, are unique — false

Greatest and Least Element:-
—  If maximal is unique (only one) then that is greatest.
—  If minimal is unique (only one) then that is least.
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(D 18 12
Maximal — 12, 18 Greatest — none
6 Minimal — 2, 3 Least — none
2 3
d
(2)
Greatest =d
b C Least = a
a
C
(3)
b d Greatest = ¢
Least = none — minimal = a, d
a

4) <Dj3gp, 1>
<1,2,3,5,6, 10, 15, 30> 30

6 15 10 Least =1
|>{><| Qreatest = 30

2 3 5
1/
NOTE:  [Dy|

Least=1; GQGreatest=n
NOTE: The greatest and least element, if exist then unique — true.
Upper bound and Lower bound

Ex: A=1{1,2,3,4,5,6,7,8,9,10}, ‘<
<A, & > is a poset. P={3,4,5} C A
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(D

least upper bound

T

Upper bound of P=05), 6,7, 8, 9, 10
Lower bound of P=1, 2,3)

\

greatest lower bound

Ex: <P, & > poset
{a, b} € P — two element subset
Lub{a,b} aub ajoinb
glb{a,b} anb ameetb
Ex: <{1,2,3,4,5},<>poset \/L ub
Lub{l,2}=2=1U2 3U4 =4 1Uu4=4
gtlb{l,2}=1=1 2 3N4=3 I1N4=1
T
glhb
4-LuB
|
3
|
2
|
l1-glB
Lattice:-
A poset <P, &> in which every pair of element {a, b} hasaLub & gl b is
called Lattice.

Finding Lub & g £ b of the non-comparable elements:-

C
A Lub(a,b)=ajoinb=aub=c
a b

2 @ b
glb(a,b)=ameetb=anb=d

C
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()

(6)

Q.

¢ 4) b
d c a e
aub = ¢ anb=f
T
a b £
e
e —ub
d aub=c
T
Lub
a b

(@)

o

meet

b
anb=d-gtlb
f- £ b (lower bound)
d

f

Which of the following an lattice.

NOTE:

2) do
cO
boO
ao

(1) f e
d e U f = does not exist; a Nb = does not exist
c
a b

No open structure can be a lattice. — not a lattice.

NOTE: Every toset is a lattice.
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3. d
b C bUC:d
bnc=a

a

Lattice

(4) 5
b d buc=e; bnc=a;, cud=e;
cnd=a; bud=e; bnd=a

a

Diamond lattice

(5) ¢
¢ d cud=e
cnd=b,a
b a

If more than one L u b & g £ b exist then they must be comparable for being
a lattice.
So it is a lattice.

If an edge is exist between two different elements then they must be comparable.

f
(6) f (7)
e d e d buc=e; bnc=a;
due=f;, dne=c;
c buyd=e; bnd=a
b a b C
lattice
a
lattice
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d U e = does not exist.

(8) f
buc=d,e
© d Not comparable
dne=b,c
Not comparable
b c
So not a latice.
a
9) elx Id
b C

not a lattice

(10) © d (11)
g e fug=h;
fng=b;
b Y cuUd=e;
cnd=a
b d
a

not a lattice a
lattice

Let <L, % > be a lattice then the following properties hold.
(1) Idempotent

aUa=a anNa=a
(2) Commutative

aUb=buUa aNb=bnNa
(3) Associative

au(anb)=a an(aub)=a

Q.  Which of the following properties are not satisfied by lattice?
(a) Commutative (b)  Distributive (c)  Absorption
(d) Idempotent

Answer. (b)
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Diamond lattice
aU(bnc)=(aub)n(auc)

au 0=1n1
azl
not holds
In any lattice the following distributing inequalities holds:-
(A) au(bnc)2(aub)n(auc) (B) (anb)u(anc)a an(buc)

—  Alattice <L, & > in which distributive properties are satisfied is called
Distributive lattice.

Ex: Distributive lattice

> | @

Sublattice:-
<L, &> is a lattice; SCL; <§, & > is a lattice;
then it is called Sublattice.

Two important non-distributive lattice:-

¢ 0

Diamond
Pentagon

Result: A lattice <L, & > is non-distributive if it contains sub-lattice isomorphic to
diamond or pentagon.

Bounded Lattice
A lattice <L, & > in which greatest and least element exist.
—  Every finite lattice i1s bounded.
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(1)
(2)

(1)

(2)

3)

Ex:

Ex:

<2, €> is a lattice. But not bounded.
Greatest = 1; Least=0

Complement of a element : -
Let <L, %> be bounded lattice
An element a € L is complement of b € L.

if au b =1 — greatest; anb=0 — least
If a is complement of b then b is complement of a.
‘1> & ‘0’ an complement of each other.

oul=1; 0N1=0

Find all complements.

0
Element Complement
1 10
2 S 10 1
2 5
? 5 2

2U 5 =10 = greatest; 2N5=1=Ileast

1
Element Complement
0 1
b ¢ 1 0
a c
b c
C a,b
a
0 auc=1; anc=0
1
Element Complement
d c 0 1
1 0
a c
a b ¢ a
bU d =d — not greatest
0 b nd=Db — not least

b, d don’t have complement.
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—  Complement may or may not exist.

—  Complement, if exist, are not necessary unique.

Result:

—  In a distributive lattice, complement if exist, are unique.

— A bounded lattice in which complement of every element exist is called
complemented lattice.

—  Bounded, distributive and complemented lattice is Boolean algebra.
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