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WALK
An alternating sequence of vertices and edges, that begin and ends with a vertex.
Ex :  1b2e5h4

Trail:  A trail is a walk without repeated edges.
Ex:  1b2f3i4h5e2g4

Path:  A path is a walk without repeated vertices.
 1b2f3i4h5

Closed walk:  A walk if the first and last vertices are same.
     1b2e5d6a1

Open walk:  A walk if the first and last vertices are different.

Circuit or Cycle:  A circuit is a path which ends at the vertices it begins.
            1b2e5d6a1

NOTE:  By default walk is open walk.

Euler Graph:
A graph containing all the edges and no edges is repeated and having Closed walk 
is called Euler graph.

Result:  A connected graph is Euler graph if degree of every vertex is even.

1 2 3

456

a

d

b

c e
g

f

i

h

Euler graph

Euler graph

_ _

_ _
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Universal graph (Not Euler graph)

An open walk containing all the edges of the graph and no esge is repeated called
Universal graph.

Result:  A connected graph is called Universal Graph if there are two exactly two
vertices of off degree.

-  If H-cycle exist then H-path should be preset.
- If G is a connected Homiltonial graph with n vertices.
 1. No. of vertices in Hamiltonian cycle =  n
 2. No. of edges in Hamiltonian cycle  =  n
 3. No. of vertices in Hamiltonian path = n
 4. No. of edges in Hamiltonian path = n - 1
 5. The degree of any vertex in H-cycle = 2

Simple Graph

2

2

3

3

Universal Graph

→ 3 cycle

→ 4 cycle
→ 5 cycle
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Simple cycle graph with n vertices
  V e d(v)
 C n n   2

Hamiltonian Graph
A circuit containing all the vertices and no vertex is repeated except starting and
ending.

H-Path (Hamiltonian Path) :  A path containing all the vertices and no vertices is
repeated.

Cycles of length 3, 5, 7, 9, _________ odd cycles
Cycles of length 4, 6, 8, 10, ________ even cycles

Planner Graph

n

Graph Hamiltonian 
      cycle

⇒

H-Path

⇒ ⇒

⇒

H-path

Cross over
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⇒

Planar representation of a graph:  
Drawing a graph in a plane without crossing.
A graph having planar representation in a plane is called Planar graph.

The planar representation of planar graph divided entire plane lato regions or
faces.

Degree of a region
The number of edges in the boundary of a region is called its degree.
       Region      Degree
  1  3
  2  3
  3  3
  4  3

IV    region → Exterior region or unbounded region
Other region are Interior or bounded region.

Euler Formula
In any connected planar graph G with
 V Vertices
 E Edges
 r Regions
We have  v - e + r = 2

1. The sum of degrees of regions = twice the number edges.
  ∑ deg (r  ) = 2|E|i

th

1 3

2 4

⇒

1 3

2 4

II
I

Planar Graph

v - e + r = 2
v = 4
e = 4
4 - 4 + 2 = 2
  2 = 2

IV

III
II

I
v = 4
E = 6
r = 4
4 - 6 + 4 = 2
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2. Simple planar graph, minimum degree of region = 3
  ∑ deg (r) = 2e
 3 + 3 + 3 +3 ------- + 3 ≤ 2e
  3r ≤ 2e

3. 2 = v - e + r

 2 ≤ v - e +  

 2 ≤ v - 

 2 ≤ 

 6 ≤ 3v - e  e ≤ 3v - 6

In a simple connected planar graph with minimum degree of region = 3 → (assume
in problem)
For planarity check v - e + r = 2
    3r ≤ 2e
    e ≤ 3v - 6 

Q. k    is planar or not?

  k

1. v - e + r = 2
 5 - 10 + r = 2
     r = 7

2. 3r ≤ 2e 
 3r ≤ 2 × 10
 21 ≤ 21 → Not Possible

3. e ≤ 3v - 6
 10 ≤ 3 × 5 - 6
 10 ≤ 9  → Not possible

5

5

e
3
__

2e
 3

___

3v - e
    3

______

n(n - 1)
     2
______

v = 5

E=10 (     )
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So k    is non-planar graph.

NOTE:
In a simple connected planar graph with minimum degree of region = k → any
then results
 v - e + r = 2
 kr ≤ 2e

 e  ≤

NOTE:  In any Bi-particle graph minimum degree of region = 4

Q. k        is planar or not?
 k      contain
 v = 6; E = 9

1. v - e + r = 2
 6 - 9 + r = 2  ⇒ r = 5

2. Minimum degree of region = 4
 4r ≤ 2e
 4 × 5 ≤ 2 × 9 ⇒ 20 ≤ 18 → Not possible

3. e ≤ 

 e ≤   ⇒ e ≤

 9 ≤ 8  → Not possible

So k      is non planar graph.3,3

3,3
3,3

5

k(v - 2)
 (k - 2)
_______

⇒ Minimum degree of region = 4

k(v - 2)
 (k - 2)
______

4(6 - 2)
 (4 - 2)
______ 4 × 4

   2
_____
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3,3

NOTE:
k    and k both are known as Kuratowski’s graph.
k   and k
1. Both are non-planar.
2. Both are regular
3. Both gives a planar graph if an edge or a vertex is removed.
4. k    is a non-planar graph with smallest number of vertices.
5. k      is a non-planar graph with smallest number of edges.

Kuratowski’s Result
A graph G is planar if it does not contain any graph Homeomarphic to k    or k     .

Matching:-
The set of non-adjacent edges.

    M    = {a}
    M    = {a, c}
    M    = {b, d}

Matching number → (α’(G))
Maximum no. of non-adjacent is called Matching number.

     α’(G)  = 2

      {f, g, h}
      {a, i, h}
      α’(G) = 3

Edge Covering
The set of edges which can cover all the vertices of positive degree.

3,3
3,3

3,3

5
5

5

2
3

1

5

1 2

4 3
d b

c

a

1 2

4 3
d b

c

a

1

2

4

5

6

73

d

b

c

a

e
h

g

f

i
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1 2

4 3
d b

c

a

1 2

4 3
d b

c

a

2

2

3

3

1

1

11

1 2

5

3
4

e
b

d

a

c

1 2

5

3
4

6

e
b

d

a

c

 E   = {a, b, c, d}  E    = {e, b, c} + 1
 E   = {a, c}
 E   = {b, d}

Edge Covering Number (β’(G)):-
Minimum number of edges which can cover all the vertices of positive degree + number
of isolated vertices (If any)

      E   = {a, i, h, e}
      β’(G)  = 4

      E  = {e, b, c} + 1
      β’(G) = 4

NOTE :
In a simple graph with 20 vertices the matching number = 8, then edge covering no.
(a) 10  (b) 12   (c) 14   (d) 20
In a simple graph with n vertices matching no. (α’(G) + edge covering number (β’(G)) 
= n
 8 + n = 20  → n = 12

Independent set → Set of Non-adjacent vertices

    V   = {1}
    V   = {1, 3}
    V   = {2, 4}

1

2

4

5

6

73

d

b

c

a

e
h

g

f

i

j
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m,n

n

n

n

2
3

1

Independance number (α(G)) :-
The maximum no. of non-adjacent vertices.

    α(G) = 2

Vertex Covering
The set of vertices which can cover all the edges.

    V   = {1, 4}
    V   = {2, 3}
    V   = {1, 2, 3, 4}

Vertex Covering Number → (β(G))
Minimum number of vertices which can cover all the edges.

    β(G)  = 2

A simple graph with n vertices  α(G) + β(G) = n

Graph Coloring Problem
Coloring the vertices of the graph such that adjacent vertices have different color (or)
no. of two adjacent vertices having same color.

Chromatic Number (χ(G)) :-
Minimum number of colors required to color the graph.
 Graph (G)   χ(G)
 N    (Null graph)  1
 C    2 Even cycle
 (n ≥ 3)   3 Odd cycle
 K    (Complete graph) n
 K      (Bipartite graph) 2

1 2

4 3
d b

c

a

1 2

3 4

1 2

3 4

Blue

Blue

Red

Red

{
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The following statements are equivalent
(1) G is bi-partite  (2) G is 2-colorable (χ(G) = 2)
(3) Every cycle in G is even cycle

Ex:
GATE : 2004

Solution

      χ(G)  = 2

Ex: 
GATE : 2001

Solution

      χ(G)  = 3

GATE : 2002

       (a) 3  (b) 4
       (c) 5  (d) 6

1C

1C

1C

1C

2C

2C

2C

2C

1C

2C 3C

2C

3C

1C

2C
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1C

4C 3C

3C 4C

1C

2C 2C

Solution
 

      Answer = B

TREE
A tree is a connected acyclic graph i.e. connected and having number cycle.
- The following statements are equivalent
 1. Connected and acyclic graph.
 2. Connected and has (n - 1) edges.
 3. Acyclic and has (n - 1) edges.
 4. There is exactly one path between any two vertices.
 5. Minimally connected.

EX: T is a tree with:  4 vertices of degree 2;   2 vertices of degree 3; and remaining 
vertices of degree 1.  How many vertices of degree 1 are there?

Solution:  4 vertices of degree 2 = 4 × 2 = 8
   2 vertices of degree 3 = 2 × 3 = 6
   x vertices of degree 1 = x × 1 = x
         6 + x           x + 14

Number of edges = (6 + x) - 1 = 5 + x
Sum of degree = 2e
 14 + x = 2 (5 + x)
x = 4 - Number of vertices of degree 1

Q. T is a tree with:  6 vertices of degree 2;  3 vertices of degree 3; and remaining
 vertices of degree 1
 (1) How many vertices of degree 1 are there?
 (2) How many vertices are there?

Solution: 5 Vertices

NOTE: Every tree is Bi-partite (n ≥ 2)
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Spanning Tree

The spanning tree of connected simple graph is a spanning subgraph which is a tree.

Construction of Spanning Tree
DFS (Depth First Search)
At a given opportunity we go to next higher level and back track, if needed.

Q. Which of the following sequence of vertices are not traversed by DFS?
 (A) 1 2 3 4 5  (B) 1 5 4 2 3
 (C) 1 2 4 5 3  (D) 1 2 5 4 3

 (A)      (B)

 (C)      (D)

 We avoid Un-necessary backtracking in DFS

BFS (Breadth First Search)
At a given opportunity complete the level and then move to next level.

Q.    Which are not possible using BFS?
    (A) 1 2 5 3 4
    (B) 1 2 5 4 3
    (C) 1 5 2 4 3
    (D) 1 2 4 5 3

1 4

2 3

1 4

2 3

⇒

1 2

5

3
4

c b

d

a

e

f

1 2

5

3
4

1 2

5

3
4

1 2

5

3
4

1 2

5

3
4

1 2

>

>

> Unnecessary back tracking
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ij

ij

G

G

G

G
G

G
G

G

G

G n×n

th
th

th

(A) 
 Delete ‘1’ and explore its children

 Delete ‘2’ and explore its children

 Delete ‘5’ and explore its children

 Delete ‘3’ and explore its children

ADJACENCY GRAPH
Let G = (V, E) be a simple graph with n vertices
the adjacency matric of G A     = [m    ]

m     =

i, j     entry in A    gives the number of paths of length ‘l’ from vertex i to vertex ‘j’.
A ²  = A · A

A ²  =

A ² =

A ² → the i, j    entry in A ² gives the number of paths of length 2 between i and j.
A ³ → the i, j    entry in A ³ gives the number of paths of length 3 between i and j.

1 — 2 — 1     1 — 2 — 3
1 — 3 — 1       3 path   1 — 4 — 3
1 — 4 — 1 

1

2  5

5  3  4

3  4

0 If edge {i, j}    E
1 If edge {i, j}    E{

1 2

4 3

A    =

       1     2     3     4
  1   0     1     1     1
  2   1     0     1     0
  3   1     1     0     0
  4   1     0     1     0

[       ]

       1     2     3     4
  1   3     1     2     1
  2   1     2     1     2
  3   2     1     3     1
  4   1     2     1     2

[       ]

       
       0     1     1     1
       1     0     1     0
       1     1     0     0
       1     0     1     0

[       ]
       
       0     1     1     1
       1     0     1     0
       1     1     0     0
       1     0     1     0

[       ]

} } 2 path
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3

4

Graph Theory Problems
GATE : 2016
Q. The minimum number of colours that is sufficient to vertex-colour any planar
 graph is _______?

Solution:
k    →
     Every planar graph can color with 4 colors that means 
     four colours are sufficient to properly color any planar
     graph.

GATE : 2003
Let G be an arbitrary graph with n nodes and k components.  If a vertex is removed from
G, the number of component in the resultant graph must necessarily lie between 
(a) k and n (b) k - 1 and k + 1 (c)   k - 1 and n - 1     (d)     k + 1 and n - k

 [k - 1, n - 1]

Q. Consider an undirected random graph of eight vertices.  The probability that there 
 is an edge between a pair of vertices is ½.  What is the expected number of un-
 ordered cycles of length three?
  = Σ x p (x)
 
  = 8c   ×      ×      ×        = 7

Red Blue

Black Yellow

⇒

k = 1 k = 8

k = 4
k = 3

1
2

__ 1
2

__ 1
2

__
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Q. Consider an undirected graph G where self loops are not allowed.  The vertex set
 of G is {(i, j) : 1 ≤ i ≤ 12, 1 ≤ j ≤ 12}.
 There is an edge between (a, b) and (c, d)
 if |a  -c| ≤ 1 and |b - 2| ≤ 1
 The number of edges in this graph is ____?

 Solution

      4 × 3 = 2E
      E = 6

 4  (1, 1)  ——  (1, 2)  ——  (1, 3)   4
 

 4  (2, 1)  ——  (2, 2)  ——  (2, 3)   4

 4 × 3  + 2 × 5 = 2E  ⇒ 12 + 10 = 2 E ⇒ E = 11

 4  (1, 1)  ——  (1, 2)  ——  (1, 3)  ——  (1, 4)  4
 

 5  (2, 1)  ——  (2, 2)  ——  (2, 3)  ——  (2, 4)  5

 4  (3, 1)  ——  (3, 2)  ——  (3, 3)  ——  (3, 4)  4

 4 × 3 + 6 × 5 + 2 × 8  =  2E
 ⇒ 12 + 30 + 16 = 2E    ⇒ 42 + 16 = 2E  ⇒ 58 = 2E    ⇒     E = 29

Generalize this
 (1, 1)  —  (1, 2)  —  —  —  (1, 11)  —  (1, 12)
 
 (2, 1)  —  (2, 2)  —  —  —  (2, 11)  —  (2, 12) 

 (3, 1)

 
 (11, 1)  —  (11, 2)  —  —  — (11,11) — (11,12)

 (12, 1)  —  (12, 2)  —  —  —  (12,11) — (12,12)

● ●

●●

(1,1) (1,2)

(2,2)(2,1)

  —
—

  

  —
—

  

  —
—

  

  —
—

  

  —
—

    —
—

  

  —
—

  

  —
—

  

  —
—

  

  —
—

  

  —
—

  

  —
—

    —
—

  

  —
—

  

  —
—

  

  —
—

  

  —
—

  

  —
—

  

  —
—

    —
—

  

  —
—

    —
—

  

  —
—

    —
—

  

  —
—

  

  —
—

    —
—

  

5 5

5 5

— — — —

—
—

—

—
—

—
—

— — — —

— —

— ——

—

—

—
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n
n2

21
1

3
3

From above diagram
(1)  The four corner vertices have each 3 degrees which gives 4 × 3 = 12 degrees.
(2) The 40 side vertices have 5 degrees each contributing a total of 40 × 5 = 200 
 degrees.
(3) The 100 interior vertices each have 8 degrees contributing a total 100 × 8 = 800
 degrees 
 50 total degrees of the graph
 12 + 200 + 800 = 1012 degree
        1012 = 2 E
   E  =  500

Directed Graph (Di-Graph)

    G = (V, E)
    V = Vertex set {V  , V  , V   , ------, V  )
    E = Edge set {E  , E  , E  , --------, E  )

Indegree : The number of edges incident into the vertex.
Outdegree: The number of incident out of the vertex.

First theorem of the directed graph : -
In a directed graph
 Vertex         In      Out
     1  0 2
     2  1 1
     3  2 0
     4  1 1
   4 4

The sum of indegree is = the sum of outdegree = the number of edges in the graph

Strongly Connected
A directed graph is strongly connected if there is a path from a to b and from b to a where
a and b are vertices in the graph.

Strongly connected because there is a path between any two vertices in this directed graph.

Weakly Connected : -
A directed graph is weakly connected if there is a path between every two vertices in the
underlying undirected graph.

1 2

3 4

>

>

> >

c

a b

e d

>

>

> >

>

>
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c

a b

e d

>

>

> >

>

>

   
    not strongly connected
    there is no direct path from a to b in this graph.
    It is weekly connected.

FOREST:
- A forest is an undirected acyclic graph
- A forest is an undirected graph, all of whose connected components are trees.
- The graph consists of a disjoint union of trees.

GATE : 2014
If G is a forest with n vertices and k connected components, how many edges does G 
have?

(a)   (b)   (c) n - k   (d) n - k + 1

Line Graph L(G) : -
The line graph L(G) of graph H is constructed as follows:
1. For every edge in G there is a vertex in L(G).
2. Two vertices in L(G) are adjacent if their corresponding edge in G are adjacent.

Ex:

k = 2

n
k
__n

k
__

1

3

2

4

1 2

3 4
d b

c

a

a

b c
⇒

⇒ d

a

b

c→  line graph of a cycle is cycle.
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n

NOTE:
Minimum degree δ; Maximum degree ∆
    
     

    δ  = 1
    ∆  = 2

Result:  In any graph G = (V, E) with V - vertices, E - Edges.

  δ  ≤     ≤ ∆

WHEEL  (n ≥ 3)
When we add an additional vertex to the cycle (C  , n ≥ 3) and connect this new vertex
to each of the n vertices in G, by new edges.

Q. A connected planar simple graph has 20 vertices each of degree 3.  
 How many regions does a representation of this planar graph split the plane?

Solution:
 ∑ deg (V) = 2 |E|
 ⇒   20 × 3 = 2E  ⇒   E = 30
 V - E + r = 2
 ⇒   20 - 30 + r = 2 ⇒   r = 12

Diameter of Graph
The diameter of graph is the maximum distance between pair of vertices.

 

 Diameter = 3
 BC → CF → FG

1

1

2

2

2e
 V
___

3w 4w

B

C

DA E F

G
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i

i

B

C

DA E F

G

Radius of Graph
The minimum among all the maximum distance between a vertex to all other vertices.

     

      Radius = 2
       BC → CF
       BC → CE
       BC → CD
       BC → CA

GATE : 2015
Let G be a connected planar graph with 10 vertices.  If the number of edges on each face
is three, then the number of edges in G is ________?

Answer: 
 Number of vertices = 10;  d (r )  =  3
 Number of edges = ?;  (e) = ?
 V - e + r  =  2
 10 - e + r = 2 ⇒ r  =  e - 8   —— (1)
 ∑ d (r  ) = 2e
 
 3r = 2e ⇒ r =   —— (2)

 Put r value in (1)

      = e - 8  ⇒ e = 24

 Alternate:  e  ≤ 3V - 6
  e ≤ 3 × 10 - 6  ⇒ 6 ≤ 24

Perfect matching:-
It is matching with some special property and it cover all the vertices.

2e
 3

___

2e
 3

___

× ×
×

××

×

×

Perfect matching
     ↑
uncovered

Matching
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+

++ +

GATE : 2004
Q. How many perfect matching are there in a complete graph of 6 vertices?
 (a) 15  (b) 24  (c) 30  (d) 60

     Number of Perfect matching 
     = 5 × 3 × 1 = 15

The number of perfect matching in complete graph
(n - 1) (n - 3) (n - 5) (n - 7) --------  
where n is error.

Functions
A function f from set A to set B is a rule which assign every element of set A to a unique
element of B.
 F : A → B  (F maps A to B)
A B  A B  a 1
a 1  a 1  b 2
b 2  b 2  c 3
c 3  c    4

f : A → B  Function
  A = {1, 2, 3} B = {1, 2, 3, 4, 5, 6}
f(x) = 2x
  A B
  1 1
  2 2 
  3 3
   4
   5
   6

Ex:- f  :  2    → 2  (2    = set of positive integers)
 f(x) = x - 3; Is a function?
f(1) = 1 - 3 = -2 & 2
So it is not a function.

Function Not a function Not a function



            

         

 

               

                         

        

   

Page - 21

Ex:- F : 2 → 2 (2 = set of integers)
f(x) = x - 3
Yes, it is a function.

f : A → B
A → Domain of the function;  B → Co-domain of the function
y = f(x) - Image of x under f.
y = f(x), than x is called Preimage of y.
  a 1  Image of (a) = 1
  b 2  Image of (b) = 1
  c 3  Image of (c) = 2

Preimage of (1) = {a, b}  Preimage of (2) = {c}
Preimage of (3) = Not Preimage
Domain = {a, b,c}  Co-domain = {1, 2, 3, 4}  Range = {1, 2}

Range :  The range of f is the set of all images of elements of A

ONE-ONE Funcion (Injective function)
 a 1
 b 2
 c 3

If  a ≠ b     then     f(a) ≠ f(b)
If b ≠ c    then     f(b) ≠ f(c)
If f(a) = f(b) then     a = b

Q. f : R → R    (R = set of real numbers)
 f(x) = x + 3  f is one-one
 f(1) = 1 + 3 = 4; f(0) = 0 + 3 = 3; f(-1) = -1 + 3 = 2

 f(     )  =   + 3  =

 -1  2
 0  3

   
 1  4

1
2

__

1
2

__

1
2

__ 7
2

__

7
2

__

x y = f(x)

A B

>
f

One-One
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2

2

2
y

1

1
1

a 1
b
c 2

a ≠ b but   f(a) = f(b)
So not one-one

ONTO Function (Surjective Function)
 A B   A B
 a 1   a 1
 b    b 2
 c 2   c 3
      onto function   not onto

In onto every element has preimage from B to A.

Ex: f : z → z  (z = set of integers)
 f(x) = 2x + 3, then f is
(a) only one-one (b) only onto (c) both one-one and onto
(d) none
  z z

 f(1) = 2 × 1 + 3 = 5  f(2) = 2 × 2 + 3 = 7

Only one-one
y = 2x + 3  (y in terms of x)
2x + 3 = y  ⇒ 2x - y - 3  ⇒ x  =        (x in terms of y)

Put y = 2
  x  =        =        and 2. So, not onto

GATE : 2004
Q.  Consider the mapping function f    and f    as described below
 f    : R → R   defined by   f(x) = x² + x,   x and R
 f    : z → z  f(y) = z   , y and z
 R : set of real numbers; z : set of integers
 then what about f   and f  ?

1

2

4
5
6
7

4
6
8

does not have any preimage. So, not onto.}

y - 3
   2
____

2 - 3
   2
____ -1

 2
__
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-1

2

2

2

2

1

1

1

1

1

1
2

__

f  :
 -1 0
  0 1 does not have any preimage

f(-1) = (-1)² + (-1) = 1 - 1 = 0;  f(0) = (0)² + 0 = 0
Not one-one
So, not onto.

f  :
f(-1)  = 2    =       and 2. It is not a function.

GATE : 2005
Q. Consider the following functions from 2 to 2, where 2 is the set of integers.
 s   :  f(x) = x³ is one to one but not onto.

 s   : f(n)  =      is onto but not one-one.

 (a) s    only (b) s    only (c) both  (d) none

Solution: s    = f(x) = x³

s

→

n
2

__

-8
-1
 2
 0
 3
 8

-2

-1

0

2

but 2 has no mapping. So not onto.

one-one
s    is true

-3
-2
-1
 0
 1 
 2
 3
 4

-3
-2
-1
 0
 1 
 2
 3
 

onto but not one-one
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-1-1

-1
-1

-1

-1

-1

-1

y - 3
   2
____

x - 3
   2
____

2x + 3
 x + 4

______ 2x + 3
 x + 4

______

3 - 4y
 y - 2
_____

y - 3
   2
____

⇒

Q. Find the inverse of the following functions
  A       B
  a 
  b

  B      A
  1      a
  2      b
  3

 A     B   B     A
 a     1   1     a
 b     2   2     b

Rule : f    exist if f is one-one and onto.

Q. 1. f(x) = x + 3  find f    (x) ?
  y = x + 3 (y in terms of x)
  x = y  - 3 (x in terms of y)
  f     (y) = y - 3
  f    (t) = t - 3
  f    (x) = x - 3
      |        |
      |        |

 2. f(x) = 2x + 3

  y = 2x + 3  ⇒  x = 

  f    (x)  =   f    (x) =

GATE : 2004
 3. f (x)  =   y  =

  xy + 4y  = 2x + 3  ⇒  xy - 2x = 3 - 4y ⇒  x  =

1
f:

onto
⇓ f

not a function

f -1f-1f

one-one and onto inverse function
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-1

-1

-1-1

-1-1

2
2

2

2

2

2
2

2

1

1

1

1

1

1

1

1

1

2x + y
    5
______

2x + y
    5
______

 x - 2y
    5
_____

1 2z   - 2z
     5

_______

x + y
   2
_____ x - y

   2
_____

21 12z  - z  - 2z
         2

___________

21z  + z
    2
______

21z  + z
    2
______

21z  + z
    2
______

21z  + z
    2
______

21z  -  z
    2
______

21z  -  z
    2
______

3 - 4y
 y - 2
_____ 3 - 4x

 x - 2
_____ f    (y)  =   ⇒ f    (x)  =

Q. GATE : 2005
 f : R × R → R × R
 f (x, y) = (x + y, x - y); f    (x, y) = ?

 Solution:
 f(x, y) = (x + y, x - y)
 (z  , z  ) = (x + y, x - y)
  x + y = z —— (I)
  x - y = z       —— (II)
  2x = z  + z

 x   =

 put x in equation in (I)

     + y = z

 y  =  z    -    =   =

 (x, y)  =         ,

 f    (z  , z  )  =        ,      ;    f    (x, y) =  ,

Ex:- f : R × R → R × R
 f (x, y) = (2x + y, x - 2y);  f   (x, y) = ?
Solution: 2x + y = z     ×   1     ———— (1)
  x - 2y  = z  ×   2     ———— (2)
  2x + y = z
  2x - 4y = 2z
         5y = z   - 2z  ⇒ y  =

put y in anyone  x   =
 
 f    (x, y)  =      ,

Result: f is a function from A to B
  |A| = n  |B| = m

Q. 1. If f is one-one
  (a) n ≤ m  (b) n ≥ m  (c) n = m  (d) none

21(x, y)  (z  , z  )

(z  , z  ) in terms of x and y

(             )

(      )
(           )

21z  + z
    2
______ 21z  -  z

    2
______(           )
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4

 n = 3 m = 3
 a 1
 b 2
 c 3
 one-one  ⇒  n = m

 Answer.  (a)

2. If f is onto then
 (a) n ≤ m  (b) n ≥ m  (c) n = m  (d) none

  n  = 3 m = 3
  a 1
  b 2
  c 3

 Answer.   (b)

3. If f is one-one and onto
 (a) n ≤ m  (b) n ≥ m  (c) n = m  (d) none

 n ≤ m →  one-one
 n ≥ m  →  onto

 one-one and onto function are also called Bijecttion.

Q. Let G be a complete undirected graph on 6 vertices.  If vertices of G are labeled,
 then the number of distinct cycles of length 4 in G is equal to
 (a) 15  (b) 45  (c) 90  (d) 360

Ans. (b)
 - From 6 vertices we can select 4 distinct vertices in 6c    = 15 ways.
 Now, with 4 vertices, we can form only 3 distinct cycles.
 So, total number of distinct cycles of length 4 = 15 × 3 = 45

 → Number of cyclic permutations of n objects  =  (n - 1)! and for n = 4,
  we get 31 = 6 ways.

1
2
3
4
5
6

a

b

c

n m
n < m

n ≤ m

n ≥ m

onto   ⇒  n = m
onto        n > m

a
b
c
d

1
2
3

n = 4      m = 3

⇒    Both  ⇒  n = m
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 But number of distinct cycles in a graph is exactly half the number of cyclic
 permutations as there is no left/right ordering in a graph. For example 
 a - b - c - d and a - d - c - b are different permutations but in a graph they form
 the same cycle.  So answer is 45.

IV. The number of possible function |A| = n,   |B| = m, possible functions = m
   1 a
   2 b
   3 c Number of possible functions = 4³ = 64
    d

Ex: |A| = 3;  |B| = 5
 Number of functions = 5³  =  125

GATE : 1996
Suppose X and Y are sets and |X| and |Y| are their respective cardinalities.  It is given
hat there are exactly 97 functions from X to Y, then
(a) |X| = 1,  |Y| = 97 (b) |X| = 97,  |Y| = 1 (c) |X| = 97,  |Y| = 97
(d) None

Solution. (a)
 |Y|       = (97)¹  =  97

Q. Number of one-one function between  |A| = n  |B| = m
 (a) n  (b) m  (c) m      (d)      n
   1 1
   2 2
   3 3
     
     n permutations of m elements  
   n m   m

 |A| = 2  |B| = 2
  a 1  a 1
  b 2  b 2
  one-one  one-one
   2     = 2

* Number of onto functions    ∑  m     (-1)  (m - i)

n

PmPn

Pn

|X|

i
i=0

m
n

Ci

P2

←
←
←

4
4
4

3 4

- - - -

- - - -
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n

Ex: |A| = 3 |B| = 2
 2c   (2 - 0)³ - 2c   (2 - 1)³ +  = 1 × 2³ - 2(1)³  =  8 - 2 = 6

Ex: |A| = n |B| = 2
 then number of onto functions = 2   - 2
 If is valid if B contain only two elements.

Composite Function:
 f :  A → B  and  g :  B → C
 gof : A → C  gof(x) = g f(x)

Q. f : A → B  g : B → C
 gof : A → C defined  
 But fog not defined here.

Q. f : R  → R  g : R → R 
 Both fog and gof are defined
 But fog ≠ gof (need not be equal)

Ex: f : R → R  g : R → R 
 f(x) = x²  g(x) = x + 1
 gof(x) = g(f(x)) = x² + 1  fog(x) = f(g(x)) = (x + 1)²

Important Result:
(1) If f and g one-one then the composition (gof) function is also one-one.
→ If f and g onto function then gof is onto.
  A  B  C

  a  1  ℓ
    2  
  b  3  m

  A  C
  a  ℓ
  b  m

A   B     C

x  f(x)  g(f(x))
>

gof(x)

f g

  onto but

         
not one-oneg

one-one

         
not on to

>gof

f

 gof (a) = g (f(a) ⇒ g(1)  =  ℓ
 gof (b)  = g (f(b)) ⇒ g(2)  = m

gof
gof is one-one and onto
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2
2

22

2

Pn

1
1
1

1

1

P2

2. → If gof is one-one then f will be one-one
 → If gof is onto then g will be onto
 gof is one-one and onto then f is one-one and g is onto.

GATE : 2001
Let f : A → B be a function, and let E and F be subsets of A.  Consider the following
statements about images.
 s    : f (E    F) = f (E)     f (F)  s   : f (E     F)  = f (E)    f (F)
(a) only s   is correct     (b) only s    is correct 
(c) both s   and s   are correct    (d) none of s   and s   is correct

Solution:  A B  A = {1, 2}
   1   E = {1}
   2   F = {2}
      f(E) = a  f(F) = a
 E    F = {1, 2}  E     F = { }
 f (E   F) = {a}   f (E    F)  = { }
 f(E)    f(F)   f(E)    f(F)
 a     a  = {a}   a    a
 s   is correct.   so s   is false.

GATE : 2015
The number of onto functions (surjective functions) from set x = {1, 2, 3, 4} to set y = 
{a, b, c} is _______?
Ans. 36

GATE : 2015
Let X and Y denote the sets containing 2 and 20 distinct objects respectively and F
denote the set of all possible functions defined from X and Y.
Let f be randomly chosen from F.  The probability of F being one-one is ______?
 X  Y
 1  1
   2
 2   Total number of functions = 20² = 400
  20  Number of one-one function = m      = 20    = 380

   ∴ Required probability =        = 0.95

Relations
Relation on set A
 R ≤ A × A  cardinality of |A × A| = n²

∩

∩
∩
∩

∩

∩

∩ ∩

∩
∩
∩

∩

a
f

----

2 20 380
400

____
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A = {1, 2, 3, 4}  A = {1, 2, 3, 4}
A × A = {(1, 1) (2, 2) (3, 3) (4, 4) (1, 2) (1, 3) (1, 4) (2, 1) (2, 3) (2, 4) (3, 1) (3, 2) 
     (3, 4) (4, 1) (4, 2) (4, 3)}
      → universal relation.
ϕ = { } → empty relation on A
‘=’ or  ∆   = {(1, 1) (2, 2) (3, 3) (4, 4)}
 ‘<’  = {(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)}
 ‘>’ = {(2, 1) (3, 1) (3, 2) (4, 1) (4, 2) (4, 3)}
 ‘≤’ = {(1, 1) (1, 2) (1, 3) (1, 4) (2, 2) (2, 3) (2, 4) (3, 3) (3, 4) (4, 4)}
 ‘≥’ = {(1, 1) (2, 1) (2, 2) (3, 1) (3, 2) (3, 3) (4, 3) (4, 4)}
 ‘\’ = {(1, 1) (1, 2) (1, 3) (1, 4) (2, 2) (2, 4) (3, 3) (4, 4)}

A Relation R on A is
1. Reflexive
 If (a, a) ε R       a ε A
 Yes → A × A, ∆, ≤, ≥, divides  No → ϕ, <, >
 R   = {(1, 1) (2, 2) (3, 3)} Not reflexive
2. Irreflexive
 A relation R on set A is called Irreflexive
 If (a, a) and R      a ε A
 Yes → ϕ, <, >
 No → A × A, ∆, ≤, ≥, \

 R    = {(1, 1) (2, 2) (3, 3)}
  Not Irreflexive

3. Symmetric
 A Relation R on set A is called symmetric
 If (a, b) ε R then (b, a) ε R where (a, b) ε A
 Yes → A × A, ϕ, ∆  No → <, >, ≤, ≥, \
 R    = {(1, 2) (2, 1) (1, 3)}  Not symmetric
 
 Asymetric
 If (a, b) ε R then (b, a) ε R where   a, b and A
 Yes →  ϕ, <, >  No → A × A, ∆, ≤, ≥, 1
 R    = {(1, 2) (2, 1) (1, 3)} Not Asymmetric
 ‘ϕ’ empty relation is both symmetric and asymmetric.

Antisymmetric
If (a, b) ε R and (b, a) ε R   then  a = b  where a, b ε A
Yes →  ϕ, ∆, <, >, ≤, ≥, \   No → A × A

2

3

1

↑
divides

>
>

R    IR
 ×

R    IR
 ×

IR   R
 ×

?
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-1
2

2 2 2

2
2

2

2

1
1

1

1

111
1

21

1
1

1

×
×
×

NOTE:  I allow only Reflexive pairs but don’t allow symmetric pair.

 R    = {(1, 3)}  R    = {(1, 1) (1, 3)}
  Asymmetric   Antisymmetric
  Antisymmetric  Not Asymmetric

4. Transitive
 If (a, b) ε R and (b, c) ε R    then (a, c) ε R where a, b, c ε A
 Yes → A× A,  ϕ, ∆, <, >, ≤, ≥, \
 R    = {(1, 3) (3, 1)} Not transitive
 R    = {(1, 3) (3, 1) (1, 1)} Not transitive
 
  (1, 3)     (3, 1)      (3, 1)      (1, 3)

          (1, 1)      (3, 3)

 R    = {(1, 3) (3, 1) (1, 1) (3, 3)

Let R, R  , R    be Relations on A
 R, R  , R  R     R     R R       R
1. Reflexive     Reflexive 
2. Irreflexive
3. Symmetric
4. Antisymmetric
5. Asymmetric
6. Transitive

A = {1, 2, 3}
R    = {(1, 2)}  R    = {(2, 1)}
      ↑         ↑
      Asymmetric         Asymmetric
R      R     = {(1, 2) (2, 1)} Not Asymmetric

Ex: 
 R    = {(1, 2)}     Antisymmetric            R    = {(2, 1)}   Antisymmetric
 R      R   = {(1, 2) (2, 1)}     Not Antisymmetric

NOTE:
1. Union of Asymmetric relation need not be Asymmetric.
2. Union of Antisymmetric relation need not be Antisymmetric.
3. Union of transitive relation need not be transitive.

∩

∩

∩∩
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-1

1

0
R

R

s
s

r

r

>

∩

∩

Closure
1. Reflexive closure of R (R  ) :-
 Smallest reflexive relation containing R

Ex: A = {1, 2, 3} R = {(1, 1) (2, 2) (2, 3)}  ∆ = {(1, 1) (2, 2) (3, 3)}
 R     = R    ∆
         = {(1, 1) (2, 2) (2, 3)}      {(1, 1) (2, 2) (3, 3)}
         = {(1, 1) (2, 2) (3, 3) (2, 3)}
         ↑
   Reflexive

2. Symmetric Closure (R   )
  R    = R    R

3. Transitive Closure:
 A = {1, 2, 3, 4}  R = {(1, 2) (2, 1) (3, 4) (4, 3)}

Warshall’s Algorithm

 M      =

 

    M     =

   M      =

    M     =

      1      2      3      4
1    0      1      0      0
2    1      0      0      0
3    0      0      0      1
4    0      0      1      0

[          ]
      1      2      3      4
1    0      1      0      0
2    1      0      0      0
3    0      0      0      1
4    0      0      1      0

[          ] Modified as ‘1’

>      1      2      3      4
1    0      1      0      0
2    1      1      0      0
3    0      0      0      1
4    0      0      1      0

[          ]Modified as ‘1’

2
R

3
R

      1      2      3      4
1    1      1      0      0
2    1      1      0      0
3    0      0      0      1
4    0      0      1      0

[          ]
Modified as ‘1’

>

      1      2      3      4
1    1      1      0      0
2    1      1      0      0
3    0      0      0      1
4    0      0      1      1

[          ] Modified as ‘1’>
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4

+

R

      1      2      3      4
1    1      1      0      0
2    1      1      0      0
3    0      0      1      1
4    0      0      1      1

[          ] M    =

R    =  {(1, 1) (1, 2) (2, 1) (2, 2) (3, 3) (3, 4) (4, 3) (4, 4)}

   M     Di-graph
 Reflexive
      1      0      0
      0      1      0
      0      0      1
 All diagonal entries must be one. Loop at every vertex.

 Irreflexive
 All diagonal entries must be zero. ‘No loop’

 Symmetric
  M    = M     a   b loop allowed

 Asymmetric    No loops
 a     = 0 and a     = 1 then a     = 0 a b
     (i ≠ j)  
 A = {1, 2, 3};  R = {(1, 2) (1, 3)} No edge from b to a.

 M    =

 Antisymmetric    a b
 a    = 1 then a    = 0 
    (i ≠ j)   No edge from b to a

Equivalence Relation
A relation R on set A is said to be equivalence relation if the relation R is reflexive,
symmetric and transitive.

Ex:  
(1). A = {1, 2, 3, 4}  R = {(1, 1) (2, 2) (3, 3) (4, 4)}
 1. Reflexive  2. Symmetric  3. Transitive
 R is an Equivalence relation.
 It is smallest equivalence relation.

ii

jiij

ij ji

R

R

RT

R

> >

>
1 2

3

>
>[  ]

>

>

0    1    1
0    0    0
0    0    0[       ]
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(2). A = {1, 2, 3, 4}
 {(1, 1) (1, 2) (2, 1) (2, 2) (3, 3) (3, 4) (4, 3) (, 4)}
 1. Reflexive  2. Symmetric  3. Transitive

Equivalence Class:-
Let R be an equivalence relation on A and let a ε A.  The equivalence class of a, 
denoted by (a) or a is defined as 
  [a] = {b ε A | (a, b) ε R}
Ex:
 A = {1, 2, 3, 4}  R   = {(1, 1) (2, 2) (3, 3) (4, 4)}
 [1] = {1};  [2] = {2};  [3] = {3};  [4] = {4}
 R    = {(1, 1) (1, 2) (2, 1) (2, 2) (3, 3) (3, 4) (4, 3) (4, 4)
 [1] = {1, 2};  [2] = {1, 2};  [3] = {3, 4};  [4] = {3, 4}

Properties
(1) a ε [a]  because of reflexive property.
(2) b ε [a] then a ε [b]
(3) b ε [a] then [a] = [b]
(4) [a] = [b] or [a]    [b] = ϕ

Partition of a set:
 A ≠ ϕ  P ≠ ϕ = {A  , A  , A   , ............. A    } A    ≠ ϕ
is called partition of A if
(1) A  =  A      A       A   .............    A
(2) A      A     = ϕ    (i ≠ j)

Ex: A = {1, 2, 3, 4}  P = {(1, 2) (3, 4)}
(1) {1, 2}     {3, 4} ⇒  {1, 2, 3, 4}
(2) {1, 2}     {3, 4} ⇒  ϕ

2-Part Partition
Q. Which of the following is not a valid partition?
 (a) {{1}, {2}, {3}}  (b) {{1}, {2}, {3}, {4}}
 (c) {{1, 2, 3, 4}}  (d) {{1, 2}, {3}, {3, 4}}
(a)  →  3 part partition  (b)  → 4 part partition (c)  → 1 part partition
(d) Not a valid partition

Ex: A = {1, 2, 3, 4}  R = {(1, 1)(2, 2)(3, 3)(4, 4)}
 [1] = {1};  [2] = {2};  [3]  = {3};  [4] = {4}
 P = {{1}, {2}, {3}, {4}}

n

n

2

2

2

3

3

i

i

1

1

1

j

∩

∩ ∩

∩

∩

_

^
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Ex: A = {1, 2, 3, 4}
 {(1, 1) (1, 2) (2, 1) (2, 2) (3, 3) (3, 4) (4, 3) (4, 4)}
 [1] = {1, 2} = [2]   [3] = {3, 4} = [4]
 P = {{1, 2}, {3, 4}}  → 2 part partition

Given an equivalence relation ‘R’ on set A, we can find a unique partition on A
→  the part of partition are distinct equivalence classes  ———— (1)

Ex: A = {1, 2, 3, 4}  P = {{1}, {2}, {3}, {4}}
 {1} → {(1, 1)}  {2} → {(2, 2)}  {3} → {(3, 3)}
 {4} → {(4, 4)}
Equivalence relation:  {(1, 1) (2, 2) (3, 3) (4, 4)}

Ex: A = {1, 2, 3, 4}  P = {{1, 3}, {2, 4}}
 {1, 3} → {(1, 1) (1, 3) (3, 1) (3, 3)}
 {2, 4} → (2, 2) (2, 4) (4, 2) (4, 2)
 E·R = {(1, 1) (1, 3) (3, 1) (3, 3) (2, 2) (2, 4) (4, 4) (4, 2)}

Given a partition P on set A we can find a unique equivalence relation on A — (2)
from (1) & (2)
The exist a one to one correspondance between number of partition on A and 
number of equivalence relation on A.
If |A| = n then
Number of equivalence relation on A = Number of partitions on A = Bell number (B  )

 A = {1}   A = {1, 2}
 E·R = {(1, 1)}  E·R = {(1, 1) (2, 2)}
 [1] = {1}   E·R = {(1, 1) (1, 2) (2, 1) (2, 2)
   ↑   Partitions = {{1}, {2}}
    1- Partition    
       2 Partition

Let |A| = n
1. Total number of relations = 2
2. Total number of reflexive relations = 2
3. Total number of irreflexive relations = 2

4. Total number of symmetric relations = 2

5. Total number of asymmetric relations = 3

n

n(n - 1)
n(n - 1)

n²

{

n(n + 1)
      2
_______

 n(n - 1)
      2
______
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6. Total number of antisymmetric relations = 2  · 3
7. Transitive = No closed formula

1. Total number of relations:-  A = {1, 2}
 A × A = {(1, 1) (1, 2) (2, 1) (2, 2)}

  (1, 1)    (1, 2)      (2, 1) (2, 2)
     ↓        ↓            ↓    ↓
     2        2            2    2 ⇒ 2    = 16 Relations
         Selected
 Not selected
 Number of relations: -  |A| = n  |A × A| = n²

 (1, 1)   (2, 2)   (3, 3)   - - -    (n, n)    (1, 2)    (2, 1)  - - -    -
     ↓      ↓       ↓         ↓  ↓   ↓         ↓
     2      2       2         2  2   2         2

Number of relations = 2     = number of subsets of A × A

2. Number of reflexive relations:-

 (1, 1)    (2, 2)       - - - (n, n)     (1, 2)  -
    ↓      ↓        ↓  
    1      1        1   

A = {1, 2}
Number of reflexive relations = {(1, 1) (2, 2)}
           = {(1, 1) (2, 2) (1, 2)}  =  {(1, 1) (2, 2) (2, 1)}
           = {(1, 1) (2, 2) (1, 2) (2, 1)
      2            = 4

3. Number of Irreflexible relations

n

n²

4

 n(n - 1)
      2
______

2

1 2 3 n n²

n² times

↓

↓
these must be present

2 n² - n

n² - n n² - n

2(2 - 1)

n(n - 1)n(1)   × 2        = 2        = 2
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 (1, 1)    (2, 2)      - - -   (n, n)    (1, 2)     -

 (1)    × 2     = 2

A = {1, 2}
R   = {(1, 2)}  R    = {(2, 1)}  R    = {(1, 2) (2, 1)}
R   = ϕ
 2   = 4

4. Number of symmetric relations

 (1, 1)   (2, 2)    - - -     (n, n)   (1, 2) (2, 1)    (1, 3) (3, 1)    -
     ↓         ↓          ↓         ↓   ↓

 2       = 2  =  2  = 2

A = {1, 2}
Number of symmetric relations = 
 R   = ϕ; R   = {(1, 1)}; R   = {(2, 2)}; R   = {(1, 2) (2, 1) (1, 1)}
 R   = {(1, 2) (2, 1) (2, 2)}; R   = {(1, 2) (2, 1) (1, 1) (2, 2)};
 R   = {(1, 2) (2, 1)};  R   = {(1, 1) (2, 2)}
Total = 8

 2        =  2      = 2³ = 8

5. Number of asymmetric relation : -

2

n +

n

n

1 2 3 4
5 6
7 8

31
4

2(2 - 1)

n² - n n(n - 1)

× ×
×

×

1   2       n            n²

↓    ↓        ↓          ↓
1 1 1 2

these must be absent n² - n

1   2      n            n²

 2   2       2       2          2

{

↓ 
2

 n(n + 1)
      2
______ 2 × 3

   2
_____

n² - n
    2
_____

n² - n
    2
_____ n² + n

    2
_____ n(n + 1)

      2
_______2n + n² - n

       2
_________

2

2
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× ×
×

×

1   2      n     n²

 1   1    1     

↓ 
3

n² - n
    2
_____

2

n

n

n

3

n

n

1

 n(n - 1)
      2
______

 n(n - 1)
      2
______  n(n - 1)

      2
______

 n² - n
     2
_____

 n² - n
     2
_____

4 - 2
   2
____

(1, 1)  (2, 2)   - - - (n, n)    (1, 2) (2, 1)    - - - -
   ↓         ↓                 ↓

these must be absent

× ×
×

×

        n²

 2   2    2     

↓ 

3
n² - n
    2
_____

n² - n
    2
_____

(1, 1)  (2, 2)   - - - (n, n)    (1, 2) (2, 1)    
   ↓         ↓                 ↓

A = {1, 2}
R   = {(1, 2)}
R   = {(2, 1)}
R   = ϕ

6. Number of antisymmetric relation

Q. Consider a set containing n elements then how many relations are
 symmetric as well as reflexive.
Solution:
 Number of symmetric relations 2    × 2

 Number of symmetric and reflexive

   (1)   × 2       =  2

(1)   × 3

 = 3

3    = 3' = 3

2

= 2   × 3
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Bell Number:
  |A| = n
Number of partitions on A = Number of equivalence relations on A = B

 B    =   ∑   s (n, r)

s(n, r) is defined as s (n, 1) = s (n, n) = 1
 s (n, r) = s (n - 1, r - 1) + rs (n - 1, r)

B   =   ∑   s (1, r)  =  s (1, 1)   =  1

B   =   ∑   s (2, r)  =  s (2, 1) + s (2, 2)  =  1 + 1 = 2

B   =   ∑   s (3, r)  =  s (3, 1) + s (3, 2) + s (3, 3)  =  1 + 3 + 1 = 5

s (3, 2) = s (3 - 1, 2 - 1) + 2s (3 - 1, 2)  =  s (2, 1) + 2s (2, 2)  = 1 + 2 × 1
   =  3
B    = 15

Ex: A = {1, 2, 3} 
 Number of partition on A = B
 (a) 1  (b) 2  (c) 5  (d) 15
Answer.   (c)

Partial Ordered Relation (POR)
(1) Reflexive  (2) Antisymmetric  (3) Transitive

Q1. ‘≤’ Relation on 2 is
 (a) Reflexive (b) Antisymmetric (c) Transitive
 (d) Partial order relation

Reflexive:   a ≤ a
Antisymmetric:   a ≤ b && b ≤ a   ⇒ a = b
Transitive: a ≤ b && b ≤ c   ⇒ a ≤ c

2
2

n

n
n

r=1

r=1

r=1

r=1

3
3

3

4

1
1
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Partial Order Relation
Ex: ‘\’ Relation on 2 is
(a) only reflexive (b) only antisymmetric (c) only transitive
(d) POR

Reflexive
   not defined so not reflexive.

Antisymmetric

     = -1    = -1

 but 1 ≠ -1   not antisymmetric

Transitive

 &     ⇒  Integer transitive

So, option (c) is true.

Q. ‘1’ relation on  2    is
 (a) only reflexive (b) only antisymmetric (c) only transitive
 (d) POR
 Yes, it is POR.

Q. ‘C’ on P(s)
 (a) only reflexive (b) only antisymmetric (c) only transitive
 (d) POR

` Reflexive:  Every set is subset of itself.
   A    A
 Antisymmetric:  A    B but B     A so it is antisymmetric.
 Transitive:  A    B && B    C so A    C.  It is transitive.  So it is POR.
 A is set and R is relation on A
  R   R
  Reflexive  Reflexive
  Antisymmetric Antisymmetric
  Transitive  Transitive
  POR   POR

-1

o
o

__

a
b

__ a
c

__b
c

__

-1
 1
__  1

-1
__

+
> set of positive integer

\

_

_C
_C

_C _C _C
_C
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Comparable:-
Let <A,    > be a poset
Two element a, b of set A are said to be comparable if either
  a     b  or b     a
     ↑      ↑
 related to         related to 
      or    or
        comparable        comparable

Ex: A = {1, 2, 3, 4}, ‘≤’
 2, 3 are comparable 2 ≤ 3
 (4, 1) are comparable 4 ≤ 1 but 1 ≤ 4
 Every pair of element is comparable here.
 Toset.

Ex: A = {1, 2, 3, 4}, ‘\’ 
 1/2 → comparable;   2/4 → comparable; 

 2, 3 → comparable  because

 Poset.

Total Ordered Set (TOSET):-
A poset <P,     > in which every pair of element are comparable is called Toset.
A = {1, 2, 3, 4, 5}, ‘≤’
 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5

Hasse Diagram:-
Ex: A = {1, 2, 3, 4}, ‘≤’
  4
  |
  3
  |
  2
  |
  1
 Hasse diagram of Toset is like a chain.

α_

α_ α_

α_

\

2
3

__

3
2

__

×
×

×

{totally comparable
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Ex: A = {1, 2, 3, 4}, ‘\’
  4
  |
  2
  |
  1
A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, ‘\’ → divide relation.
   8
   |
   4
   |
   2
   |
   1

Ex: A = {2, 3, 6, 12, 24, 36}, ‘\’ (divide)
 Number of lines in H.D.

   12
     |  Number of lines = 5
    6

D    = set of all positive divisor, m, n and 2  → <D  , 1> is a poset
(a) a/a Reflexive
(b) a/b and b/a then a = b (Antisymmetric)
(c) a/b, b/c then a/c (Transitive)

<D  , 1> construct Hasse diagram.
D   = {1, 2, 4, 8}
   8
   |
   4
   |
   2
   |
   1

Ex:   <T,     >, T is having 6 elements.  |T| = 6, number of lines in H.D.
 (a) 3  (b) 4  (c) 5  (d) 6

8
8

vv

|

|

|

|

|||

|

|

|

|

||

3

35

6 910

7

3624

2 3
+

α_
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NOTE:  Hasse diagram of a toset is like a chain.
  a
  |
  b
  |
  c  Number of elements  =  n
  |  then number of lines = n - 1
  d
  |
  e
  |
  f

Q. The Hasse diagram for following set with division <P, 1> poset.
 A = {2, 3, 5, 7}, ‘/’ (divides)
 and number of lines = ?

Solution:
  ° ° ° ° 
  2 3 5 7

Number of lines = 0

Ex: <D    , 1>
 Number of positive division of 36 = {1, 2, 3, 4, 6, 9, 12, 18, 36}
   36

Ex: A = {1, 2}  < P(s),     > poset
 P(s) = {ϕ, {1}, {2}, {1, 2}}
    {1, 2}

36

12 18

4 6 9
|
|

|
2 3

1
_C

{1}  {2}

ϕ
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_CEx: A = {1, 2, 3} <P(A),    > 
 try at home

Special Elements
Maximal and minimal elements
An element of a poset is called minimal if it is not greater than any element of the poset.
i.e., a is minimal if there is no element b ε s such that b α a
               ↑
        related to
By default maximal and minimal elements are top and bottom elements respectively in
the Hasse diagram.

(1)        (2)

(3) {2, 3, 5, 7}, ‘\’ (divide)
  ° ° ° °
  2 3 5 7
 Maximal elements = 4;  Minimal elements = 4

→ Every poset has a maximal and minimal elements → false

Ex: <2,     > is a poset
 Maximal → No maximal; Minimal → No minimal
→ Every finite poset has atleast one maximal and minimal element → True
→ Maximal and minimal elements, if exist, are unique → false

Greatest and Least Element:-
→ If maximal is unique (only one) then that is greatest.
→ If minimal is unique (only one) then that is least.

{1, 2, 3}

{1, 2}   {2, 3}   {1, 3}

{1}    {2}      {3}

ϕ

d → top

a → bottom

cb

c

a

db
maximal = d
minimal = a

maximal = c
minimal = a, d
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(1)   

    Maximal → 12, 18  Greatest → none
    Minimal → 2, 3  Least → none

(2)   
     Greatest = d
     Least  =  a

(3)    

     Greatest = c
     Least = none → minimal = a, d

(4) <D    , 1>
 <1, 2, 3, 5, 6, 10, 15, 30>

   
         Least  = 1
         Greatest = 30

NOTE:    |D   |
  Least = 1; Greatest = n

NOTE:  The greatest and least element, if exist then unique → true.

Upper bound and Lower bound
Ex: A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, ‘≤’
 <A,     > is a poset.  P = {3, 4, 5}      A

n

30

α_ _C

18 12

6

2 3

d

a

cb

c

a

db

30

    6      15         10

  2           3          5

1
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   least upper bound
      ↑
Upper bound of P =  5 , 6,7, 8, 9, 10
Lower bound of P = 1, 2, 3
    ↓
     greatest lower bound

Ex: <P,     > poset
 {a, b}     P → two element subset
 L u b {a, b}     a    b a join b
 g ℓ b {a, b}     a    b a meet b

Ex: <{1, 2, 3, 4, 5}, ≤ > poset
 L u b {1, 2} = 2 = 1    2  3     4  =  4  1     4 = 4
 g ℓ b {1, 2} = 1 = 1    2  3     4 = 3   1     4 = 1

  4 - L u B
  |
  3
  |
  2
  |
  1 - g ℓ B

Lattice:-
A poset <P,    > in which every pair of element {a, b} has a L u b & g ℓ b is
called Lattice.
Finding L u b & g ℓ b of the non-comparable elements:-

(1)
    L u b (a, b) = a join b = a    b = c

(2)
    g ℓ b (a, b) = a meet b = a    b = d

∩

∩∩∩

∩

∩

∩∩

∩

α_

α_
_C

←

←
L u b

g ℓ b

c

a b

c

a b
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cd

e

a b

dc

e

a b

b

∩

∩

∩

∩

∩

∩

(3)       (4)

    a    b  =  e      a    b = f
              ↑
           meet

(5)
   
     e → u
     a    b = c 
        ↑
      L u b

(6)

     a    b = d - g ℓ b
        f - ℓ b (lower bound)

Q. Which of the following an lattice.

(1)

    e    f = does not exist; a    b = does not exist

NOTE: No open structure can be a lattice. → not a lattice.

(2)

   NOTE:  Every toset is a lattice.

b

f

ea

f e

a

d

f

e

a b

b

c

d

d

c

b

a
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d

a

cb

e

a

db

∩
∩
∩

∩

∩
∩∩

∩

∩
∩
∩

∩

∩
∩ ∩

∩

3. 

     b    c = d
     b    c = a

       Lattice

(4)   
   
     b    c = e; b    c = a; c    d = e;
     c    d = a; b    d = e; b    d = a

 Diamond lattice

(5)

     c    d = e
     c    d = b, a

 If more than one L u b & g ℓ b exist then they must be comparable for being
 a lattice.
 So it is a lattice.
If an edge is exist between two different elements then they must be comparable.

(6)     (7)

         b    c = e; b    c = a;
         d    e = f; d    e = c;
         b    d = e; b    d = a

  lattice

               lattice

c

dc

e

b a

d

c

e

b a

f

de

f

b c

a
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d

d

e

e

f

b

b

c

c

a

∩∩

∩∩

∩

∩

∩

∩

∩ ∩

∩ ∩

∩

∩

∩∩

∩

α_

(8)
    
     b    c = d, e
         Not comparable
     d    e = b, c
         Not comparable

     So not a latice.

(9)
    
    d     e = does not exist.

  not a lattice

(10)     (11)
         f     g = h;
         f     g = b;
         c     d = e;
         c     d = a

   not a lattice
             lattice

Let <L,    > be a lattice then the following properties hold.
(1) Idempotent
 a     a = a  a     a = a
(2) Commutative
 a     b = b    a  a     b = b     a
(3) Associative
 a    (a    b) = a  a    (a    b) = a

Q. Which of the following properties are not satisfied by lattice?
 (a) Commutative (b) Distributive  (c) Absorption
 (d) Idempotent

Answer.   (b)

eg f

b d

a

{
{

de

b c

a
c
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1

0

ca b

{1, 2}

ϕ

{2}{1}

∩∩∩∩∩

∩∩
∩
∩

∩∩∩∩∩

∩∩
∩

α_

α_

α_α_

α_

α_α_

_C

Ex:

    Diamond lattice
    a    (b    c) = (a    b)    (a    c)
    a     0 = 1    1
    a ≠ 1
not holds
In any lattice the following distributing inequalities holds:-
(A) a    (b    c)     (a    b)     (a    c)  (B) (a    b)    (a    c)     a    (b    c)

→ A lattice <L,    > in which distributive properties are satisfied is called 
 Distributive lattice.

Ex: Distributive lattice   
      (2)

Sublattice:-
 <L,    > is a lattice;  S     L; <S,     > is a lattice;
 then it is called Sublattice.

Two important non-distributive lattice:-

Result:  A lattice <L,    > is non-distributive if it contains sub-lattice isomorphic to 
    diamond or pentagon.

Bounded Lattice
A lattice <L,    > in which greatest and least element exist.
→ Every finite lattice is bounded.

eb

1

a oDiamond
Pentagon
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∩

∩

∩

∩

∩

∩

∩

∩

∩

∩

α_

_CEx: <2,    > is a lattice. But not bounded.
 Greatest = 1; Least = 0

Complement of a element : -
Let <L,    > be bounded lattice
An element a ε L is complement of b ε L.
 if a    b = 1 → greatest; a    b = 0 → least

(1) If a is complement of b then b is complement of a.
(2) ‘1’ & ‘0’ an complement of each other.
  0    1 = 1; 0    1 = 0

Ex: Find all complements.
(1)   
     Element Complement
           1   10
          10    1
           2    5
           5    2

 2    5 = 10 = greatest; 2    5 = 1 = least

(2)    
     Element Complement
           0   1
           1   0
           a   c
           b   c
           c           a, b

     a     c = 1; a    c = 0

(3)
     Element Complement
           0   1
           1   0
           a   c
           c   a
   
     b    d = d → not greatest
     b    d = b → not least
 b, d don’t have complement.

0

1

52

cb

1

a
0

cd

1

a b

0
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→ Complement may or may not exist.
→ Complement, if exist, are not necessary unique.

Result:
→ In a distributive lattice, complement if exist, are unique.
→ A bounded lattice in which complement of every element exist is called 
 complemented lattice.
→ Bounded, distributive and complemented lattice is Boolean algebra.


