
Substance in liquid or gaseous phase is called fluid. They are capable of 
deforming continuously under the action of shear stress.

Note:
In solids stress is proportional to strain but in fluid stress is proportional to 
strain rate.

Types of fluid

Ideal fluid Real fluid

! They do not have viscosity,
surface tension and are
incompressible

! Bulk modulas is infinite.

! Fluids which are not ideal
are called real fluids.

! As ideal fluits do not exist
practically so all are real
fluids.

6RPH�VSHFL¿F�ÀXLG�SURSHUWLHV

1. Density = 
mass

volume  measured in kg/m3.

2. Liquid density is constant while that of gas is directly proportional 
to pressure and inversely to temperature

3. Specific gravity/relative density = 
Density of substance

Density of water at 4 Cq
4. If R.D < 1 then fluid is lighter than water.

5. Specific weight = 
Weight of substance
Volume of substance , denoted by J = U�g in N/m3

6. Jwater = 3
N9810
m

 = 3
KN9.81
m

7. Jmercury = 13.6 Jw

8. Specific volume = 
1

Density

1Properties of Fluid



7.4 &එඞඑඔ�(ඖඏඑඖඍඍකඑඖඏ
9DSRXU�3UHVVXUH�DQG�&DYLWDWLRQ
When liquid molecules are healed then the molecules on the surface of the 
liquid start converting into gaseous form called vapour. These vapours 
molecules exert partial pressure in the space called vapour pressure.

When the absolute pressure above a liquid surface becomes less than 
or equal to the vapour pressure then boiling starts. It leads to formation 
of cavity inside the liquid surface, and if this occurs in flowing liquid then 
this cavity is washed away in region of higher pressure where water 
from the cavity surrounding’s rushes in, to fill the cavity and this bubble 
burst’s. This phenomenon of formation and collapsing is called cavitation.

Note:
1.  Higher temperature, more chances of cavitation. 
2.   Mercury has very low vapour pressure, hence used in pressure measuring 

equipment.

At 100qC, vapour pressure of water = Atmospheric pressure.

Bulk modulus: Bulk modulus of elasticity (k) = 
dp

dv
v

�
§ ·
¨ ¸© ¹

 = 







dp
d


Compressibility = 
1
K  = d

dp
G

G

Note:

If density does not change with pressure i.e.,

dp

z 0, then fluid is in com-
pressible

• Isothermal bulk modulus KT = Pressure
• Adiabatic bulk modulus KA = J u pressure, 

J – Adiabatic. Index

� J = P
V

C
C  = 

Specific heat at const. Pressure
Specific heat at const. Volume

Viscosity: It’s the measure of 
resistance of fluid to deformation.

It is due to the internal frictional 
forces that develop between different 
layers of fluid when they are forced to 
move relative to each other.

P

P

P

d"

u + du

u

dy

du.dt
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Shear strain = d T = 
du dt

dy
�

Rate of change of shear strain 
d
dt
T

 = 
du
dy

 velocity gradient

In Newtonian fluids,
W�D Rate of change of shear strain

W�D
d du
dt dy
T v � W = P

du
dy

� P =  absolute viscosity, dynamic viscosity or 
coefficient of viscosity

Unit of P =  2
NS
m  or 

kg
m.s  or pascal sec (SI) or poise 

(CGS unit) or 2
Dyne sec

cm
�

2
NS1 (SI)
m  = 10 poise

Note: Pwater | 50 Pair

Kinematic viscosity =
dynamic viscosity

density  = 
g
P

� v = 
g
P

SI unit =
2m

sec    CGS unit = 
2cm

sec  or stoke

1 m2/s (SI) = 104 stoke

Note: Qair | 15.2 Qwater at 20qC
� Pwater = 1 centipoise at 1qC

Viscosity of liquids is due to cohesion but for gases it is due to 
molecular momentum transfer.
(ႇHFW�RI�WHPSHUDWXUH�DQG�SUHVVXUH�RQ�ÀXLG¶V�YLVFRVLW\
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#

Air

Water

t(°C)

Pliq =
0

21 t t
P

� D � E

Pgas = P0 + Dt – Et2

� D, E are constants t = temp in qC
For liquids, P does not depends on pressure except at high pressure.
For gases, Pgas also doesn’t depends on pressure but as G is 

proportional to pressure

So, Qgas v
1

Pressure

1HZWRQLDQ�DQG�1RQ�1HZWRQLDQ�ÀXLGV

• If W = P
du
dy

 then Newtonian fluids otherwise not

Ideal Fluid

du/dy

B = 0, n > 1
B

=
0, n

=
1B

=
0
,
n

<
1 Newtonian

Dilatant

$

n
<
1
,
B

0
%

n=
1,

B

0
%

n>1, B
0

%

Thixotro
pic

Bingham
Plastic

Pseudo
plastic

Shear th
ining

Paint,
Polym

er,
paper

Rheopectic
Gypsum

paste
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x� W = A B
ndu

dy
§ · �¨ ¸
© ¹

 General shear equation

• Slope of the curve gives apparent viscosity.

• Study of Now-Newtonian fluid is called Rheology.
• Pseduo plastic are shear thinning while Dilatants are shear 

thickening fluids.
• Eg

(a) Thixotropic Ink, ketchup, Enamels
(b) Bingham plastic Toothpaste, sewage, sludge, Drilling mud, 

gel (i.e., Related to Bath room).
(c) Rheopectic Gypsum in water and Bentonite slurry.
(d) Pseudo Plastic Paint, Polymer, Paper, Pulp, Blood, syrup
(e) Dilatant Quick sand, Butter, sugar in water

Note:
Tujhe Bachk Rchna Padega Nahitoh Dil tot jaeyga
� �� � �� � �� � �� � �� � �
Thixotropic Bingham Rheopectic Pseudo Newtonian Dilatant

No-slip condition of viscous fluid: When ever a viscous fluid flows 
over a solid surface, the relative velocity between the solid surface and 
the adjacent fluid particle is zero. This condition is known as No-slip 
condition.

Note:
1. Wetting property is due to surface tension. 
2. No slip condition is due to fluid viscosity.
3. Ideal fluids o No-viscosity o No “No slip” condition

Surface tension and capillary effect: It occurs at the liquid-gas 
interface or at the interface of two immiscible liquids where a thin 
film is apparently formed due to attraction of liquid in the surface which 
is similar to tension in stretched membrane known as surface tension 

measured as 
force

length  Unit 
N
m
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Free surface

C

B

A whexion

Net down force on c is shown Here

Tension

Liquid Surface

Net Cohesive Force

Tension

Note:
Surface tension occurs due to cohesion only.

Surface tension = 
Work done

Change in area to work done
Vwater/air 0.0786 N/m, At critical point it becomes zero

P = Gauge pressure

V = Surface tension

d = diameter

Then

(a) Pressure inside jet P = 
2V
d

       P = Gauge pressure

(b) Pressure in side P = 
4V
d

     V = Surface tension

(c) Pressure inside bubble P = 8V
d

      d = diameter.

d

!

d!

d = diameter

!

!

!

!

d
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Rise or fall in the surface of liquid when a small diameter tube is 

inserted into the liquid is called capillary rise or capillary depression 
respectively.

Note:
Capillary effect is due to Adhesion and surface tension both

Force of attraction between molecules of different types is called 
adhesion while in molecules of same type it is called cohesion (for eg 
clay is a cohesive soil) 

Water Mercury

&

&

Note:

I < 90q Cohesion < 
Adhesion

Wetting of 
surface

Concave top 
surface

Rise in capil-
lary tube

I > 90q Adhesion < 
cohesion

Does not wets 
the surface 

Convex top 
surface

Drop in capil-
lary tube

h = 
4 


cos

(G - G )1 2 wd
T for water glass = 0q� mercury glass = 130q�

Kerosene glass = 26q

Special case :-

  h = 
4 2 1

2
2

 


cos ( )d d
d


G w

• d2 > d1, capillary rise is positive, that is wa-

ter liquid rises in capillary tube of larger 
diameter (if I < 90q otherwise vice versa)

• d1 = d2 No capillary rise as h = 0

• If d2 >>> d1, then neglect d1 wrt d2

h =
4

2

 

cos

G wd

d

h

G1

G2

"

!!

d1 d2

h
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Normal force exerted by a fluid per unit area is called pressure. It 
is a scalar Quantity i.e., it has magnitude but no direction.

Atmospheric Pressure: Pressure exerted by atmosphere. It is 
measured by Barometer At mean sea level it is equal to 10.3 m head 
of water or 76 cm head of mercury (specific gravity 13.6)

Note:
It head of water is ‘h’ m then equivalent pressure is JZh and if head of mercury 
is ‘h’ m then equivalent pressure will be JHg h

Absolute Pressure: Pressure with respect to absolute zero or com-
plete Vaccum is called absolute pressure. It’s the actual pressure and 
measured by Aneroid Barometer.

Gauge Pressure: Pressure with respect to atmospheric pressure 
as datum. It is measured using Manometer or Bourdon gauge

Steps to draw :-
1. Draw Patm always above Pabsolute Vacc.
2. Then draw Pgauge/Pvaccum wrt to Patm depending upon gauge reading

Absolute
vaccum

Pvaccum

Pabs

P local

Patm P local

P gauge Pabsolute

Patm

Absolute
vaccum

Patm

Pabsolute = Patm – Pvaccum

Pabsolute = Patm + Pgauge

Note:
‘h’ m of water vaccum means pressure of – h JZ

2Pressure and its 
Measurement
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• A moving fluid exert a tangential force on the surface apart from 

normal forces. However in absence of motion, fluid will exert normal 
force only.
Pressure Variation in Vertical direction for fluid at rest
Pgauge = G JZ h (G is Specific gravity of liquid)

Pressure at a point in a fluid at rest is independents of shape and 
cross-section of container in which it is kept. It varies in vertical direc-
tion and remains constant in horizontal direction.

h'

A B

G G

h'

P = PA B

h'

C G1 G2

D

h'

PC z PD

(as G1 z G2)

Note:
As per Pascal’s law, pressure applied to a confined fluid increases
the pressure throughout by the same amount.

P1 = P2

F

4
z d2

 =
W

4
Dz 2

Hence W =
2DF

d
§ ·
¨ ¸© ¹

Principal of conservation of energy is still valid as if higher weight 
will be lifted up by small distance when smaller force comes down by 
large distance.

1 2

F

W

Dd
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Toricceli-Barometer
• Used to measure Atmospheric 

pressure
• A mercury filled tube is inverted to 

a mercury container that is open to 
atmosphere

PA = PB = Patm

PC = Absolute zero
PB = PC + JHg h

Hence Patim = JHg h

• If a hole is made at D, level of C will come down to B.

Measurement of fluid pressure

Monometer Mechanical gauges

Based on principle of balancing
a column of fluid by the same
or other column

Mechanical pressure measuring
instruments with a deflecting
needle (used in filling air in tyres)

Simple
manometer

Differential
manometer

Used to measure pressure at a point Used to measure the pressure difference

Piezometer

U-Tube manometer

Single column manometer

Inverted differential
manometer

Micro manometer

1. Piezometer
x –ve pressure cannot be measured
x Very long column of piezometer is required if pressure is large.
x Cannot measure the gas pressure.

h

D

C

B
A

Mercury
(( )Hg
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2. U-Tube manometer

x for large pressure measurement
x for measuring gas pressure
x for measurement of –ve pressure

Pressure at A = Pressure at H
= Patm + G2 JZ y + G1 JZ h

Note:
Liquid in U-tube manometer, should have specific gravity more than the liquid 
whose pressure is to be measured.
• Liquid should also have small thermal coefficient and small va-

pour pressure
• Liquid should be completely immiscible with the liquid whose 

pressure is to be measured.

Special Case: To increase the sensitivity one leg is inclined.
PA = PB = PC = G JZ h = G JZ (l sin T)

measured reading of tube = ‘l’
3. Single Column Manometer:

In this case only one reading is re-
quired as against the two readings on two 
limbs in case of U-tube manometer.

A = Area

A

y1

O

Dy

G1

G2

B

h2

h1

0

a = area

initial position of

manometric liquid

when not connected

to pipe A.

A

B C

l h

"
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% error = 2 2

2 2 2 1 2

G
100

G (G G )
A

h
ah h

Z

Z Z

J
u

J � � J
 = 1 – 2%

PA = G2 h2 JZ + (G2 – G1) 2A
a h ZJ

&RQFHSW�RI�GLႇHUHQWLDO�PDQRPHWHU
PA – PB = (G2 – G1) JZ h

PA – PB = (head loss) G1 JZ

A B

1

P P
G Z

�
J

 =
G
G

2

1

−
⎛

⎝
⎜

⎞

⎠
⎟1 h

Inverted differential manom-
eter (for measuring small pressure 
difference)

P1 – P2 = (G1 – G2) JZ h
Here, G1 > G2 otherwise fluid G2

will drop in pipe as soon as flow stops.
Here also sensitivity can be in-

creased by inclining the gauge tube.

2. Micromanometer: measures very small pressure difference or for 
measuring the pressure difference with high precision.
PA – PB = (G1 – G2) x JZ

Area = a

x/2

G2

y2

y1
Area = A

)y

G3

G1

x/2

x/2

G2

)y

Original level

A B

G1

G2

h

BA

G1

G2

h

1 2
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Note:
Multi fluid manometer is used in measuring pressure in a pressurized water 
tank.

P1 = Patm + xatm

P = P1 + yatm

P = Patm + xatm + yatm

Patm = 1 atm

Factual facts about pressure
1. Longer runway’s needed at higher altitude due to reduced drag and 

lift.
2. Aeroplane cruise as higher altitude’s because of less drag, which 

increases fuel efficiency.
3. Nose bleeding starts at higher altitude because of difference in body’s 

blood pressure and atmosphere pressure.
4. Motor capacity reduces at higher altitude.
5. Cooking takes longer time at higher altitudes.

Patm

P P1

y atm

Xatm
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Forces at every point on the plane
surface can be added algebrically to 
obtain the magnitude of resultant force 
on the plane surface.

It the surface is Curved, then at 
every point, the direction of force due to 
stationary fluid is Normal to the surface

yP =
y

yC
G

C

I
A


sin2 

IG = MOI about the centroidal axis
yP = Centre of pressure from liquid surface
yC = Centroid from the liquid surface

Note:
Magnitude of the resultant force acting on a plane surface of a 
completely submerged plate in a homogenous (constant density) 
fluid is equal to the product of pressure at centroid of surface and Area 
‘A’ of the surface
F = PCA and this force acts at yP

As we go deeper, difference of yP and yC will reduce.

Concept of Pressure Prism: Net 
force acting on a plane area is the product 
of average pressure acting on that area 
multiplied by the magnitude of area or 
it can be said as Net force acting on a 
plane area is equal to the volume of the 
pressure prism formed.

3Hydrostatic–Forces

"

yP
yC

C.P

Centroid

C.P centre of pressure*

b

A
B

CD

PB

PT

l
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Area of trapezoid (ABCD) = T B
1 (P P )2 b�  (Force per unit length)

Total Force = T B
1 (P P )2 bl�  = Volume of prismoid

Horizontal Plane 
Surface

Vertical Plane 
Surface

Inclined Plane 
Surface

C.G.

Area A

x

F = JAx

C.G.

C.P.

x
xp

F = JAx

  xp = x + 
I
A

g

x

C.P.

C.G.

xp

x

"

   F = JAx

xp = x + 
I

Ax
g sin2 T

x and xp for some vertical plane surface from liquid surface

Surface C.G.(x) C.P.(xP)

1.
h

b

2
h 2

3
h

2.

b

h

b

h

2
3
h

h
3

3
4
h

2
h

3.
r

r 5
4 r
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4. 4
3

r
S

3
16
Sr

5.

b

h

b

h

3
5
h

2
5
h

5
7
h

4
7
h

6.

b

h

a 2
3

a b h
a b
�§ · § ·

¨ ¸¨ ¸� © ¹© ¹

3
2 2

a b h
a b
�§ ·

¨ ¸�© ¹

Hydrostatic forces on the curved surface:
Horizontal Force (FH): It is the resultant hydrostatic force ‘fx’ of curved 
surface may be computed by projecting the surface upon a vertical plane 
and multiplying the projected area by the pressure at its own centre of area.

Vertical Fore (FV): It is the weight of the liquid contained in the 
zone bounded by two verticals drawn from the two ends of the curved 
surface, the curved surface and the free surface (which is applying pres-
sure on the curved surface)

Resultant force (F): F = 2 2
V HF F�

tan T = Fy/Fx

T o Angle b/w line of action and Horizontal axis
Special case (1)

FH

Horizontal force (FH) /
length

� Resultant at these two 
pressure triangles.

FV

Vertical force (Fv)/length
= weight of the liquid 

contained in the above 
diagram
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Special Case (2)

Horizontal force/length = Resultant of these two pressure triangles.

G( H+

+

( H

Vertical force/length = weight of oil filed in ABCO + weight of water 
filled in OCD

A

B
O

D

C C
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Archimedes Principle: When a body is wholly or partially sub-
merged in a liquid then the vertical upward force acting on the body 
(called Buoyant force) is equal to the weight of the liquid displaced by 
the immersed part of the body.

Buoyant force = Net upward force = weight of liquid displaced

Note:
Point of application of this force is the C.G of the displaced liquid and it is 
called centre of buoyancy.

Floatation: A body will float in a liquid, if 
weight of body = weight of liquid displaced by its 
immersed part.

B = Centre of buoyancy at a distance of h/2
from base of cylinder.

h = GmH
G = Centre of gravity, at a distance of H/2 from base of cylinder.
Where, Gm is specific gravity of material wrt liquid, which should 

be < 1

Linear Stability: When a small linear 
displacement sets up a restoring force,  the 
body is in linear stability

Submerged body Floating body
It remains in neutral
equilibrium against linear
displacement

Remains in stable equilibrium
against vertical displacement
and in neutral equilibrium
against horizontal displacement

4Buoyancy and Flotation

H

G

B h

Gm

a

c

C

b

d

D

A B
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Rotational Stability: When a small angular displacement sets up 

a restoring couple, then stability is known as rotational stability.

Submerged body Floating body

Stable equilibrium G below B M above G
BM > BG
GM = MB – BG = + Ve

Unstable equilibrium G above B M below G
BM < MG 
GM = BM – BG = – Ve

Neutral equilibrium G and B coincide M at G
GM = 0

Note:
Metacentre (M) is the point of intersection 
of lines of action of buoyant force before 
and after rotation. 
                 GM = metacentre height

GM = BM – BG

Where BM =  
I
V

,
V is the volume of liquid displaced

I =  MOI of top view of the 
immersed part of the body 
about longitudinal axis.

Larger the metacentric height, greater 
the stability.

G M

B
B'

FB

Special Case: For cylinder of specific gravity ‘S’ wrt liquid to be in 
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neutral equilibrium.

L
D

 =
1

8 1S S( )�

Time period of oscillation: If a float-
ing body oscillates then its time period of 
transverse oscillation wrt metacentre is given by

I o MOI about axis of rotation.

T = 2z I
W(GM)

Larger the time period, more will be the comfort of passenger.

For passenger ship, GM  is less so more comfortable. 

For cargo ships GM  is more so more stability.

Note:

C.G of cone lies at 
3 H
4

 from the pointed end H
3/4 H

Movements of a ship:
If a ship is safe in rolling, it will also be safe in pitching.

Z

y (Longitudinal axis)

X

Pitching

Transverse

axis

Rolling

Yawning

L

x
=

S
L

D
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When a liquid is contained in a moving container then it behaves as a 
rigid body (i.e., liquid is moving but not flowing)

By Newton’s low of motion
P

x
� w
w

 = J a
g
x

P
y

� w
w

 = J
a
g
y

P
z

� w
w

 =
( )za g

g
�

J �� Euler’s
         equation

Adding all three,

! !P P Pi j k
x y z

w w w§ ·� � �¨ ¸w w w© ¹
!  = ! !( ( ) )zax i ay j a g k

g
J � � �!

1. When fluid at rest ax = ay = az = 0

  then
P
x

w
w

 = 
P
y

w
w

 = 0 
P
z

w
w

 = – Gg � P = – Gg z

2. When fluid moves in upward direction with constant acceleration 
(–az) then

   ax = ay = 0 � 


 


p
x

p
y

0



  p
z

g qz( )

       
P g a zz  ( )

5Liquid in Relative Equilibrium

dx

dz

dy

z

yx

,

,

p

z

dz

2
× dx.dyP +

,

,

p

z

dz

2
× dx.dyP –
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3. When fluid moves in downward direction with constant acceleration 

(az) then

   ax = ay = 0 � 


 


p
x

p
y

0 


  p
z

g az( )

       
P g a zz  ( )

4. With constant acceleration ax an x-direction
PA = G gh

tan T =
effg
xa

Z =
eff

H g
xa x

� � Equation of free surface

h
H

x

z

"

A

Atmospheric pressure

at free surface

z

x

5. Constant acceleration on inclined slope

tan T =
cos

sin
a

g a
D

r D
PA = G geff h
geff = g ± a sin D

+ � upward – � downwards

-

a sin -

a

-

A

"h

x

z

-

a cos -

-

a sin -

"

a

x

z

h a cos -
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Note:
T is measured from the horizontal axis.

Rotation in Cylindrical Container.

P
r

w
w

 =
2V

r
G

...(i)

P
z

w
w

 = – G(az + g) ...(ii)

Combining (i) and (ii)

dP =  V2

r
dr a g dz z ( )

• In free vortex motion, angular momentum remains conserved as 
external torque is zero so mvr = constant = C

So V v
C
r

Hence from (i) as radius increases pressure decreases. Eg: whirling 
mass of liquid in wash basin.

• In forced vortex motion, fluid is 
rotated about a vertical axis at constant 
speed such that every particle has the 
same angular velocity. 

V = r Z
Hence from (i) as radius increases 
pressure increases. Eg: Flow inside 
centrifugal pump.
Amount of water spilled out = original 
volume – Remaining volume
Remaining volume = Volume of cylinder – volume of shaded pa-
raboloid.
Volume of cylinder = S�R2 H

Volume of paraboloid. = 1
2 2

2
2 2

( ) 
R

R
g











Note:
For No spilling case, Rise above original water level = Fall below original 
water level.

H

R

#

#

2
R

2g

2
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Fluid Kinematics: It deals with the motion of the fluids without 
necessarily considering the forces and moments that cause the motion.

Lagrangian concept
study of motion of

fluid particle
single

Eulerian concept
study of motion of fluid through

a particular section or a
control volume.

Note:
We generally follow Eulerian concept, as its difficult to keep the track 
of a single fluid particle.

7\SHV�RI�ÀXLG�VKRZ�
1. Steady and Unsteady Flow: At any given location, the flow 

and fluid properties do not change with time then its steady flow 
otherwise unsteady.

        
w  
w

0v
t

, 0p
t

w  
w

, 0f
t

w  
w

� Steady flow

2. Uniform and Non-Uniform Flow: At particular instant of time, 
the flow properties do not change with location then its uniform flow 

otherwise non-uniform flow 






v
s t 0

0  uniform flow

3. One, two or three Dimensional Flow: If flow parameters varies 
in one dimension wrt space only then its one dimensional otherwise 
its two or three dimension respectively.

V = V(x, t) o one dimensional
V = V(x, y, t) o two dimensional
V = V(x, y, z, t) o three dimensional

  In cartesian co-ordinate system point A is represented as A(x, y)
  While in polar co-ordinate system properties will be same all around 

the circumference of circle hence will depend only on r.

6Fluid Kinematics
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Flow

A
r

X

Y

A

4. Laminar and Turbulent Flow: In Laminar flow, the particles 
moves in layers sliding smoothly over the adjacent layers while in 
turbulent flow particles have the random and erratic movement, 
intermixing in the adjacent layers. Which causes continuos 
momentum transfer.

5. Rotational and Irrotational Flow: When fluid particles rotate 
about their mass centre during movement. Flow is said to be 
rotational otherwise irrotational.

  Rotational Flow o Forced Vortex, Flow inside boundary layer.

  Irrotational Flow o Free Vortex, Flow outside boundary layer.

6. Compressible and In compressible Flow: In compressible flow 
density of fluid changes from time to time where an in Incompressible 
flow it remains constant.

         

dx
u

dy
v

dz
w

   Equation of stream line

Continuity Equation: Fluid mass can neither be created or can 
be destroyed so mass of fluid entering a fixed region should be equal to 
mass of fluid leaving that fixed region in a particular time. It is based 
on principle of conservation of mass.
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9DULRXV�IRUPV�RI�FRQWLQXLW\�(TXDWLRQ�
(a) Cartesian co-ordinate System:

(i) 3-D



 


 


 


   
t

u
x

v
y

w
z

( ) ( ) ( )
0

(ii) 1-D



 


( ) ( ) A A
t s

v
0

(iii) Steady Flow in 1-D U AV = Constant

U1A1V1 = U2A2V2

(iv) Steady Incompressible in 1-D A1V1 = A2V2

(v) Steady flow in 3D   



 


 


( ) ( ) ( )  u v
y y

w
z

0

(vi) Steady Incompressible in 3D 0u v w
x y z
w w w� �  
w w w

  Divergence of Velocity = 0 i.e.,
" "  v = 0

(b) Cylindrical Polar considerate System

(i) 3-D   



 


   


 




t r
r
r

r
rd z

r z1
0

( ) ( ) ( )V V V

(ii) Steady Incompressible in 2D   



 


( )r
r

rV V


0

Z
d"

Vr

r

dr

V
"

Vz

Acceleration of fluid:

V
##"

 = u(x, y, z, t) î  + v(x, y, z, t) ĵ  + w(x, y, z, t) k̂
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ax =
w w w w� � �
w w w w
u u u uu v w
x y z t

   Local/Temporal acceleration i.e.,
acceleration component wrt 
time

ay = u
v
x

v
v
y

w
v
z

v
dt




 


 


    For steady Uniform flow, Total 
acceleration = 0

az =
w w w w� � �
w w w w
w w w wu v w
x y z t

Convective/Advective acceleration 
i.e., acceleration wrt place

as = V
v
s

v
ts

s s






     an = V
v
s

v
ts

n s






convective local tangential  convective   local
tangential   acceleration  normal      normal
acceleration    acceleration  acceleration

Angular Velocity: It is the average of rotation rate of two initially 
perpendicular lines that intersect at that point.

d
dt
T

 = 2

d d
dt dt
D E§ ·�¨ ¸© ¹

d.

d$

O

Y

Y'

X'

X

: = Zx
î  + Zy

ĵ  + Zz
k̂

Zx =
1 –2

w v
y z

w w§ ·
¨ ¸w w© ¹

Zy =
1 –2

u w
z x

w w§ ·
¨ ¸w w© ¹
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Zz =
1 –2

v u
x y
w w§ ·

¨ ¸w w© ¹

: =

ˆˆ ˆ
1
2

i j k

x y z
u v w

ª º
« »
w w w« »

« »w w w
« »
« »¬ ¼

Note:
It angular velocity is zero, flow will be irrotational.

Vorticity ([) = Twice of Angular Velocity
Circulation (*) =  line integral of tangential component of 

velocity vector along a closed curve.
Circulation = Vorticity u Area

Velocity Potential or Potential Function (I): It is the scalar 
function of space and time such that its negative derivative wrt any 
direction gives velocity of flow in that direction.

In Cartesian co-ordinate System
� I = f(r, y, z, t)

– – –, ,u v w
x y z
wI wI wI   
w w w

In Cylindrical Polar co-ordinate System

� I = f(r, T, z, t)

Vr =



   


 



r

V
r

d
d

V
z

, ,1
2

Note:
1. Velocity potential exists only for ideal and irrotational flow. 
2. Velocity of flow is in direction of decreasing potential function. 
3. Equipotential line is the line joining points having same potential 

function.
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Stream Function (\): It is a scalar function of space and time such 

that its partial derivative wrt. any direction gives the velocity component 
at right angles (in anti clock wise direction) to this direction.

Cartesian co-ordinate system




x

v , 


 
y

u

Polar co-ordinate system

    




    
r rd rV V

Note:
If Stream function (\) satisfies the Laplace equation, then flow is 
irrotational otherwise rotational i.e.,




 



2

2

2

2 0
 

x y
It two points lie on same straight line then \ will be constant.

Cauchy-Riemann Equation: For incompressible irrotational flow

u =



 



x y


   v = 


 




y x

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It is the study of motion of fluid along with the forces causing the 
motion.

(i) Newton's equation of motion

      g P VF F F F F F mat c V� � � � �  
#" #" #" #" #" #" "

(ii) Reynold's equation of motion

      g P VF F F F mat� � �  
#" #" #" #" "

(iii) Navier-stock equation of motion

      g P VF F F ma� �  
#" #" #" "

(iv) Euler's equation of motion

      g PF F ma�  
#" #" "

where, Fg = Gravity force

FP = Pressure force

FV = Viscous force

Ft = Turbulence force

Fc = Compressibility force

FV = Surface tension force

Note:
Euler equation based on momention conservation while Bernoulli is 
based on energy conservation.

Bernoulli's Equation: It is the integration of Euler's equation of 
motion along a stream line under steady incompressible flow conditions.

Assumptions:
(i) Along Stream line

(ii) Ideal flow

7Fluid Dynamics
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(iii) Steady and Incompressible

P
(

+ V
2g

2

+ Z = Constant

Static pressure
head Dynamic

pressure tread
Hydrostatic pressure

head

Stagnation pressure head

Piezometric pressure head

Note:
When normal acceleration is zero i.e., when particles move on a straight 
line then the piezometric head is a constant.

Kinetic Energy Correction Factor (D)

� D =
Actual K.E.

K.E. Calculated from Average Velocity

D =
v d3

2

A

A V
A

avg

Õ
Vavg = A v Ad³

Momentum Correction Factor (E)

� E =
Actual linear momentum/sec

Linear momentum calculated from AAverage Velocity

E =
2

A
2

avg

v Ad

A V
³

Vavg = vdA
AÕ

Note:

D E

Laminar flow between plates
Laminar flow between plates
Turbulent flow in pipes

2
1.543

4/3

4/3
1.2

1.015
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Applications of Energy Equation :-
1. Venturimeter

x To find discharge from a large diameter pipe
x Reduction in Area leads to increase in Velocity and decrease in 

pressure, this pressure decrease is noted and used in Bernoulli to 
calculate discharge.

(1)

Z1

22°

(2) h

(2) ThroatZ2

Datum

5°–6°

P1

%

P2

%

  Piezometric head difference h = 
2 2
2 1V V–2g 2g

x Qactual = cd
1 2
2 2
1 2

2gh
–

a a

a a

� a1, a2 cross-sectional areas at section 1 and 2

��cd o discharge coefficient

��� 1
2

a
a

 = area ratio

��
a a g

a a
1 2

1
2

2
2

2

�
��as this depends only on dimensions of venturimeter 

  it is called venturi-constant.

x d |
1 3to3 4

§ ·
¨ ¸© ¹

D where d = dia of throat

  D = dia of pipe
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x cd = 
h h

h
L�

| 0.98

x If inclined Venturimeter with differential manometer is used then 
piezometer head difference (h)

h x 




























G
G

G G

2

1

2 1

1  or h x 




























1
G
G

G G

2

1

2 1

  G2 o always of liquid filled in manometer

  G1 o of flowing liquid.

x o reading on manometer
2. Orificemeter

x Circular plate with concentric sharp edged hole is installed in a 
pipe such that the plate is perpendicular to the axis of pipe.

Plate

a1

a0

h

1 2

a2

1 2

stream lines

Venna-contracta

x Cheaper instrument, measures discharge but has more losses 
hence cd = 0.64 – 0.76

x Region of minimum flow area is called Vena contractra, here 
stream lines are assumed to be nearly parallel.

cc =
2
0

a
a

 = 
Area of Vena contractra

Area of opening

x Qactual = 1 0
2 2
1 0

2gh
–d

a a
c

a a

Note:
It the discharge is changed, then the position of Vena contractra will 
also change and then stream lineas will not be parallel at sec (2)-(2).
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3. Pitot tube:

x Measures the velocity of fluid

x
2
AV

2g  = h = measured  

  Va = 2 gh

x Va actual = CV
2gh

  CV = 0.98 (coefficient of velocity)
x Anemometer measures gas and air velocity.

4. Pitot Static tube (Prandtl tube)
x Measures the velocity of fluid.
x It measures the piezometric head at the same point where velocity 

is to be measured.

PA

Prandtl tube

Rise only due to

pressure only.

Velocity has no.

component

h

Rise due to

stagnation

V

2g

2
+ PA

VA = CV
2gh
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x Velocity head is found out from difference of total head and 

piezometric head.
x It can also used on rough boundaries.

5. Elbow meter or Bend meter
x Measures discharge

x When liquid moves along a bend pipe in free vortex V c
r

§ · ¨ ¸© ¹
 then 

its pressure increases with radius.

G1

G2

x

Elbow metere

V

2

1

More pressure

x More r, less v, more P o at outer surface 1 or compared to 2

x Q = cd
2
1

GA 2g – 1G x§ ·
¨ ¸
© ¹

Note:
If in venturimeter, the pipe is not contracted such that cc = 1 then it is 
termed as Nozzle meter and it is also used for calculating discharge.

x Rotameter is used to measure discharge while current meter is 
used to measure velocity in open channel. 
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Rate of change of linear momentum in any direction of a body with re-
spect to a fixed frame of reference is equal to external forces acting on 
the body in that direction.

F
on control

volume

externalx















 =

Net rate of flow
of linear
momentum out
of control volume
in x-directioon























=

Rate of flow
of momentum
out of control
volume in
-directionx























 – 

Rate of flow
of momentum
into the control
volume in
x- direction























Rate of change of Angular momentum in any direction of a body 
with respect to a fixed frame of reference is equal to torque applied on 
the body in that direction.

M

on control
volume

externalz















 =
Net torque on
control volume








=

Rate of change
of angular momentum
of control volume wrt
fixed frame off reference
in -directionz























 + 

Net rate of flow of
angular momentum
out of control volume
wrt fixed fraame of
reference in -directionz























8Momentum Equation and
Application
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Note:

"

"

Q1

Q2

Q
 Q1 = 

Q( cos )1
2
 

Q2 = 
Q( cos )1

2
 

Force acting on a bend pipe:

P A1 1

V1

y

x
"1

P A2 1,

CV

V2

y

x
"2

In x-direction:
6Fx = UQ (v2 cos T2 – v1 cos T1)
P1A1 cos T1 – P2A2 cos T2 + Rx = UQ (v2 cos T2 – v1 cos T1)
In y-direction: 6Fy = UQ (v2 sin T2 – v1 sin T1)
P1A1 sin T1 – P2A2 sin T2 + Ry = UQ (v2 sin T2 – v1 sin T1)

Resultant force R = R Rx y
2 2�

Sprinkler:
Torque on jet in z-direction = 6mvr = 0
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UQ2v2r2 – UQ1v1r1 = 0

Torque = U(A2u2)v2r2 – U(A1u1)v1r1 = 0

Note:
• Discharge Q is measured wrt relative velocity Q1 = A1u1, Q2 = A2u2

• v1 and v2 are absolute velocities of jet wrt ground
If net torque is zero then UQ1v1r1 = UQ2v2r2



� :ඍඑක�ඉඖඌ�1඗ගඋඐඍඛ 7.41

Weir: It is a concrete or masonary structure, constructed in an open 
channel to measure its discharge. It is generally in the form of vertical 
wall, with sharp edge at the top, running all the way across the open 
channel.

Crest or sill

H
Nappe

Weir or notch

Notch: It is a device (generally metallic plate) used for measuring the 
discharge through a small channel or a tank.

Shape of
opening

Shape of crest Effect of sides on
emerging nappe

Notre of
discharge

Types of weirs

Rectangular
Triangular
Trapezoidal
Cipollettie

Sharp crested
Broad crested
Narrow crested
Ogee-shaped

With end
contraction

Without end
contraction

Ordinary weir
Submerged weir

1. Rectangular sharp-crested Suppressed weir:
x Suppressed � without end contraction.

x Qactual = 2
3

2 2 3cd L g H cd = 0.62

  H o depth of water above crest level

9Weir and Notches
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Outside

air supplied

H'

H
Crest

Nappe

x If velocity of approach (Va) is also considered then

  Va = 
Q

H H L( ) 
, ha = 

2

2g
aV

,      Q�=
2
3

2 3 2 3 2c g h hd a aL H( )  

x Effect of end contraction i.e., if not suppressed L is replaced by 
Left

Leff = L – 0.1 nH
n = Number of end contractions (Here its 4)

Q =
2
3

2 3 2c gd L Heff

1 2 3 4

H

x When there is no ventilation of Nappe (i.e., air is not supplied 
from outside) then the discharge will increase or the Nappe will 
be pulled down due to negative pressure created in the zone below 
Nappe.

2. Flow over V-Notch or triangular weir:

� x�Q = 5/28 2g tan H15 2dc T
cd = 0.52

x Considering velocity of approach then

� �Q = 
8

15
2

2
5 2 5 2c g h hd a atan ( )


H   

x End contraction is not taken into account in this case.
Advantages

(a) Only one dimension is to be measured hence more accurate
(b) cd nearly constant with depth.
(c) Even for small discharge, high head is obtained. Hence no effect 

of viscosity and surface tension.

H

h

"

dh
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3. Trapezoidal Notch or weir:

Q = 1 2
3/2 5/22 82g L H 2g tan H3 15 2d dc c T�

L

H
"

2

"

2

4. Cipolletti-Weir:
It is a trapezoidal weir whose slopes are adjusted such that:
Decrease in discharge due to end contraction in rectangular

weir = Increase in discharge due to triangular portion.

L

H
"

2

"

2

4V

1H

tan
T
2

=
1
4

, T = 28q

Q =
2
3

2c gd LH3 2

cd = 0.63

5. Stepped Notch

Q = 2
3/2 3/2 3/2

1 1 2 3 3
2 2g L H + L H + L H3 dc ª º¬ ¼

Note:
H1, H2, H3 are measured from the top.

6. Broad crested weir
x Supports a Nappe such that stream lines become straight and 

pressure variation become hydrostatic over the weir.
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x Q = cd Lh 2g(H – )h

x In this, flow adjusts itself to give max. discharge at available head H.
x For max, discharge

h =
2 H3 Q = 1.7 cd LH3/2

cd = 0.85 – 1,
h = critical depth as discharge is maximum

x If Velocity of approach is also considered
Q = 1.7 cd L [(H + ha)

3/2 – ha
3/2]

7. Proportional weir:
x Q D H

Q = K H – 3
a§ ·

¨ ¸© ¹
 K = cd L 2ga

cd = 0.6 – 0.65

x Equation of curve 
2

1
2 1x y

aL
 














tan

x If there are fluctuations in discharge, then there will be less 
fluctuations in ‘H' as compared to rectangular and triangular weirs.

L

a

H

Y

X

(x, y)

Hyperbolic shape

8. Ogee spillway
x Profile of the crest is made such that 

it matches with the shape of water 
profile over sharp crested weir so 
as to avoid development of negative 
pressure below nappe (or Adhering Nappe).

Q = 3/22 L 2g H3 dc c0 = 0.62

0.15 H

H
h
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9. Flow through orifice

x Orifice is small opering in tank

x Q = 2ghdc a

    cc = ca
a

cd = cc u cv

  For equation of flow, eliminate 
‘t' from below equations

x = vt y = 21
2 gt  and get V = 

2

2
gx

y

x For cv, put V = 2vc gh  and get cv = x
yh

2

4

x Coefficient of resistance

cr =
loss of KE through orifice

Actual KE  = 2
1 – 1
vc

§ ·
¨ ¸
© ¹

10. Flow through mouth piece

x Mouth piece is short length of tube 
with length < (2 - 3) diameter

x Q = cd
2a gh cd = 0.82

11. Borda’s weir

   Q = cd a gh2

12. Submerged weir
x When downstream water level is above the crest of the weir then 

it is said to be submerged

x Q = c
1

3/22 L 2 (H – H )3 dc g

       c gd2
2LH ( ) 

x Sharp crested weir is more susceptible to submergence than a 
broad crested weir

h

a x

y

a = Area ofc
vena

contracta

h

Area ‘a’

Area = a

h

H
H – H'

H'
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x Modular limit, is the limiting value of submergence ratio upto 

which submerged weir behaves as free weir.

  Submergence ratio = 2
H

H 2
av
g

c§ ·
¨ ¸
¨ ¸�¨ ¸© ¹

 generally = 0.83 to 0.85

13. Discharge through sluice gate

v = 2gh

Q = cd a L 2gh

L = Inside length
h = Water depth from ground

h

a

v

Free flow Drowned flow

h

a

v

Effect on discharge due to error in head measurement
(i) For infinitesimal error's in head measurement
� �� �� Q = KHn

     dQ = Kn Hn–1 dH

     dQ
Q

�100  =
H 100H

dn§ ·u¨ ¸© ¹
  % error in discharge = n u % error in head measurement

n = 1 proportional weir, 
n = 1.5 rectangular weir, 
n = 2.5 triangular weir.

(ii) For Large error’s in head measurement

x�
Q Q

Q
2

1

 1 100  = 2 1

1

KH – KH 100
KH
n n

n u

x� For V-notch dQ
Q

�100  = 100sin
dT T§ · § ·u¨ ¸¨ ¸T T© ¹© ¹
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In Laminar flow fluid particles move along the straight parallel paths 
in layers. It occurs at a very low velocity, and here Viscous force 
predominates the inertial forces.
Nature of flow according to Reynold’s number (Re)

Laminar Transition Turbulent
Flow in pipe Re < 2000 2000 < Re < 4000 Re > 4000

Flow between 
parallel plate

Re < 1000 1000 < Re < 2000 Re > 2000

Flow in open channel Re < 500 500 < Re < 2000 Re > 2000

Flow through soil Re < 1 1 < Re < 2 Re > 2

Flow through circular pipe (steady uniform flow)

1. dp
dx

dz
dy

 

x is the direction of flow P.dA

dx

z

z
y

x

P +
dp

dx
dx dA

y is perpendicular to x

2. W = z
dp

dx
r  



2

    
r

Variation of shear
stress * linear

3. V V
r
R

 




max 1

2

2

4. Vmax = 1
4







dp
dx

R2

10Laminar Flow

R

Shear

stress

variation

Power input

per unit

volume

Velocity

variation
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5. Wmax = 
2

2
1 1V

R
P P

L
Rmax  





6. Q = 

128







dp
dx

D4 Hagen Poiseuille Formula

7. Vavg = 
Q
R

D2
2

 
 








1
32

p
x

8. Vmax = 2 Vavg

9. V = Vavg at r = R
2

 = 0.0707 R

10. hL = 
32 V L

D
QL

D

2

2







 128
4

11. hL = 
fl

g
f l
g

V
D

V
D

2

2
4
2

2

 ( )

f = friction factor = 
64
Rc

fc = coefficient of friction

Flow between two fixed parallel plates

1. u = 
1

2






dp
dx

 (By – y2) B

dx

dy
y

x

2. W = 
du
dy

dp
dx

 





1
2

 (B – 2y)

3. Q = 
1

12






dp
dx

B3

Velocity distribution Shear stress variation
4. Vavg = 

Q
A

B 





1
12

2


dp
dx

5. Vmax = 1
8

2








dp
dx

B

6. Vmax = 3
2

Vavg
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7. V = Vavg at y = B B
2

3
6

�
/3B

6

/3B

6

8. hL = h
VL

BL  12
2




  For couette flow (one plate moving other at rest)

u =
V
B

dp
dx

y  





1
2

 (By – y2)

W = V
B

dp
dx

B
y 



 



2

  Entrance length: The length of pipe from its entrance upto the 
point where flow attains fully developed velocity profile and which 
remains unaltered beyond that the known as entrance length.
For Laminar Flow   Le = 0.07 Re D
For Turbulent Flow Le = 50 D

NOTE:
For stability of laminar flow, a dimensionless parameter F (chi) has 

been defined where  


( )Chi
y du

dy
 





2

 and if F > 500, then flow 
becomes unstable

x At the wall (y = 0) and at centre of pipe du
dy







0 , x is zero.
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Turbulent flow results from the instability of laminar flow and due to 
continuous mixing between different layers. Momentum transfer occurs 
which gives rise to addition shear called Turbulent shear.

In turbulent flow every flow parameter is a combination of average 
value and fluctuating Value

i.e. u = u + uc

Note :-
x�Time average of fluctuating component is considered zero.
x�As the Reynold's number of the flow increases, velocity profile 

becomes more flatter i.e. turbulent flow velocity profile is flatter than 
laminar flow profile

u Instantaneous
velocity

Fluctuations
i.e. u&

u

u

t

Less Reynold's Number *

laminar flow

More Reynold's
Number Turbulent

flow

x�Shear stress at boundary (Ww) is much less in Laminar flow
as compared to turbulent flow as velocity gradient near the boundary 
is large in turbulent flow.

Shear stress in turbulent flow
WTotal = WLaminar + WTurbulent

Wlaminar =  du
dy







P�o Dynamic Viscosity (depends on fluid characterstic)

11Turbulent Flow
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Hydrodynamically smooth and Rough boundary
In hydrodynamically smooth boundries, average height of roughness 

(K) is much less than the laminar sub layer (Gc) while if average height of 
roughness (K) is more than the laminar sub layer its hydrodynamically 
rough boundary.

� Gc = 11.6
v
u*

� Q o Kinematic Viscosity

u* = Shear velocity = 


w  ; Ww = Boundary shear stress

Smooth Transition Rough
As per Nikuradse 
Experiment

K


 < 0.25 0.25 < 
K


 < 6
K


 > 6

In terms of 
Roughness Reynold 

No. put  










11 6. v
u*

u*K
v

 < 3 3 < 
u*K

v
 < 70

u*K
v

 > 70

Velocity distribution for turbulent flow in smooth as well as 
Rough pipe

1.
u u

u
� avg

*

 = 5.75 log10

y
R





  + 3.75

R

y

y

Here, y is measured from the boundary surface not from centre.
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2. U = Umax at y = R so 
U Umax avg�

u*

 = 3.75 ; log10 1 = 0

3. As u* = f
8

 Uavg then in 2, 
U
Uavg

max  = 1 + 1.33 f

4. In pipe flow, zw = dp
dx

R
2







�
R P

L2




 � R

L
hL2
 

� zw

U
 = 

R
L2

(ghL) = R
L

g
flV
gD

D
L

g
flV
gD2 2 4 2

2 2

 

�
zw

U
 = f

8
V2 � z

u
fw


 * 8

Vavg

5.
1
7 th power law of velocity distribution for smooth pipes

u
umax

 =
y
R







1
7

 (As per Nikuradse)

Friction factor ‘f’ for Turbulent flow (Artificial Roughnes)
1. For smooth pipes

(a) f = 
0 316

1 4

.
( ) /Re

, 4000 < Re < 105

Note:

For laminar flow, f = 64
Re

 circular pipe

(b) f = 0.0032 + 0 221
0 237

.
.

Re 
, 105 < Re < 4 u 107

(c) 1
f

 = 2 log10 (Re f ) – 0.8, 5 u 104 < Re < 4 u 107 (Nikuradse)

2. For Rough pipes
1
f

 = 2 log10
R
K







 + 1.74, R o Radius of pipe 

   R
K






o Relative Smoothness
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3. For Smooth Commercial pipes

1
f

 = 2 log10 (Re f ) – 0.8 5 u 104 < Re < 4 u 107 (Prandtl)
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It is the region in the immediate Vicinity of the boundary surface in 
which the velocity of flowing fluid increases gradually from zero at the 
boundary surface to the velocity of the main stream.
� x Developed by Prandtl in 1904 (even before Partition of Bengal)
� x Valid for infinitely large medium of real fluid and Not for ideal 

fluid.

x

y Lammar
sub region

Vo

Leading
edge

(stagnation
point)

Laminar
region

Transition
region

Turbulent
region

0& = 11.6v
u*

Essential boundary conditions:
1. x – 0, G = 0   2. y = 0, u = 0

3. y = G� u = V0   4. y = G�
du
dy

 = 0

Desirable boundary conditions: At y = G,
du
dy

 = 0, 
d u
dy

2

2  = 0

Salient points regarding boundary layer:
1. As the roughness of plate increases, length of laminar region 

decreases
2. Positive pressure gradient increases boundary layer thickness as 

well as reduces the length of laminar region.
3. With increase in velocity, boundary layer thickness decreases but 

with increase in viscosity boundary layer thickness increases.

12Boundary Layer 
Thickness
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4. On a smooth plate, in turbulent layer region, there is very thin layer 

adjacent to the boundary where the flow remains laminar. This 
region is called laminar sub layer.

5. Rex = 5 u 105 is called critical Reynold's number. 
  If Re < Rex then laminar boundary layer region in flat plates
  Re > Rex then Turbulent boundary layer region, in flat plates

Laminar region Laminar sublayer Turbulent Region

Velocity profiles

u
u

y


 





2

   
u
u

u y
v*

* 
   

u
u

y


 





1 7/

u
u

y y


 




 





3
2

1
2

3

 

Boundary layer Thickness (G): It is the distance from the boundary 
surface in which velocity reaches 99% of the free stream velocity.

At y = G, V = 0.99 V0

Displacement Thickness (G
): Distance by which boundary should 
be shifted in order to compensate for the reduction in mass flow rate on 
account of boundry layer formation.

� G* = 1
00

−⎛

⎝
⎜

⎞

⎠
⎟∫

V
V

δ

dy

For
V
V0

 =
y m

δ
⎛
⎝⎜

⎞
⎠⎟
1/

� G* =
δ

m + 1

V = Velocity at any distance y from the boundary
V0 = Free stream velocity

Reduction in mass flow rate per unit width = U G* V0

Momentum Thickness (T): Distance by which boundary should be 
shifted in order to compensate for the loss of momentum due to formation 
of Boundary layer.
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� T =
V
V

V
V0 00

1 








dy

For
V
V0

1

 





y m



/

� T =
δm

m m( ) ( )+ +1 2

Loss of momentum per unit width of boundary layer = UTV0
2

Energy thickness GE: Distance by which boundary should be shifted 
in order to compensate loss of energy due to boundary layer formation.

� GE =
V
V

V
V0

2

0
2

0

1 −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∫

δ

dy

Loss of energy due to boundary layer formation = 
GV

E0
3

2

Note:
� x�G* > GE > T

� x Shape factor = 
δ
θ
*

, For
V
V0

1

= ⎛
⎝⎜

⎞
⎠⎟

y m

δ

/

, Shape factor = 
m

m
� 2

Equation's in boundary layer

1. Continuously equation, 
w
w
u
x

 + 
w
w
v
y

 = 0

2. Constant pressure gradient across boundary layer, 
 


1


p
y

 = 0

3. For steady 2–D Laminar flow, u
u
x

v
u
y

p
x

z
y




 


  


 


1 1
 

4. Von-Karman momentum integral equation, 



0

0
2V
 d

dx

W0 = Boundary shear stress
V0 – Free stream velocity

� T = Momentum thickness
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Average drag coefficient

Hardness

Local skin
friction coefficient

C fx
 = 




0

0
2

2
V

Wall shear stress
Dynamic pressure





 C favg
 = 

(Drag F.M./Area
VG 0

2

2

          = 
Avg. wall shear stress

Dynamic pressure

Note:
  It Boundary layer is laminar through out

II I

L

2

L

2

F Drag force on I half
Drag force on II half

 = 1 + 2 i.e., > 1

Blassius solution in absence of velocity profile on smooth plate

Laminar Turbulent
Re < 5 u 105 5 u 105 < Re < 107 107 < Re < 109

G 5x

exR
0 376

1 5
.

(R ) /
x

ex

0 22
1 6

.
(R ) /

x

ex

Cfx 0 664
1 5

.
(R ) /

ex

0 059
1 5

.
(R ) /

ex

0 37

10
2 58

.
(log R ) .

ex

Cfavg 1 328.
Rex

0 074.
(R )eL

0 455

10
2 58

.
(log R ) .

eL

Applicable only if boundary layer is 
Turbulent through out

Note:
• In Laminar region GD x , while in turbulent region G D x4/5, Hence 
G increases more rapidly in turbulent region than in laminar
region

• In Laminar region Cfx D
1
x

, while in turbulent region Cfx D
1
1 5x

Hence, W0 decreases more rapidly in laminar region than in 
turbulent region.
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Drag force on a plate which has both Laminar and Turbulent 
regions

Drag Force = Cfavg u�
V

Area0
2

2


(a) 5 u 105 < Re < 107, Cfavg =
0 074 1700

1 5
.

(R ) R/
e eL L

�

(b) 107 < Re < 109, Cfavg =
0 455 1700

10
2 58

.
(log R ) R.

e eL L

�

Separation of Boundary layer
Boundary layer thickness increases along the length of the body. So 
the fluid close to the body surface has to do work against skin friction 
at the expense of kinetic energy. This leads to decrease in velocity and 
increase in pressure in the forward direction. And at the point where

du
dy y

⎛
⎝
⎜

⎞
⎠
⎟

= 0
 = 0 is called separation point

du
dy y

⎛
⎝
⎜

⎞
⎠
⎟

= 0
 > 0, Attached flow

du
dy y

⎛
⎝
⎜

⎞
⎠
⎟

= 0
 < 0, Already separated flow

pressure

distribution

I
Separation

stream line

y

Outer edge

of boundary

layer

U!
y

U!

y

U!

D

A

S

E
X

dp

dx
< 0 Pmin

dp

dx
> 0
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Separation of flow occurs in Pumps, Turbines, Aerofoils, open channel 

transitions etc.

Consequences of boundary layer separation
(a) There is increase in pressure drag if there is boundary layer 

separation in case of external flow E.g. cars
(b) Separation of boundary layer increases flow losses in case of 

internal flow like pipes.

Methods to control separation
1. Rotating boundary in flow direction
2. Supplying additional energy from blower
3. Streamlining of body shapes
4. Suction of flow moving fluid by suction slot 
5. Injecting fluid into boundary layer
6. Providing guide blades on bends.



It helps in determining a systematic arrangement of the variations 
in the physical relationship, combining dimensional variable to form 
non-dimensional parameters. The various physical quantities can be 
expressed in terms of fundamental quantities of Mass (M). Length (L), 
Time (T) and Temperature (T).

Dimensional homogeneity: States that every term in an equation 
when reduced to its primary (fundamental) dimensions must contain 
identical powers of each dimension.

Dimensions of Few Physical Quantities
(a) Kinematic Quantities:

1. Angular velocity T–1

2. Angular accelration T–2

3. Vorticity T–1

4. Kinematic viscosity L2T–1

5. Stream function L2T–1

6. Circulation L2T–1

(b) Dynamic Quantities:
1. Specific weight ML–2T–2

2. Dynamic viscosity ML–1T–1

3. Surface tension MT–2

4. Modulus of elasticity ML–1T–2

5. Bulk modulus ML–1T–2

6. Angular momentum ML2T–1

Methods of Dimensional Analysis
(a) Rayleigh's Method: It is used for determining the expression for a 

variable which depends upon maximum of three or four variables. 
It does not provides any information regarding the number of 
dimensionless groups to be obtained as a result of dimensional 
analysis.

13Dimensional Analysis 
and Model Studies
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(b) Buckingham's S-theorum: If there are n no. of variables in a 

dimensionally homogenous equation and these variables contain 
m fundamental dimensions then the no. of dimensionless groups 
which can be formed shall be n-m. These dimensionless groups are 
called S-terms.

  Selection of 3 repeating variables should be from geometry of flow
(size and shape of fluid passage, or diameter or length of moving 
body), fluid property (like density, surface tension, viscosity, 
elasticity, vapour pressure) and fluid motion (like velocity, 
accelration, discharge, pressure, power, force)
Similitude: To achieve similarity between the flow in the model 
and its prototype, every dimensionless parameter referring to the 
conditions in the model must have the same numerical value as the 
corresponding parameter referring to the prototype

Dynamic
(similarity of forces)

Kinematic
(similarity of motion)

Geometric
(similarity of shape)

Note:
For kinetic similarity, Geometric similarity must exist and for dynamic 
similarity both Geometric and kinematic similarity must exist. These 
are necessary conditions but not sufficient conditions i.e. if kinematic 
similarity exists then geometry similarity will be definitely there but 
if geometric similarity exists then kinematic similarity may or may 
not exist. (same for dynamic similarity)

Forces acting on Fluid mass
1. Inertia Force (Fi) = GL2V2

2. Viscous Force (Fv) = PVL
3. Gravity Force (Fg) = GL3g
4. Pressure Force (Fp) = PL2

5. Surface tension Force (FV) = VL
6. Elasticity Force (Fe) = KL2

Dimension less-Parameters
1. Reynold's Number

Re =
Inertial Force
Viscous Force

Re =
VL
Q
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2. Froude's Number

Fe =
Inertial Force
Gravity Force

Fe =
V

Lg

3. Euler's Number

Eu =
Inertial Force

Pressure Force

Eu =
V

/p G

4. Weber Number

We =
Inertial Force

Surface tension Force

We =
V

( / ) L

5. Mach Number

M =
Inertial Force
Elastic Force

M =
V

K / G
 = V

C

(1) Reynold's model law
Gr r r

r

V L
P  = 1

� Pipe flow, Submarines, Aeroplanes, drag on parachutes

(2) Froude's law
V

L
r

r rg
 = 1

� when a free surface is present eg wiers, spillway, channels etc 
where gravity is predominant.
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Note: L = Hydraulic depth = 
A
P

 (in case of open channel flow)

Reynold's law Froude's law

Velocity Ratio (Vr) µ
δ
r

r rL
Lr

Time Ratio (Tr) δ
µ
r r

r

L2 Lr

Acceleration Ratio (ar) µ
δ

r

r r

2

2 2L

1

Force Ratio (Fr) µ
δ

r

r

2 GrLr
3

Power Ratio (Pr) µ
δ

r

r r

3

2L

GrLr
3.5

Discharge Ratio (QR) µ
δ
r r

r

L GrLr
2.5

3. Euler’s law Vr = Pr r/G

� In case of cavitation, pressure due the sudden closure of value, 
high pressure flow in pipes.

4. Weber model law Vr = 
σ
δ

r

r rL

� Flow of blood in arteries and veins, seepage through soil capillary 
rise, rising bubble, flow over weir for small head.

5. Mach law V = kr r/G

  Compressibility force are predominant when mach no t�0.3
  M < 1 o Subsonic  M = 1 o Sonic
  M > 1 o Supersonic M >> 1 o Hyper sonic
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River model law (Distorted model law)

(a) Horizontal scale ratio LrH = 
L
L

B
B

p

m

p

m
 

(b) Vertical scale ratio Lrv =
H
H

p

m

(c) Velocity ratio Vr = Lrv

(d) Area ratio Ar = Lrv u�LrH

(e) Discharge ratio Qr = LrH . Lrv
3/2

Model Laws for
(a) Head ratio Hr = Nr

2 Dr
2 Dr = diameter ratio

(b) Discharge ratio Qr = Nr Dr
3 Nr = rotational speed ratio

(c) Power ratio Pr = Gr Nr
3 Dr

5
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Practically, all the flow in the pipes is turbulent in nature.

Losses in pipe fillings
Minor loss       10 – 20%

Head loss

Frictional loss
Major loss       80 – 90%

Major Losses
(a) Darcy's weisbach equation

hf =
f l Q

D

2

512 1.

(b) Chezy's formula

V = C RS R = 
A
P

 = 
π
π4 4

2D
D

R
D⇒ =

� � �� S = Slope = 
hL

L

Note:

Equating both the above equations we get C = 
8g
f

Minor losses
(a) Due to sudden expansion

hL =
( )V V V A

A
1 2

2
1
2

1

2

2

2 2
1

−
= −⎛

⎝
⎜

⎞

⎠
⎟g g V1

P1

P!

V2

A1 = Area of smaller dia pipe
A2 = Area of bigger dia pipe

14Pipe Flow
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V1 = Velocity of smaller dia pipe

hL = K
V1

2

2g
  where K = 1 1

2

2

−⎛

⎝
⎜

⎞

⎠
⎟

A
A

Note:
x It is assumed that P1 = Pc during derivation of this head loss
x Momentum equation and Bernouilli's equation are used in 

derivation of losses 
x Losses are always expressed in terms of velocity of smaller 

diameter pipe.

(b) Losses due to sudden contraction

hL = 
( )V V KVC −

=2
2

2
2

2 2g g

vena contractra

V

2

(2)(1)

AC

where K = 
1 1

2

Cc
−⎛

⎝
⎜

⎞

⎠
⎟ , Cc = 

A
A

c

2

Note: Loss in expansion is much higher than loss in contraction.
(c) Entry loss

entry in pipe

V

h

L

hL = 
0 5

2

2. V
g

(d) Exist loss (due to impact)

hL = 
KV2

2g
V

h

L

Note: In exist loss due to impact, K is the kinetic energy correction 
factor. For Turbulent its K = 1 and for Laminar its K = 2.

(e) Loss due to pipe fittings and bends

hL = 
KV2

2g
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Type of fitting K
Standard Tee 1.8

Standard Elbow 0.9

45q�Elbow 0.4

90q Bend (Sharp) 1.2

Foot value of pump 1.5

Gate value half open 5.6

Angle value 5.0

Hydraulic gradient line and Total energy line

Line joining the points of piezometric head 
P
γ
+⎛

⎝⎜
⎞
⎠⎟

z  at various 

points in a flow is called hydraulic gradient line.

Line joining the points of total energy 
P
γ
+ +

⎛

⎝
⎜

⎞

⎠
⎟

V2

2g
z  at various points 

in a flow is called total energy line.
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Note: 

x Total energy line always fall down. But if there is a pump 
or turbine placed in the flow there will be sudden rise or fall 
respectively.

x Hydraulic grade line may rise or fall in the flow direction, 
depending upon the velocity head (which varies with the area of 
cross section)

x Total energy line is horizontal in case of idealised Bernoulli's 
flow because losses are zero.

Pipe connection

Series connection

Parallel connection

1

2

3

Q Q

1

2

3

A B

l
1 1

,d

l
2 2

,d

l
3 3

,d

h h h h

Q  Q Q Q
L L L L

1

AB 1 2 3
= + +

= =2 3    

Q = Q Q Q
h h h h

1

L L L LAB 1 2 3

+ +
= = =

2 3

Equivalent pipe: A pipe which can replace existing compound pipe 
while carrying some discharge under same losses. For series connec-
tion equivalent pipe of length ‘L’ and diameter ‘D’ will be

L
D5  = 

l
d

l
d

l
d

1

1
5

2

2
5

3

3
5� �

Note: Increase in discharge by adding a pipe of same diameter in 
mid way of a pipe but keeping the head constant is 26.53%.

d

d

New

pipe

l/2

l
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Flow through siphon:

(1)

Palm

H

h

S

(2)

l!
Note: For No. vaporisation Ps > Pvaporization, otherwise vapours 

will form and flow will be stopped.

1. Get velocity of flow in pipe from head difference

H = fl
g g g
V
D

V V

Friction loss Entry loss Exist loss

2 2 2

2
0 5

2 2
� �.

[ ] [ ] [ ]]

l = Total length of pipe

2. Apply Bernoulli's between 1 and summit (s)

Patm

w

1

J  = 
P V V Vs

w
sg

h
g

fl
gDγ

+ + + + ′2 2 2

2
0 5

2 2
.

lc = length of pipe b/w 1 and (s)
Power transmitted through pipe

H

H/2

H/2

1

2

3

'D'

l

head available = H – h

f

Efficiency (K) = 
H

H
� hf

Power (P) = JQ (H – hf)

For max power 
d
d

P
Q

 = 0 i.e. hf  
H
3

Kmax = 66.67%, max power lost = 33.33%
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Note: It Nozzle of area ‘a’ is attached at exit then for maximum 

efficiency
fla
DA

2

2
1
2

  where A corresponds to area of diameter D.

x Time required to empty the reservoir 
dh

h
g

K
a
A

dt
TH

= ×∫∫ 2

00
 where 

K is the head loss constant.
x�Time required to empty the top half of tank from 1 to 2 be t1 and 

for bottom half from 2 to 3 be t2 then t1 = 0.414 t2

Special cases of head loss
(a) Loss of head due to friction in tapering pipe

D

1

D

2

x

L

hf = 
f dx

D kx

L Q2

1
5

0 12 1. ( )−∫

K = 
D D

L
1 2−⎛

⎝⎜
⎞
⎠⎟

(b) Head loss due to uniform discharge at regular interval from a 
closed end pipe

Q

L

D

x

q

qc = 
Q
L
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hf = 
1
3 12 1

2

5
flQ

D.

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Head loss is one-third the head loss of constant discharge.
Water-hammer Pressure: Sudden closure of valve in a pipe carying 

flowing liquid destroys the momentum of flowing liquid and sets up a 
high pressure wave. This pressure wave travels with the speed of sound 
and causes hammering action in pipe called Knocking or water hammer.

Velocity of Pressure Wave (c)

In Rigid Pipe In Elastic Pipe

L

Value

C = 
K
G

  C = 
K

KD
tE

δ
1

1

1 2

+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

/

K = Bulk density of liquid
G = mass density of liquid
E = modulas of elasticity of material
t = thickness of pipe
D = diameter of pipe

x Time period for complete cycle of water hammer pressure = 
4L
C

Critical time T0 = 
2L
C

Water hammer pressure (ph)

Rapid closure Slow closure

T T!

o

T

o

< T 1.5 T!

o

T

o

<< T
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Phr = G C V
P
P

hs

hr
=

T
T

0 p = δ
L
T

V⎛
⎝⎜

⎞
⎠⎟

V = Initial velocity of flow

Note: Equations used in solving branching of pipes connecting 
reservoirs at different levels are (a) Continuity equation (b) Bernoulli's 
equation (c) Darcy weis bach equation.

Hardy-Cross method of solving closed loop pipe networks.
1. Flow into any junction must be equal to flow out of each junction.
2. Loss of head due to flow in clockwise direction must be equal to 

loss of head due to flow in anti clockwise direction.

Modification in discharge 'Q = 
−

−
Σ r

r n

n

n

Q

Q 1

where hf = rQn and 'Q is algebrically added.


