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CHAPTER 3

THEORY OF MACHINES

Machine is a mechanism that consists of fixed and moving parts and modifies mechanical energy to assist in performing
of human tasks. Theory of machines is an applied science of the relationships between geometry and relative motion
of the parts of machine, and concerns to the forces which act on those parts. It involves analysis of as well as synthesis.
Analysis is the study of motions and forces concerning different parts of an existing mechanism, whereas synthesis
involves design of different parts. The study of mechanisms, therefore, is divided into kinematics and dynamics. The
branch of kinematics deals with the relative motions of different parts of a mechanism without taking into account
the forces producing the motions, thus it is solely based on geometric point of view. Dynamics involves determination
of forces impressed upon different parts of a mechanism. It has sub-branches of kinetics and statics. Kinetics is study
of forces when the body is in motion whereas statics deals with forces when the body is stationary.

3.1 MECHANISMS AND MACHINES

Mechanisms and machines are composed of kinematic
links and pairs. Mechanisms modify the external force
and deliver some advantage in motion and force. For
this, a term mechanical advantage is defined for a
mechanism as the ratio of the output force (or torque) to
the input force (or torque). The power input and output
remain the same during such modification.

3.1.1 Rigid and Resistant Bodies

A rigid body does not suffer any distortion under the
action of external forces. Resistant bodies are semi-rigid
bodies, normally flexible but under certain loading con-
ditions, act as rigid bodies. Resistant bodies constitute
parts of machines through which requisite motion and

forces are transmitted, such as belts, fluids, springs. For
example, a belt is rigid when subjected to tensile force.
Similarly, fluid acts as rigid body in hydraulic press
during compression. Same is the case with springs.

3.1.2 Kinematic Links

Kinematic link is a resistant body or an assembly of
resistant bodies which go on to make a part of a machine
and enable modification and transmission of mechanical
work through the relative motion between the parts.
Each link or element can consist of several parts which
are manufactured as separate units. A link need not
necessarily be a rigid body, but it must be a resistant
body.

Depending upon the number of joints on which
turning pairs can be placed, kinematic links are classified
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146 CHAPTER 3: THEORY OF MACHINES

as binary, ternary, quaternary links, which have 2, 3, 4
joints, respectively [Fig. 3.1].

Binary link Ternary link Quaternary link

Figure 3.1 Types of links.

A structure only modifies and transmits forces with-
out resulting in any work. The simplest structure is one
with three bars.

3.1.3 Kinematic Pairs

Two links when connected together in such a way
that their relative motion is completely or successfully
constrained, constitute a kinematic pair.

3.1.3.1 Types of Constrained Motions A kinematic
pair can be constituted by various means which decide
the type of relative motion between the links. If this
relative motion is one and only type, then it is said to
be constrained motion. This can be of three types:

1. Completely Constrained Motion A completely con-
strained motion takes place in one definite direc-
tion. The motion is complete by its own links. For
example, a square bar can only slide in a square
slot.

2. Incompletely Constrained Motion If motion of a
link is possible in more than one direction and
governed by the direction of force, the motion is
called incompletely constrained motion. For exam-
ple, a circular bar can rotate and reciprocate in a
round hole.

3. Successfully Constrained Motion When incom-
pletely constrained motion is made to be only one
direction by using some external means, it is called
successfully constrained motion. For example, the
vertical motion of a shaft in footstep bearing is
constrained by load upon it while it can undergo
rotation only. Similarly, the rotatory motion of a
piston inside the cylinder is constrained by a piston
pin.

3.1.3.2 Classification of Kinematic Pairs Kinematic
pairs are classified according to the nature of relative
motion, contact, and constraint. This is explained as
follows:

1. Nature of Relative Motion Various types of kine-
matic pairs are explained as follows [Fig. 3.2]:

(a) Sliding Pair - If two links of a pair are
connected in such a way that they can have
only sliding motion, they are called sliding pair,
such as piston-cylinder, ram-guide [Fig. 3.2].
A sliding pair has a completely constrained
motion.

(b) Turning Pair - If two links of a pair are
connected in such a way that they can have
only turning motion, they are called turning
pair, such as a shaft with collars at both ends
fitted into a circular hole, and the crankshaft
in a journal bearing. A turning pair has a
completely constrained motion.

(c) Rolling Pair - When a link of a pair has a rolling
motion relative to other, the pair is called
rolling pair, or cylindrical pair, for example, a
rolling wheel on a flat surface, pulley in a belt
drive. The ball-bearing shaft constitute a very
interesting example in which balls of bearing
make rolling pair with both the shaft and the
bearing.

(d) Screw Pair - If a link of a pair has a turning as
well as sliding motion relative to the other, the
pair is called screw pair. The lead screw and
nut of a lathe machine constitute screw pair.

(e) Spherical Pair - When one link with spherical
interface turn inside another link, it forms
spherical pair, for example, ball and socket
joint.

Sliding pair Turning pair Rolling pair

Screw pair Spherical pair

Figure 3.2 Relative motion in kinematic pairs.

2. Nature of Contact By virtue of the nature of
contact, kinematic pairs can be two types:

(a) Lower Pair - If the two links in a pair have
surface contact while in motion, the pair so
formed is called a lower pair. The relative
motion is purely sliding or turning, and the
contact surface is similar in both links, for
example, shaft revolving in a bearing, steering
gear mechanism, universal coupling.
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3.1 MECHANISMS AND MACHINES 147

(b) Higher Pair - If the two links in a pair have
point or line contact while in motion, the
pair so formed is known as a higher pair. The
contact surface of the two links is dissimilar.
For example, cam and follower mechanism,
toothed gears, ball and roller bearings.

3. Nature of Constraint The concept of closed and
unclosed kinematic pairs is explained as follows
[Fig. 3.3]:

(a) Closed Pair - If the elements of a pair are held
together mechanically, it is known as a closed
pair. The contact between the two elements
can be broken only by destruction of at least
one of them. All lower pairs and some of the
higher pairs are closed pairs.

(b) Unclosed Pair - If the elements of a pair are
not held together mechanically, instead, either
due to force of gravity or some spring action, it
is called unclosed pair. For example, cam and
follower.

Closed pair Unclosed pair

Figure 3.3 Nature of constraints.

3.1.4 Kinematic Chains

A kinematic chain is a combination of kinematic pairs
in which each link constitutes two pairs and its relative
motion is completely constrained. Thus, a kinematic
chain has a single degree of freedom [Section 3.1.9]. A
redundant chain does not allow any motion of a link
relative to the other.

A simplest kinematic chain is a four bar chain. A
chain having more than four links is called compound
kinematic chain.

3.1.5 Inversions of Kinematic Chain

Primary function of a mechanism is to transmit or to
modify motion and it can work as a machine. Different
types of motions are possible from a given mechanism
by fixing one of its kinematic links. The mechanisms

obtained in this way can be very different in appearance
and in the purposes for which they are used. Each
mechanism is termed as the inversion of the original
kinematic chain.

As many inversions are possible as the number of links
in the mechanism. Inversion has no effect on relative
motion between links of the mechanism, but changes the
absolute motion.

3.1.6 Four-Bar Chains

A four-bar mechanism consists of four bars joined
together in closed series with pin joints [Fig. 3.4]. The
four links can have different lengths solely depending on
the purpose of inversions. Let l1, l2, l3, l4 be the lengths

3

2

1

4

Figure 3.4 Four-bar chain mechanism.

of links of the four-bar mechanism in ascending order
(l1 < l2 < l3 < l4). Based on the lengths of the fixed
and free links, the inversions of this four-bar mechanism
can be divided into two groups:

1. Class I According to Grashof’s law, if there is to
be continuous relative motion or rotation between
two links, the sum of the shortest and largest links
of a planar four-bar linkage cannot be greater than
the sum of remaining two links.

l1+ l4 ≤ l2+ l3

This type of mechanism is called of class-I, which
comprises the following mechanisms:

(a) Crank Lever Mechanism - By making the
largest link as crank (adjacent link fixed).

(b) Drag Link Quick Return Mechanism - By
fixing the shortest link.

(c) Double Crank Mechanism - By having opposite
links of equal length and fixing the shortest
link.

2. Class II This inversion is opposite to Class-I in
reference to Grashof’s law.

l1+ l4 > l2+ l3

Therefore, there is no continuous rotation between
the two links, and the resulting mechanism is a
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148 CHAPTER 3: THEORY OF MACHINES

rocker-rocker mechanism or double rocker mecha-
nism.

Therefore, in a four-bar chain, for the link adjacent
to the (fixed) short link to be a crank, the sum of the
shortest and the longest links should be less than the
sum of the other two links.

Various inversions of a four-bar chain are described
as follows:

1. Crank-Lever Mechanism A crank-lever mecha-
nism, also known as crank-rocker mechanism is
obtained by fixing the largest link of the four-bar
chain.

1

2

3
4

Larget link

Figure 3.5 Crank-lever mechanism.

The crank rotates full revolution but the fol-
lower can only oscillate [Fig. 3.5].

2. Drag-Link Mechanism Drag link mechanism is a
quick-return mechanism having a complete revolu-
tion of crank and follower. It is obtained by fixing
the shortest link [Fig. 3.6].

1

2

3

4

Shortest
link

Figure 3.6 Drag-link mechanism.

3. Double Crank Mechanism A double crank mecha-
nism consists of two cranks, as seen in following
applications:

(a) Couple Wheel Locomotive - In coupled wheel
locomotive mechanism, the opposite links are
of equal lengths:

l1 = l3
l2 = l4

(b) Pantograph - A pantograph is used to produce
a path described by a point either to an
enlarged or reduced scale [Fig. 3.7].

1

2 3

45

Figure 3.7 Pantograph.

This mechanism has a peculiarity in that
instead of one fixed link, only a point is
fixed as a pivot while input motion is given
by moving a point on some link along some
given planar curve. Applications of pantograph
include profile grinding, indicator rig, etc.

(c) Parallelogram - In parallelograms also, the
opposite links are of the same length.

3.1.7 Slider Crank Mechanism

A slider crank mechanism is a modification of the four-
bar chain in which a turning pair is replaced by sliding
pair; the mechanism consists of one sliding pair and
three turning pairs [Fig. 3.8]. It is used to convert rotary
motion into reciprocating motion and vice versa in
reciprocating machines.

1

2 3

4

Figure 3.8 Slider-crank mechanism.

The inversions of slider-crank mechanism and their
applications are described as follows:

1. Frame-Fixed In this inversion, link 1 (frame)
is fixed and an adjacent linkage is made crank.
Following are the important applications of this
inversion:
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3.1 MECHANISMS AND MACHINES 149

(a) Reciprocating engines

(b) Reciprocating compressors

2. Crank-Fixed Fixing of link 2 (crank) makes link
3 (connecting rod) to rotate about joint 2-3. The
inversion applies in the following applications:

(a) Whitworth Quick Return Mechanism - This
mechanism is used in metal cutting machines
in which forward stroke takes a little longer and
cuts the metal, whereas the return stroke is idle
and takes a shorter period [Fig. 3.9].

1

2

4

3

5

Figure 3.9 Whitworth quick return motion.

(b) Rotary Engine - This mechanism is obtained
by replacing the slider by a piston and making
link 1 (frame) to act as pivoted cylinder.
Instead of one cylinder, seven, or nine cylinders
symmetrically placed at regular intervals in the
same plane are used. All the cylinders rotate
about the same axis and form a balanced
system.

3. Connecting Rod-Fixed This mechanism is ob-
tained by fixing the link 3 (connecting rod), which
makes link 1 to oscillate about the joint of 2-3.
The following are the important applications of
this inversion:

(a) Oscillating Cylinder Engine - In this applica-
tion, the piston reciprocates inside the cylinder
pivoted to the fixed link.

(b) Slotted Lever-Crank Mechanism - If the cylin-
der is made to work as a guide, and the piston
in the form of a slider, it results into the slotted
lever-crank mechanism [Fig. 3.10].

4. Slider-Fixed If link 4 (slider) is fixed, it makes link
3 (connecting rod) to oscillate about fixed pivot 1-
2. Inversion by fixing the slider is applied in hand
pump.

3.1.8 Double Slider Crank Mechanism

It is possible to replace two turning pairs by two sliding
pairs of four-bar mechanism to get a double slider crank
mechanism [Fig. 3.11].

1

2
4

3

5

6

Figure 3.10 Slotted lever-crank mechanism.
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A

B

C

y

x

θ

Figure 3.11 Double slider crank mechanism.

Following are inversions and their applications of this
mechanism:

1. Frame-Fixed The inversion obtained by fixing
the frame is seen in elliptical trammel [Fig. 3.11].
With the movement of the sliders, any point on the
(connecting) link (3), except mid-point, traces an
ellipse on a fixed plate. The mid-point of the link
3 traces a circle. To examine, let the link (3) AB
makes an angle θ with the x-axis. Considering the
displacements of the sliders from the center-line of
the trammel,

x = BCcos θ

y = ACsin θ

Therefore,

x

BC
= cos θ

y

AC
= sin θ

Squaring and adding

x2

BC2 +
y2

AC2 = 1 (3.1)

This is an equation of ellipse, indicating that the
path traced by point C is an ellipse which has its
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150 CHAPTER 3: THEORY OF MACHINES

semi-major and semi-minor axes equal to AC and
BC, respectively.

For the special case, when C is the mid-point of
AB, AC = BC, and Eq. (3.1) transforms into the
equation of a circle of diameter equal to the length
of the link.

2. Slider-Fixed The inversion achieved by fixing
either of the sliders is applied in scotch yoke which
is used to convert the rotary motion into a sliding
motion [Fig. 3.12].

Figure 3.12 Scotch yoke.

This mechanism is most commonly used in
control valve actuators in high pressure oil and
gas pipelines. As the connecting link AB rotates
like a crank, the horizontal portion of the link
(frame) reciprocates in the fixed link (any one of
the sliders).

3. Crank-Fixed The inversion achieved on crank fixed
is applied in Oldham Coupling which is used to
join two rotating parallel shafts at a small distance
[Fig. 3.13].

Center piece
Shaft ends

Figure 3.13 Oldham coupling.

Two flanges, each having a rectangular slot,
are keyed, one on each shaft. The two flanges
are positioned such that the slot in one is at
right angle to the slot in the other. All the
rotating elements have the same angular velocity
at every instant. The path followed by the center
of intermediate piece is circle of diameter equal to
distance between the two parallel shafts.

Maximum sliding velocity of the intermediate
piece is equal to peripheral velocity of the center

of the disc along its circular path (i.e., c×ω where
c is parallel distance and ω is angular velocity
of shafts). Angular velocity of the center of cross
about the center of its circle is two times that of
angular velocity of the cross.

3.1.9 Degrees of Freedom

The number of degrees of freedom or mobility of a
system is the number of independent variables that must
be specified to completely define the condition of the
system. Same applies to rigid body, kinematic pair, and
kinematic chain, discussed as follows:

1. Rigid Body Degree of freedom for a rigid body is
defined as the number of possible motions in which
the body can move in the given space.

An unconstrained rigid body in space can be
described in six independent motions:

(a) Translation along x, y, z axes

(b) Rotation about x, y, z axes

Thus, a rigid body possesses six degrees of free-
dom. Connection with other bodies through pairs
impose certain constraints on the relative motion,
hence, the number of degrees of freedom is re-
duced.

2. Kinematic Pair Degree of freedom of a pair is
defined as the number of independent relative
motions a pair can have in the given space.

3. Kinematic Chain To obtain constrained or definite
motions of the links of a mechanism, it is necessary
to know how many inputs are required to specify
the position of the mechanism. In some mecha-
nisms, only one input is necessary that determines
the motion of other links, and it is said to have
one degree of freedom. The degree of freedom of a
structure is zero. A structure with negative degree
of freedom is known as a super-structure.

The following are useful equations to calculate
degrees of freedom for kinematic chains.

(a) Gruebler’s Equation - A rigid link in a
plane has three degrees of freedom; an planar
assembly having n links shall posses total
degrees of freedom 3n, before the links are
joined together. Each revolutionary pair or
joint will remove two degrees of freedom (e.g.
xi, yi). Thus, if n is number of links of a
mechanism including fixed links, f1 is the
number of pin joints or revolute pairs or pairs
that permit one degree of freedom (i.e. the
number of pint joints plus the number of sliding
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pairs or total number of lower pairs), then,
degrees of freedom, say F , are found as

F = 3(n−1)−2f1 (3.2)

This is called Gruebler’s equation.

(b) Kutzbach Equation - When there are such pairs
which remove only one degree of freedom (f2,
number of roll sliding pair or total number of
higher pairs), then the Gruebler’s equation [Eq.
(3.2)] is modified into

F = 3(n−1)−2f1−f2 (3.3)

This is called the Kutzbach equation. Alterna-
tive form of this expression can be obtained in
terms of number of binary joints J , number of
higher pairs f2, for n number of links as

J+
f2
2

=
3

2
n−2 (3.4)

or

n =
2

3

(

J+2+
f2
2

)

(3.5)

In the above equation, one ternary joint is
equivalent to two binary joints, and one qua-
ternary joint is equivalent to three binary joints
[Section 3.1.2].

3.2 UNIVERSAL JOINT

A universal joint is used to connect two non-parallel and
intersecting shafts and misaligned shafts, for example,
to transmit power from the gearbox to rear axle in an
automobile. Universal joint is also known as Hooke’s
joint1.

C

D

A

B

α

Input shaft

Output shaft

O

Figure 3.14 Hooke’s joint.

Consider a universal joint, connecting two horizontal
shafts 1 and 2 at an angle α [Fig. 3.14]. The shafts are

1During 1667-1675, Robert Hooke analyzed the joint and found
that its speed of rotation was non-uniform. The first recorded use
of the term universal joint for this device was by Hooke.

supported on the bearings. Each shaft has a fork at
its end. The four ends of the two forks of shafts are
connected by a center piece, the right angle arms of
which rest in the bearings, provided in the fork ends
of both shafts.

3.2.1 Shaft Rotations

Let θ be the (absolute) angle rotated by shaft-1 (driver),
φ be the (absolute) angle rotated by shaft-2 (driven).
Using projections of the fork ends, the following relation
can be found between the angle moved by the two shafts:

tanφ

tan θ
= secα (3.6)

This is the basic equation for the rotation of shaft-2 with
respect to that of shaft-1. This equation will be utilized
in deriving expressions for speed ratio and acceleration
of the shaft-2.

3.2.2 Shaft Speeds

3.2.2.1 Speed Ratio Differentiating Eq. (3.6) w.r.t.
time t

sec2φ
dφ

dt
cosα = sec2θ

dθ

dt
ω2

ω1
=

dφ/dt

dθ/dt

=
sec2θ

sec2φ cosα

=
cosα

1−sin2αcos2θ

The following are the three interesting situations where
the expression of ω2/ω1 can be described with respect
to the angular position of shaft-2 (θ):

1. ω2 = ω1:

tan θ = ±
√
cosα (3.7)

2. Minimum ω2/ω1:

sin2θ = 0

θ = 90◦, 270◦ (3.8)
(
ω2

ω1

)

min

= cosα (3.9)

3. Maximum ω2/ω1:

cos2θ = 1

θ = 0◦, 180◦ (3.10)
(
ω2

ω1

)

max

=
1

cosα
(3.11)
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θ

ω1 cosα

ω1/ cosα

ω1

ω2

O

I

II

III IV

Figure 3.15 Velocities of shafts in Hooke’s joint.

3.2.2.2 Speed Variation The variation in the speed
of the driven shaft ω2 w.r.t. ω1 can be drawn in the polar
velocity diagram for a given value of α [Fig. 3.15].

In the diagram, ω1 is an exact circle but ω2 is an
ellipse. The maximum variation in the velocity of driven
shaft w.r.t. its mean velocity ω1 is

ωmax−ωmin

ω1
=

1

cosα
−cosα

=
sin2α

cosα
= tanα sinα

For small values of α in rad,

tanα ≈ sinα ≈ α2

therefore,
ωmax−ωmin

ω1
∝ α2

3.2.3 Angular Acceleration

Angular acceleration of the driven shaft is

ω̇2 =
dω

dt

= ω1
d

dt

(
cosα

1−sin2αcos2θ

)

=
−ω1

2 cosα.sin2α. sin 2θ
(

1−sin2α.cos2θ
)2

For minimum or maximum ω̇2,

cos 2θ ≈
2 sin2 α

2−sin2 α
(3.12)

As is evident in Fig. 3.15, the acceleration is maximum
in II and IV quadrants and minimum in I and III
quadrants. The acceleration is zero at four values of θ:

sin 2θ = 0

cos 2θ = 1

θ = 0◦, 90◦, 180◦, 270◦

The angle between the two shafts α should be kept
as minimum as possible and excessive masses should
not be attached to the driven shaft, otherwise, very
high alternating stresses due to angular acceleration and
retardation will be set up in the parts of the joint, which
are undesirable.

3.2.4 Double Hooke’s Joints

A double Hooke’s joint can be obtained by joining
two Hooke’s joints using an intermediate shaft. If the
misalignment between each shaft and the intermediate
shaft is equal, the driving and the driven shafts remain in
exact angular alignment, though the intermediate shaft
rotates with varying speed.

In a double Hooke joint, the angular arrangement of
the two Hooke’s joints decides the velocity ratio at any
instant. It is immaterial whether the driven shaft makes
the angle with the axis of driving shaft to its left or right.
The velocity ratio depends upon the position of forks, as
explained as follows:

1. Constant Velocity Ratio The constant velocity
ratio is achieved when driving and driven shafts
make an equal angle with the intermediate shaft
and forks of intermediate shaft lie in the same
plane. This is the reason why double hook joints
are used, because then dynamic stresses are re-
duced to zero.

2. Varying Velocity Ratio If the above condition is
not satisfied, then the speed ratio varies between
maximum and minimum values, given by

(
ω2

ω1

)

max

=
1

cos2 α
(
ω2

ω1

)

min

= cos2 α

Double Hooke’s joints are used in connecting two drive-
shafts.

3.3 KINEMATIC ANALYSIS

Each kinematic link of a machine has a relative motion in
a definite path, which can be either straight, circular or
curved. Kinematic analysis usually aims at determining
motion characteristics of various links in a mechanism.
Such information is essential for computing forces and
thereby dimensions of the links, enabling design of
various links in a mechanism.

Two types of methods are available for kinematic
analysis: graphical method and analytical method. Graph-
ical methods are essential in developing a conceptual
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understanding about the subject. They provide the
fastest method of checking the results, though less
accurate.

3.3.1 Velocity of a Link

In kinematic analysis, all the motions are measured
relative to some reference axes or planes. Usually, the
earth is taken to be a fixed reference plane, and all such
motions relative to it are termed as absolute motion.
When motion of a body is measured with respect to
another body, in motion or steady state, it is called
relative motion. In mechanism, the motion of a link
can be measured with respect to fixed points as well
as moving points on the links.

3.3.1.1 Linear Velocity Let a rigid link OA of length
r rotate about a fixed point O with a uniform velocity
ω. In a small interval of time δt, the link turns through
a small angle δθ and the point A moves to new location
A′ [Fig. 3.16]. Displacement of point A equal to rδθ,

#»

V AO

A

A′

δθ

O r

Figure 3.16 Linear velocity of a link.

therefore, linear velocity of the point A relative to point
O is defined as

VAO = lim
δt→0

rδθ

δt

= r lim
δt→0

δθ

δt
= rωAO (3.13)

where ωAO represents the angular velocity of the link,
given by

ωAO = lim
δt→0

δθ

δt
(3.14)

The direction of VAO is along the displacement of A.
When δt → 0, AA′ will be perpendicular to OA. This
emerges from the fact that A can neither approach nor
recede from O and thus, the only possible motion of A
relative to O is in a direction perpendicular to OA.

The magnitude of the instantaneous linear velocity
VAO (=rωAO) of a point on a rotating body is propor-
tional to its distance from the axis of rotation:

VAO ∝ r

Therefore, velocity of an intermediate point B on the
link OA [Fig. 3.17] can be found as

VBO

VAO
=

BO

AO

#»

V BO

B

O

#»

V AO

A

ω

Figure 3.17 Velocity of an intermediate point.

Consider a case of link AB in which absolute velocities
of points A and B are

#»

V A and
#»

V B, respectively [Fig.
3.18]. The relative velocity of point B with respect to A
is given by

#»

V BA =
#»

V B− #»

V A

#»

V A

#»

V B

B

A

Link

Velocity polygon

#»

V BA

#»

V B

#»

V A

#»

V BA

Figure 3.18 Relative velocity in a link.

If
#»

V A is completely known, but
#»

V B is known in
direction (the tangent to the path followed B) only, then
magnitude of

#»

V B is also determined because direction
of

#»

V BA will be perpendicular to the link AB. This
observation is used in graphical methods.

A vector polygon is a graphical depiction of vector
equations of velocities of two or more points in a
link or mechanism. It contains information about the
magnitude and direction of velocities [Fig. 3.18].

3.3.1.2 Angular Velocity Angular velocity of a link
is defined as the linear velocity divided by its radius.
Similar to Eq. (3.14), in reference to the previous case
of Fig. 3.18, angular velocity of link AB is given by

ωAB =
VAB

AB
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3.3.1.3 Instantaneous Center For two bodies having
relative motion with respect to one another, instanta-
neous center of rotation is an imaginary point common
to the two bodies such that any of the two bodies can
be assumed to have motion of rotation with respect
to the other about the imaginary point. In general,
instantaneous center of rotation is not a stationary point
since as the body moves from one position to another,
the velocities of their points keep changing.

Let a point A on a rigid body have a linear velocity
#»

V A and the body itself has an angular velocity #»ω
[Fig. 3.22]. These two quantities completely define the
velocities of all points or particles in the rigid body. To
appreciate this sentence, let a perpendicular be erected
at point A to

#»

V A and the distance rA=VA/ω, measured
along it to locate instantaneous center ‘I’ of the body
[Fig. 3.19].

A

X

I

#»

V A

#»

V X

ω

Figure 3.19 Instantaneous center.

The magnitude of linear velocity of any other point
X, at any given instant, will then be given as

VX = IX×ω

Based on the above equation, the instantaneous center
(I) is the intersection point of the normals of velocities
at any two points in the body.

Instantaneous center between the two links (say, 2
and 3) is denoted by I23.

3.3.1.4 Number of Instantaneous Centers In a mech-
anism, the number of instantaneous centers is the num-
ber of possible combinations of two links. A mechanism,
having n links, will have the number of instantaneous
centers given by

N = nCr

=
n (n−1)

2

Arnold Kennedy’s theorem states that three bodies,
having relative motion with respect to one another, have
three instantaneous centers, all of which lie on the same
straight line.

When extended to kinematic chains, Arnold Kennedy’s
theorem implies that with every combination of three
links, there are three I’s and if two of them are known,
the third one will lie on the line joining them. This
concept can be used to locate the instantaneous centers
of mechanism, for example, four-bar mechanisms [Fig.
3.20] and slider-crank mechanism [Fig. 3.21].

I12

I34

I14I12

I23

I24 2

3 4

1

Figure 3.20 Four-bar mechanisms.

I13

I24

I12

I23

I34

I14

∞

1

2
3

4

Figure 3.21 Slider-crank mechanism.

Few simple examples of the location of the instanta-
neous centers are illustrated in Fig. 3.22.

3.3.2 Acceleration in Mechanism

Acceleration is an important aspects in the design of
mechanisms as it directly indicates the inertia forces of
the members. Linear acceleration is defined as the rate
of change of linear velocity with respect to time:

#»a =
d

#»

V

dt
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#»

V
I

I at ∞

I

I

Figure 3.22 Examples of locating I.

Similarly, angular acceleration is defined as the rate of
change of angular velocity with respect to time,

#»α =
d #»ω

dt

Angular acceleration of the particle, having a circular
motion of radius r and angular velocity ω, is given by

α = rω2

If a link OA moves with angular velocity ωAO [Fig. 3.13]
then the angular acceleration of point A on the link w.r.t.
O is given by

αAO = AO×ωOA
2

When a slider moves over a link which itself is moving,
the acceleration of the slider involves an important
component known as Coriolis component2. It is the
tangential component of acceleration of a slider with
respect to the coincident point on the link. To examine
this, let a link OA rotate about a fixed point O. Let
ω,α represent the angular velocity, angular acceleration
of OA, respectively, v, f represent linear velocity and
linear acceleration of a point P on the slider of the link
at radial distance r from the center O [Fig. 3.23]. The
components of acceleration of a point P on the slider can
be determined as follows:

1. Acceleration Along OA The change in velocity of
point P along the rotating link OA is given by

δv∥P = {(v+fδt) cos δθ−(ω+αδt)r′ sin θ}−v

With limiting case of δt → 0, cos δθ → 1, sin δθ →
0. Hence, acceleration of P along OA is

a∥P = lim
δt→0

δv∥P
δt

= f−ω2r (3.15)

2The mathematical expression for the Coriolis component
appeared in an 1835 paper by French scientist Gaspard-Gustave
Coriolis.

A

δθ

v′

v′ sin δθ

v′ cos δθ

P
P

ω′r′ cos δθ

ω′r′

ω′r′ sin δθ
O

Figure 3.23 Coriolis component.

2. Acceleration Normal to OA The change in velocity
of point P perpendicular to the rotating link OA
is

δv⊥P = (v+fδt) sin δθ

+(ω+αδt) (r+δr) cos δθ−ωr

With limiting case of δt → 0, cos δθ → 1, sin δθ →
0. Hence, acceleration of P perpendicular to OA
as

a⊥P = lim
δt→0

δv⊥P
δt

= 2ωv+rα (3.16)

In this equation, the component 2ωv is known as
Coriolis component. The remaining component is
the tangential acceleration.

The total acceleration of the point P would be the vector
sum of the orthogonal components of acceleration, given
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by Eqs. (3.15) and (3.16):

a∥P = f−ω2r

a⊥P = 2ωv+rα

The Coriolis component of acceleration exists in
mechanisms having a slider in a rotating link with angu-
lar acceleration, for example, quick-return mechanism.

3.4 CAM FOLLOWER MECHANISM

A cam mechanism usually consists of two moving
elements, cam and follower, mounted on a fixed frame. A
cam can be defined as a machine element having a curved
outline or a curved groove, which, by its oscillation or
rotation motion, gives a predetermined specified motion
to another element known as follower. In a cam-follower
mechanism, the follower usually has a line-contact with
the cam, thus, they constitute a higher pair mechanism.

Cam devices are versatile through which almost any
arbitrarily-specified motion can be obtained. In some
instances, they offer the simplest and most compact
way to transform motions. Cams are widely used in
automatic machines, internal engines, machine tools,
printing control mechanisms, and so on.

3.4.1 Types of Cams

Different types of cams are shown in Fig. 3.24. These
are explained as follows:

1. Wedge Cam A wedge cam consists of a wedge
which in general has a translation motion. The
contact between the cam and follower is main-
tained by using a spring.

2. Disc Cam In disc cams, the follower moves
radially from the center of rotation of the cam; the
transmission line passes through center of cam.

3. Spiral Cam A spiral cam contains a spiral groove
which mesh with a pin-gear follower. Rotation of
the cam is reversed to reset the the follower.

4. Cylindrical Cam A cylindrical cam is a cylinder
having a circumferential contour in the surface,
which mesh with a pin-gear follower.

5. Conjugate Cam A conjugate cam is made of two
disc cams, keyed together in such way that makes
a positive constraint in touch with two rollers of a
follower. These cams are preferred due to low wear
and noise in high speed, and high dynamic load.

6. Globoidal Cams A globoidal cam is similar to
cylindrical cam but it can have convex or concave

surface with a circumferential contour to impart
oscillatory motion to the follower.

7. Spherical Cam In a spherical cam, the follower
oscillates about an axis perpendicular to the axis
of rotation of cam having a spherical surface.

3.4.2 Types of Followers

Different types of followers are shown in Fig. 3.25. These

Knif-edge Roller Mushroom
follower follower follower

Figure 3.25 Types of cam followers.

are explained as follows:

1. Knife Edge Follower Knife edge followers are not
used mostly due to great wear at knife edge and
considerable side thrust.

2. Roller Follower In the case of steep rise, a roller
follower jams the cam and hence is not preferred
for such design.

3. Mushroom Follower Mushroom followers are of
two types: flat faced and spherical faced. There is
no side thrust except due to friction at the contact
of cam and the follower.

3.4.3 Terminology

The following are the important design dimensions and
geometries associated with the cam and follower [Fig.
3.26].

1. Basic Circle The smallest circle to the cam profile
and concentric to the center of rotation of the cam
is known as base circle.

2. Trace Point The trace point is the point of tracing
on the follower. It is actually the edge of knife edge
follower or the center of roller follower.

3. Prime Curve The curve drawn by the trace point
by fixing the cam at an angle is called prime curve.

4. Prime Circle The smallest circle to pitch curve is
called prime circle.
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(a) Wedge cam (b) Disc cam (c) Spiral cam (d) Cylinderical cam

(e) Conjugate cam (f) Globoidal cam (g) Spherical cam

Figure 3.24 Types of cams.

Trace

Pressure

Follower

Base curve

Base circle

Prime circle

Prime curve angle

point

Figure 3.26 Terminology of cam-follower.

5. Pressure Angle Pressure Angle is the angle
between normal to the pitch curve at a point and
direction of motion of follower.

For the same rise or fall as the pressure angle
increases size (or base circle) of cam decreases.
The size of base circle controls the pressure angle
for given rise. The increase in the base circle
diameter increases the length of the arc of the
circle upon which the wedge (the raised portion)
is to be made.

6. Pitch Point Pitch point is the point on a
cam profile for which the pressure angle attains
maximum value.

7. Pitch Circle The circle passing through pitch point
and concentric to the center of rotation of the cam
is called pitch circle.

3.4.4 Motion of the Follower

As a cam rotates about its axis, it imparts a specific
motion to the follower which repeats in each revolution
of the cam. The position of the follower, say measured
from its lowest position, depends upon the angular
position of cam:

s = f (θ) (3.17)

This relation can be visualized by plotting the angular
displacement (θ) of the cam on x-axis and the linear
displacement (s) of the follower on y-axis.

The function s = f(θ) represents the design scheme
of the displacement of the follower. In this relation, the
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following terms are used to describe various elements of
the motion of the cam and the follower:

1. Elements of Motion of Cam

(a) Angle of Ascent - Angle of ascent (φa) is the
angle through which the cam turns during the
time the follower rises.

(b) Angle of Dwell - Angle of dwell (δ) is the angle
through which the cam turns while the follower
remains stationary at the highest or the lowest
position.

(c) Angle of Descent - Angle of descent (φd) is the
angle through which the cam turns during the
time the follower returns to the initial position.

(d) Angle of Action - Angle of action is the
total angle moved by the cam during the time
between the beginning of rise and end of return
of the follower.

2. Elements of Motion of the Follower

(a) Lift - Lift is the maximum displacement of the
follower.

(b) Ascent - Ascent or rise is the movement of the
follower away from the center of cam.

(c) Dwell - Dwell is the period when there is no
movement of the follower. In internal combus-
tion engines, a shorter dwell period means a
smaller period of valve opening, resulting in
less fuel per cycle and lesser power production.
Thus, the minimum value of dwell angle cannot
be reduced from a certain value.

Using Eq. (3.17), the profiles of velocity and acceleration
of the follower motion can also be determined as

v =
ds

dt

f =
dv

dt

Angular speed of cam is represented by

ω =
dθ

dt

The following sections deal with the basic displacement
functions of the ascent or descent of the follower. The
ascent or descent of the follower takes place when the
cam rotates an angle φ. The lift is represented by h.

3.4.4.1 Simple Harmonic In simple harmonic pro-
file, the ascent and descent of the follower takes place
in a half cycle (π) of the sinusoidal function. Therefore,
half cycle of the harmonic functions is equivalent to the
rotation cam (2φ).

The ascent takes place when cam rotates angle φ.
Therefore, the simple harmonic displacement (s) can be
related to angular displacement (θ = 0 → φ) as

s =
h

2

{

1−cos

(
πθ

φ

)}

Velocity function is found as

V =
ds

dt

=
h

2

{
π

φ
ω sin

(
πθ

φ

)}

Acceleration function is found as

f =
dv

dt

=
h

2

{
π2

φ2
ω2 cos

(
πθ

φ

)}

The functions of s, v and f are drawn in a combined
plot [Fig. 3.27]. The velocity increases from zero to
maximum at quarter of the simple harmonic motion;

πθ

φ
=
π

2

θ =
φ

2

Therefore, the maximum value of velocity is given by

vmax =
h

2

(
πω

φ

)

h

θ

sAcceleration

Deceleration

vmax

φ

f

f
v

Figure 3.27 Simple harmonics.

At the beginning of rise (θ = 0), acceleration (f) of
the follower suddenly increases from zero to maximum
value, given by

fmax =
h

2

(
πω

φ

)2

The maximum acceleration at the beginning itself causes
higher inertia loads of the follower, therefore, the simple
harmonic motion of the follower is usually applied for
moderate speeds only.
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3.4.4.2 Constant Acceleration A constant acceler-
ation profile gives a constant acceleration in the first
half of the ascent and a constant deceleration in the
second of the ascent. Consider a case when the velocity
of follower at the beginning of the rise is zero (v0 = 0).
At any instant of time t taken from the beginning,
the displacement s during ascent can be related to
acceleration f using the second equation of linear
motion:

s = v0t+
1

2
ft2

=
1

2
ft2 (3.18)

This is an equation of parabola, thus, the profile of
constant acceleration is also known as parabolic motion.
Since there a constant acceleration in the first half of the
ascent and a constant deceleration in the second half of
the ascent, the ascents in the first and the second halves
will be the same.

The arbitrary time t can be related to angular
position θ of the cam as

t =
θ

ω

The ascent and descent of the follower takes place when
the cam rotates an angle 2φ; ascent upto lift h takes
place when cam rotates an angle φ. For the constant
angular speed ω, the cam takes time φ/ω for lift h of the
follower. Taking the lift upto to the mid-point where the
acceleration changes its sign and using Eq. (3.18),

h

2
=

1

2
f

(
φ

2ω

)2

f = 4h

(
ω

φ

)2

Putting these values in Eq. (3.18), the displacement
function is found as

s =
1

2
×4h

(
ω

φ

)2( θ

ω

)2

=
2h

φ2
θ2

Therefore, the function of velocity is found as

v =
ds

dt

=
4hω

φ2
θ

This equation represents a linear profile of the velocity,
having constant slope, equal to acceleration f . The
functions s, v, and f are drawn in a combined plot [Fig.
3.28].

h

θ

s

f

f

Acceleration

Deceleration

v

vmax

φ

Figure 3.28 Constant acceleration motion.

Velocity is maximum when the acceleration changes
its sign (θ = φ/2):

vmax =
2hω

φ
(3.19)

At mid-way, an infinite jerk is produced, hence this
profile of the follower motion is adopted only upto
moderate speeds.

3.4.4.3 Constant Velocity Constant velocity of the
follower implies that the displacement of the follower is
proportional to the cam displacement and the slope of
the displacement curve is constant:

s ∝ h
θ

φ
(3.20)

Therefore,

v =
ds

dt

=
hω

φ

Since the velocity function is constant, the acceleration
throughout the lift is zero. The functions s, v and f are
drawn in a combined plot [Fig. 3.29].

h

θ
φ

0

v

s

f

Figure 3.29 Constant velocity profile.

The acceleration of the follower during rise and return
period is zero but it is infinite at the beginning and end
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of the motion due to abrupt changes in the velocity. On
account of this reason, the constant velocity profile is
generally not used in practice.

3.4.4.4 Cycloidal Profile A cycloid is the locus of a
point on a circle rolling on a straight line. Following is
the relation of rise (s) with cam rotation (θ):

s =
h

π

(
πθ

φ
−

1

2
sin

2πθ

φ

)

Therefore, the functions of velocity and acceleration are
found as

v =
ds

dt

=
h

π

(
πω

φ
−
πω

φ
cos

2πθ

φ

)

=
hω

φ

(

1−cos
2πθ

φ

)

f =
dv

dt

=
2hπω2

φ2
sin

2πθ

φ

The functions s, v and f are drawn in a combined
plot [Fig. 3.30]. The velocity is maximum at mid-point
of the lift (θ = φ/2)

vmax =
2hω

φ
(3.21)

At this point, the acceleration is zero.

h

θ

φ

0

s

v

f

Figure 3.30 Cycloid profile motion.

Maximum value of acceleration occurs at θ = φ/4:

fmax =
2hπω2

φ2

There are no abrupt changes in velocity and acceleration,
hence, cycloidal program is the most suitable one for
high speed follower motion.

3.5 GEARS

If power transmitted between two shafts is small, motion
between them can be obtained by using plain cylinders
or discs, called friction wheels. However, as the power
increases, slip occurs between the discs and the motion
no longer remains definite. Therefore, gears are used to
transmit motion from one shaft to another by successive
engagements of teeth without any intermediate link or
connector. In this method, the surfaces of two bodies
make a tangential contact and have a rolling motion
along the tangent at the point of contact. No motion
is possible along the common normal as that will either
break the contact or one body will tend to penetrate into
the other.

3.5.1 Classification

Gears can be broadly classified according to the relative
positions of their shaft axes, discussed under following
headings.

3.5.1.1 Gears for Parallel Shafts The motion be-
tween two parallel shafts is equivalent to the rolling of
two cylinders, assuming no slipping. Gears under this
group are the following:

1. Spur Gears Straight spur gears are the simplest
form of gears having straight teeth parallel to the
gear axis. The contact of two teeth takes place over
the entire width along a line parallel to the axes
of rotation. As the gears rotate, the line of contact
goes on shifting parallel to the shaft.

Although there is no axial thrust, but there is
a sudden application of load, associated with high
impact stresses and excessive noise at high speeds.

2. Helical Gears In helical gears, the teeth are part
of helix instead of straight across the gear parallel
to the axis. The mating gears have the same
helix angle, but in opposite direction. As the gear
rotates, the contact shifts along the line of contact
in involute helicoid across the teeth.

Load application is gradual, because at the
beginning of engagement, the contact occurs at the
point of leading edge of the curved teeth. Helical
gears are, therefore, used at higher velocities and
can carry higher loads compared to straight spur
gears.

The inclined direction of forces on the teeth in
helical gears results axial thrust.

3. Double Helical Gears To avoid the problem of
axial thrust in helical gears, double helical gears
are made of two helical gears with opposite helix
angles, which can be up to 45◦.
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If the left helix and right helix of a double helical
gear meet at a common apex and there is no groove
in between two pairs of gears, the gear is called
herringbone gear.

4. Rack and Pinion In this case, the spur rack can
be considered to be a spur gear of infinite pitch
radius with its axis of rotation placed at infinity
parallel to that of pinion. The pinion rotates while
the rack translates. This mechanism is used to
convert either rotary motion into linear motion or
vice versa.

3.5.1.2 Gears for Intersecting Shafts The motion
between two intersecting shafts is equivalent to the
rolling of two cones, assuming no slipping. Therefore,
the gears used for intersecting shafts are called bevel
gears. The following are their types:

1. Straight Bevel Gears Straight bevel gears are
provided with straight teeth, radial to the point
of intersection of the shaft axes and vary in cross-
section through the length inside the generator of
the cone. Their main application is in connecting
low speed shafts at right angles. In such appli-
cations, straight bevel gears of the same size are
known as miter gears.

Straight bevel gears can be viewed as a modified
version of straight spur gears in which the teeth are
made in conical direction instead of parallel to the
axis. Also, like in straight spur gears, the line of
contacts of straight bevel gears is a straight line.
These gears become noisy at higher speed.

2. Spiral Bevel Gears To avail high speed applica-
tions, bevel gears are made such that their teeth
are inclined at an angle to the face of the bevel,
and then they are known as spiral bevel gears or
helical bevels.

Spiral bevel gears are quieter in action but
are subjected to axial thrust. These gears find
application in the differential drive of automobiles.

3. Zero Bevel Gear Zero bevel gears are made with
zero spiral angle. Their curved teeth produces
quieter motion.

3.5.1.3 Gears for Skew Shafts The following gears
are used to join two skew (non-parallel and non-
intersecting) shafts:

1. Hypoid Gears The hypoid gears are made of the
frusta of hyperboloids of revolution. Two matching
hypoid gears are made by revolving the same line
which is in fact their line of contact, therefore,
these gears are not interchangeable.

The relative motion between these gears con-
sists partly of rolling and partly of sliding, along
the common line of contact.

2. Worm Gears Worm gears are used to con-
nect skewed shafts (i.e. non-parallel and non-
intersecting), but not necessarily at right angles.
Teeth on worm gear are cut continuously like
the threads on a screw. The gear meshing with
the worm gear is known as worm wheel and the
combination is known as worm and worm wheel.
At least one teeth of the worm must make a
complete turn around the pitch cylinder, and thus
forms screw thread.

Unlike with ordinary gear trains, the direction
of transmission in worm drive is not reversible
when using large reduction ratios. Due to the
greater friction involved between the worm and
worm-wheel, usually a single start (one spiral)
worm is used.

If a multi-start worm (multiple spirals) is used
then the ratio reduces accordingly and the braking
effect of a worm and worm-gear would need to be
discounted as the gear will be able to drive the
worm.

3.5.2 Gear Terminology

The following are important dimensions and geometries
concerned with toothed gears [Fig. 3.31]:

Pinion

Pitch circles

Pressure
angle

Line of action

Addendum
Dedendum

Fillet

Gear

Base circle
Pitch point

Base circle

Figure 3.31 Gear terminology.

1. Pitch Circle Pitch circle is the apparent circle
that two gears can be taken like smooth cylinders
rolling without slipping.

2. Addendum Circle Addendum!circle is the outer-
most profile circle of a gear. Addendum (a) is the
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radial distance between the pitch circle and the
addendum circle.

3. Dedendum Circle Dedendum!circle is the inner-
most profile circle. Dedendum is the radial dis-
tance between the pitch circle and the dedendum
circle.

4. Clearance Clearance is the radial distance from
the top of the tooth to the bottom of the tooth
space in the mating gear.

5. Backlash Backlash is the tangential space between
teeth of mating gears at pitch circles.

6. Full Depth Full depth is the sum of the dedendum
and the addendum.

7. Face Width Face width is the length of tooth
parallel to axes.

8. Diametral Pitch Diametral pitch (p) is the number
of teeth per unit diameter.

If d is diameter of pitch circle of the gear with T
number of teeth, then diametral pitch is calculated
as

p =
T

d

9. Module Module (m) is the inverse of diametral
pitch:

m =
1

p
=

d

T

10. Circular Pitch Circular pitch is the space in pitch
circle used by each teeth:

pc =
πd

T
= mπ

=
π

p

11. Gear Ratio Gear Ratio (G) is the ratio of numbers
of teeth of larger gear to smaller gear.

12. Pressure Line Pressure line is the common normal
at the point of contact of mating gears along which
the driving tooth exerts force on the driven tooth.
It is also called line of action.

13. Pressure Angle Pressure angle (φ) is the angle
between the pressure line and common tangent
to pitch circles. It is also called angle of obliq-
uity. High pressure angle requires wider base and
stronger teeth.

14. Pitch Angle Pitch angle is the angle captured by
a tooth. If there are T teeth in a gear, the pitch
angle is determined as

Pitch angle =
360◦

T
(3.22)

15. Contact Ratio Contact ratio is the ratio of angle
of action and pitch angle:

Contact ratio =
Angle of action

Pitch angle
(3.23)

16. Path of Approach Path of approach is the distance
along the pressure line traveled by the contact
point from the point of engagement to the pitch
point.

17. Path of Recess Path of recess is the distance along
the pressure line traveled by the contact point from
the pitch point to the point of disengagement.

18. Path of Contact Path of contact is the sum of path
of approach and path of recess.

19. Arc of Approach Arc of approach is the distance
traveled by a point on either pitch circle of the two
wheels from the point of engagement to the pitch.

20. Arc of Recess Arc of recess is the distance traveled
by a point on either pitch circle of the two wheels
from the pitch point to the point of disengagement.

21. Arc of Contact Arc of contact is the distance
traveled by a point on either pitch circle of the
two wheels during the period of contact of a pair
of teeth.

22. Angle of Action Angle of action is the angle
turned by a gear during arc of contact.

3.5.3 Law of Gearing

Consider two rigid bodies 1 and 2, representing a portion
of the two gears in mesh, rotate about the centers O1

and O2, respectively [Fig. 3.32]. The common tangent
TT and common normal NN pass through contact point
C or C1 and C2, the points of contact on respective
bodies.

T

T

N

N

O1 O2C2C1

V1

V2

N2

N1
1

2

ω1

ω2

P

θ1 θ2

Figure 3.32 Law of gearing.

The components of relative velocity of the two gears
can be determined as follows:
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1. Along the Common Normal Relative velocity along
the common normal N-N is given by

V1 cos θ1−V2 cos θ2 = 0

ω1O1C1 cosα−ω2O2C2 cosβ = 0

ω1O1N1−ω2O2N2 = 0

Therefore,

ω1

ω2
=

O2N2

O1N1
=

N2P

N1P
=

O2P

O1P
(3.24)

Hence, the angular velocities of the two gears shall
remain constant if the common normal at the point
of contact of the two teeth passes through a fixed
point P which divides the line of centers in the
inverse ratio of angular velocities of two gears.
This is known as law of gearing and the point P is
called the pitch point.

2. Along the Common Tangent The relative velocity
of the mating bodies along the common tangent
(TT) at the point of contact is called velocity of
sliding:

Vs = V1 sin θ1−V2 sin θ2

= ω1O1C1
C1N1

O1C1
−ω2O2C2

C2N2

O2C2

= ω1 (N1P−C1P)−ω2 (N2P−C2P)

= (ω1+ω2) CP+(ω1N1P−ω2N2P)

Applying the law of gearing [Eq. (3.24)],

Vs = CP×(ω1+ω2) (3.25)

At the pitch point, CP = 0, thus, the velocity of
sliding is also zero.

3.5.4 Teeth Profiles

The profile of teeth must satisfy the law of gearing so
that the mating gears can run without any breakage.
There are two types of teeth profiles:

1. Cycloidal profile

2. Involute profile

Involute profile is preferred due to favorable features,
and is discussed later. A gear of one type of teeth can
mate only with the gear of same type of teeth, otherwise
law of gearing will not be satisfied.

3.5.4.1 Cycloidal Teeth Cycloidal profile is com-
posed of two types of profiles [Fig. 3.33]:

1. Hypocycloid profile3 - inside the pitch curve

3Locus of a point on the circle when that circle rolls without
slipping inner circumference another circle.

2. Epicycloid profile4 - outside the curve.

These curves are produced when a small generating
circle rolls inside and outside the perimeter of the pitch
circle of the two mating gears. Therefore, cycloidal teeth
are also called double curve teeth [Fig. 3.33].

Pitch circle

Hypocycloid

Teeth profile

Epicycloid

Figure 3.33 Cycloidal profile.

The cycloidal teeth of the two mating gears are
produced with the same generating circle. When mating
gears of cycloidal teeth run, the common normal passes
through a fixed point P (pitch point) in each position
during action [Fig. 3.34]. Thus, the law of gearing is
satisfied.

P

Point of contact

Pressure line

Generating
circle

Figure 3.34 Meshing of cycloidal teeth.

4Epicycloid is the locus of a point on the circle when that circle
rolls without slipping on outer circumference of another circle.
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The pressure angle varies from maximum at the
beginning of engagement to zero at pitch point and then
maximum but equal in reverse direction at disengage-
ment. As is evident from Fig. 3.34, the contact between
the teeth takes place along the common point between
the hypocyloid and epicycloid portions of the mating
teeth. Therefore, for cycloidal profile, path of approach
is equal to arc of approach, and path of recess is equal
to the arc of recess.

Advantage of cycloidal profile is that the phenomenon
of interface does not exist. Since, these are made up of
two curves, their accurate profile is difficult to produce.
This has rendered this system obsolete. The details of
cycloidal teeth are not discussed in the present context.

3.5.4.2 Involute Teeth The involute teeth5 consist of
a single involute curve which is the locus of point on a
straight (generating) line which rolls without slipping on
the circumference of a base circle [Fig. 3.35].

During the messing of involute teeth of mating gears,
the path of contact or pressure line is the common
tangent to the base circle and it passes through the
fixed point P which implies that involute teeth follow
the law of gearing [Fig. 3.35]. When the pitch point
is shifted or the center-to-center distance is increased,
there is no change in velocity ratio, but there is increase
in the pressure angle. Diameter of the base circle of the
gear profile is a manufacturing property which remains
invariant for the gear.

C1C2

C

φ

φ

r

Base circle

Base circle

2 1

P

D

A′
2

A1A ′
2

ra

rbRb

R

Ra

A ′
1A

2

A1

A′
1

A2

Figure 3.35 Meshing of involute teeth.

5An involute function is defined as

Inv(φ) = tanφ−φ

The base circle radii are related to pitch radii of the
mating gears as

Rb = R cosφ

rb = r cosφ

Initial contact occurs at point C where addendum of
driven wheel intersects the line of action and final
contact occurs at point D where addendum circle of
the driver intersects the line of action. Between these
two points, the line of action passes through the pitch
point P. Using this information and trigonometry, the
following properties can be determined for gears having
involute teeth:

1. Path of Contact The path of contact consists of
two components:

(a) Path of Approach - The distance along the
pressure line traveled by the contact point from
the point of engagement (C) to the pitch point
(P):

CP = CA′
1−PA′

1

=
√

R2
a−(R cosφ)2−R sinφ

The path of approach can attain a maximum
value when the point of engagement lies at A′

2
in Fig. 3.35. Therefore, the maximum value of
path of approach is given by

A′
2P = r sinφ

(b) Path of Recess - The distance along the
pressure line traveled by the contact point
from the pitch point (P) to the point of
disengagement (D):

PD = DA′
2−PA′

2

=
√

r2a−(r cosφ)2−r sinφ

The path of recess can attain a maximum value
when the point of disengagement lies at A′

1
in Fig. 3.36. Therefore, the maximum value of
path of recess is given by

PA′
1 = R sinφ

Now, the path of contact is given by

CD = CP+PD

=
√

R2
a−(R cosφ)2−R sinφ

+
√

r2a−(r cosφ)2−r sinφ

The path of contact can attain a maximum value
when the point of contact traces the pressure line
from point E to point F. Therefore, the maximum
value of path of contact is given by

A′
2A

′
1 = (R+r) sinφ
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2. Arc of Contact Using the definition of involute
curve, the distance traveled by the contact point
is equal to the arc on the base circle. For a gear
of pitch circle radius R, the base circle radius
is R cosφ. Therefore, an arc of length x on the
base circle will trace same angle on the pitch
circle radius, where its length will be x/ cosφ.
Using this, the components of arc of approach for
involute teeth meshing are determined as follows:

(a) Arc of Approach - Arc of approach is the
distance traveled by a point on either pitch
circle of the two wheels during the period of
contact from engagement to pitch point:

Arc CP =
CP

cosφ

(b) Arc of Recess - Arc of recess is the distance
traveled by a point on either pitch circle of the
two wheels during the period of contact from
pitch point to disengagement:

Arc PD =
PD

cosφ

Therefore, arc of contact is given by

Arc CD = Arc CP+Arc PD

=
CD

cosφ

3. Number of Pairs of Teeth in Contact The pair of
teeth lying in between the point of engagement
and point of disengagement will be meshing with
each other. Therefore, the number of pairs of teeth
in contact can be determined as

n =
Arc of contact

Circular pitch

=
CDP

pc cosφ

If zw and zp are the number of teeth on the mating
gears of equal module (m) or circular pitch (pc =
mπ), then

R =
zw
2π

pc

r =
zp
2π

pc

Maximum number of teeth pairs can be in mesh
when the point of contact traces the pressure line
from point E to point F:

nmax =
(R+r) sinφ

pc cosφ

= (zw+zp)
tanφ

2π

3.5.5 Interference

Any tooth profile can be used successfully for a spur
gear as long as the mating tooth profile is compatible for
producing a constant speed ratio. The compatible tooth
profile is technically known as conjugate with respect
to the tooth profile of the first gear. Mating of non-
conjugate (non-involute) teeth is known as interference,
in which the contacting teeth have different velocities
which can lock the two mating gears.

A radial profile (a non-involute type) is generally
adopted for the part of teeth inside the base circle. Due
to inconjugate teeth, the tip of the pinion would try to
dig out the flank of the tooth of the wheel. Therefore,
interference occurs in the mating of two gears. Similarly,
if the addendum radius of the wheel is made greater than
C2A′

2 [Fig. 3.35], the tip of the wheel tooth will be in
contact with a portion of the non-involute profile of the
pinion tooth.

To have no interference of the teeth, the addendum
should not penetrate into the base circle of the mating
gear; the addendum circles of the wheel and pinion
must intersect the line of action between A′

2 and A′
1

[Fig. 3.35]. These points are called interference points.
To avoid interference, the limiting value of addendum of
the wheel is A1A′

2 whereas that of pinion is A′
1A2 and

the latter is clearly greater than the former (A′
1A2 >

A1A′
2). Therefore, for equal addenda

6 of the wheel and
the pinion, the addendum radius of the wheel decides
whether the interference will occur or not.

The addendum of wheel can be determined geomet-
rically as follows:

C2A
′
2
2
= C2A

′
1
2
+A′

1A
′
2
2

= C2A
′
1
2
+
(

A′
1P+PA′

2

)2

= (R cosφ)2+(R sinφ+r sinφ)2

= R2+
(

r2+2rR
)

sin2 φ

= R2

[

1+
1

R2

(

r2+2rR
)

sin2 φ

]

= R2

[

1+

(
r2

R2
+

2r

R

)

sin2 φ

]

Therefore,

C2A
′
2 = R

√

1+
r

R

( r

R
+2
)

sin2 φ

6The radial distance between the pitch circle and the addendum
circle. Addenda is plural form of word ‘addendum’.
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Maximum value of the addendum of the wheel is

A1A
′
2 = C2A

′
2−R

= R

√

1+
r

R

( r

R
+2
)

sin2 φ−R

= R

[√

1+
r

R

( r

R
+2
)

sin2 φ−1

]

If the selected value of addendum of larger gear (wheel)
is aw times of module m, then

A1A
′
2 ≥ awm

R

[√

1+
r

R

( r

R
+2
)

sin2 φ−1

]

≥ awm

Let T be the number of teeth on wheel, then

m =
2R

T

Gear ratio is expressed as

R

r
= G

From the above relations,

T ≥
2aw

√

1+(1/G) (1/G+2) sin2 φ−1
(3.26)

When addendum is equal to module (aw = 1),

T ≥
2

√

1+(1/G) (1/G+2) sin2 φ−1
(3.27)

This is the expression for number of teeth on a larger
gear (wheel) to avoid interference in meshing of gears at
pressure angle φ, gear ratio G, and addendum equal to
module. A gear-meshing having pressure angle φ = 20◦

and unit gear ratio (G = 1) will be interference-free if
T > 12.32 ≈ 13.

3.5.6 Rack and Pinion

In rack and pinion arrangement, the pinion rotates while
the rack translates. This mechanism is used to convert
either rotary motion into linear motion or vice versa. In
this mechanism, the spur rack can be considered to be a
spur gear of infinite pitch radius with its axis of rotation
placed at infinity parallel to that of the pinion; instead
of base circle, the larger gear is formed over a straight
line.

The condition for interference running of a rack-
pinion arrangement can also be examined, as depicted in
Fig. 3.36. To avoid interference, the addendum of pinion
should not penetrate to the pitch line (PA1) of rack. Let

zp be the number teeth on pinion and φ be the pressure
angle. The depth A1A′

2 can be determined as follows:

A1A
′
2 = (r sinφ) sinφ

= r sin2 φ

=
mzp
2

sin2 φ

A

A′
2

φrb Base circle

P A1
Pitch line

Pitch circle

r

∞

Figure 3.36 Interference in rack-pinion.

For addendum equal to module, the running will be
free of interference if

A1A
′
2 ≥ m

mzp
2

sin2 φ ≥ m

zp ≥
2

sin2 φ

For interference-free running of a rack pinion having φ =
20◦, zp > 18, and for φ = 14.5◦, zp > 32.

3.5.7 Helical Gears

On the basis of the direction of helix (ψ) cut on helical
gears, these can be either right handed or left handed.
Angle between axes of two shafts is given by

θ = ψ1−ψ2 (3.28)

The type of contact between teeth of helical gear teeth
depends on θ. For parallel shafts (θ = 0), the contact
exists along a diagonal line, while for skew shafts (θ ≠
0), there exists a point contact between gear teeth.
Therefore, crossed-helical or spiral gears are not used for
heavy loads, but parallel helical gears are stronger than
spur gears because of diagonal contacts. When helical
gears are used in skew shafts, they are called spiral gear
or crossed-helical gears.

In the case of helical gears, normal circular pitch of
two mating gears must be the same. If the helix angle
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of a helical gear is increased, the load carrying capacity
of the tooth increases and the form factor increases with
increase in helix angle.

3.5.8 Gear Trains

Desired speed ratio in a gear system can be achieved by
combination of various gears with different number of
teeth and inversions. These combinations are called gear
trains. Gear trains are necessary when a large or certain
velocity ratio or mechanical advantage is required, or
shafts are kept at a distance. Some important types of
gear trains are discussed in following sections.

3.5.8.1 Simple Gear Train When each gear of the
gear train is mounted on a separate shaft and all the
gear axes remain in position fixed to frame, it is called
simple gear train.

1

2 3 4

Figure 3.37 Simple gear train.

For the simple gear train shown in Fig. 3.37, the
speed ratio, also called train value, is given by

N4 = N1×
T2

T1
×

T3

T2
×

T4

T3

N4

N1
=

T4

T1

Thus, in simple gear trains, the intermediate gears do
not have any influence on the velocity ratio. Intermedi-
ate gears work as idler gears, serving two purposes: first,
they control the direction of rotation of output gear, and
second, they bridge the gap between the shafts.

3.5.8.2 Compound Gear Train A gear pair is called
compounded if they are mounted on the same shaft and
are made into an integral part in some way. A compound
gear train consists of one or more compound gear pairs.
The compounding involves large speed reduction.

Compound gear trains are of two classes: reverted
and non-reverted. In reverted gear trains, the first and
last gears are co-axial [Fig. 3.38], otherwise it is called
non-reverted gear train [Fig. 3.39]. Reverted gear trains
are used in lathe machines where back gear is used to
impart slow speed of the chuck.

3.5.8.3 Epicyclic Gear Train A gear train having a
relative motion of axes is called planetary or epicyclic

1

2
3

4

Figure 3.38 Compound gear train (reverted).

1

2

3
4

Figure 3.39 Compound gear train (non-reverted)

gear train. The axis of at least one of the gear also
moves relative to the frame. For example, in Fig. 3.40,
if the gear S is made fixed, the axis of gear P will
rotate about the axis of S. Such a gear train has
two degrees of freedom. Planetary gear trains are quite
useful in making the reduction unit more compact than
a compound gear train.

P

S

A

Figure 3.40 Epicyclic gear train.

To simplify the analysis, an epicyclic gear train can be
converted into a simple reverted gear train by fixing the
arm and releasing the fixed gear. The relative motion
between any two links does not change but the absolute
motion does change. Based on this understanding, the
following procedure is adopted in analyzing the epicyclic
gear trains:

1. Lock arm to obtain simple reverted train such that
except arm, all gears are free to rotate.

2. Consider any gear and turn it in say clockwise
direction through one revolution. Establish corre-
sponding revolutions of all other gears, note it in
a tabular form in a first row.
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3. Rotate the chosen gear in step 2 x times, by
multiplying each entry of the first row by an
arbitrary variable x and enter the values of the
product in the second row of the table.

4. Revolve arm by y revolutions by adding y to all
the entries of second row, and enter the results in
third row.

In the above steps, x and y are the two unknown vari-
ables in terms of which the third row gives corresponding
revolutions of each gear and arm. Values of x and y are
determined by the given condition, for example, sun is
fixed on frame, so its speed is zero, and so on. The
revolutions of all the gears are determined by putting
values of x and y.

To better understand the procedure, consider an
epicylic gear train shown in Fig. 3.41. The gear train
consists of a sun wheel S, a stationary internal gear E
and three identical planet wheels P carried on a star-
shaped carrier C. The size of different wheels are such
that the planet carrier C rotates at 1/4th of the speed of
the sun wheel S. The minimum number of teeth on any
wheel is 12. The problem is to determine the number of
teeth on sun gear.

P E

S
C

Figure 3.41 Epicyclic gear train.

The tabular method is shown in Table 3.1.

Table 3.1 Tabular method for epicyclic gear train

Condition C S P E

C fixed,
S one
revolution

0 1 −
TS

TP
−
TS

TE

C fixed, S x
revolutions

0 x −
TS

TP
x −

TS

TE
x

Add y to all y
y+
x

y−
TS

TP
x y−

TS

TE
x

Given that NC = NS/4. Therefore, using the speeds
of gears shown in the bottom row,

NC =
NS

4

y =
y+x

4
x

y
= 3

Also,

NE = 0

y−
TS

TE
x = 0

TE =
x

y
TS

TE = 3TS

Taking the dimensional constraints,

TS+2TP = TE

TP =
TE−TS

2
TP = TS

Observing above equations,

TE > TS

Thus, the minimum number of teeth is TS = 12 (given).
Using above relations,

TS = 12

TE = 36

TP = 12

3.6 DYNAMIC ANALYSIS OF SLIDER
CRANK MECHANISM

Figure 3.42 shows the slider crank mechanism under
consideration where l and r are the lengths of connecting
rod and crank, respectively. The crank has angular
speed ω and angular acceleration α.

Ratio of lengths l and r is denoted as

n =
l

r

The relation between angular position of connecting rod
(θ) and crank (φ) is determined as

l sinφ = r sin θ

sinφ =
sin θ

n
(3.29)
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θ

#»

F b#»

F c

#»

F t

#»

F c

φ

#»

F p

xp

Figure 3.42 Slider-crank mechanism.

3.6.1 Motion in Links

3.6.1.1 Slider The distance of slider at extreme outer
position is (l+r), therefore, the position or displacement
function of slider, measured from the extreme outer
position, at any instant is given by

xp = (l+r)− l cosφ−r cos θ

= r

{

(1−cos θ)+
sin2 θ

2n

}

Therefore, velocity of the slider, directed towards crank
pin, at any instant is determined as

vp =
dxp

dt

= rω

{

sin θ+
sin 2θ

2n

}

Similarly, acceleration of the slider is given by

fp =
dvp
dt

= rω2

{

cos θ+
cos 2θ

n

}

3.6.1.2 Connecting Rod The angle φ denotes the
angular position of connecting rod with respect to frame.
Therefore, angular speed of connecting rod is determined
using Eq. (3.29):

cosφ
∂φ

∂t
= ω cos θ

ωCR =
∂φ

∂t

=
ω

n
×

cos θ

cosφ

For small values of φ (cosφ ≈ 1):

ωCR = ω
cos θ

n

Angular acceleration of connecting rod is derived as

αCR =
dωCR

dt

= −ω2 sin θ

n

For special case θ = φ = 0:

(ωCR)max =
ω

n
αCR = 0

3.6.2 Dynamic Forces

3.6.2.1 Piston Effort The net effective force acting
on the piston is known as piston effort. It consists of
three elements:

1. Pressure Force

Fp = p1A1−p2A2

2. Inertia Force

Fi = mω2r

[

cos θ+
cos 2θ

n

]

3. Gravity Force

Fg = mg

The piston effort is given by

FP = Fp−Fi±Fg

Gravity force is considered only in vertical motion of the
piston with suitable sign.

3.6.2.2 Crank Effort The force acting on the crank
at the joint of connecting rod as a result of the force on
the piston is known as crank effort. Resolving the piston
force along the connecting rod,

FCR =
FP

cosφ

The force exerts a thrust on cylinder-wall, given by

Fwall = FCR sinφ

The force on the crank generates crank effort, given by

Ft = FCR sin(φ+α)

The force transmitted to the crank bearing is

FB = FCR cos(φ+α)
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3.6.3 Turning Moment

Turning moment on the crank shaft is derived as

T = Ft×r

=
FP

cosφ
×sin (θ+α)×r

=
rFP

cosφ
{sin θ cosφ+cos θ sinφ}

= FP r

{

sin θ+cos θ sinφ

(
1

cosφ

)}

= FP r

{

sin θ+
sin 2θ

2
√

n2−sin2 θ

}

This is the expression of turning moment in terms of
piston effort (Fp), crank radius r for given angular
position (θ) of the crank. For given values of Fp and
r, the turning moment is can be represented as

T = f (θ)

Using this function, T (θ) can be plotted for different
values of θ. This plot is called turning moment diagram.

3.7 FLYWHEEL

In every machine, there is at least one point at which
energy is supplied and at least one other point at which
energy is delivered. Between these two points, there is
undesired variation in energy and speed of the machine.
A flywheel is a balanced spinning wheel with significant
moment of inertia. It is used to control variation in speed
during each cycle of an engine by making moment of
inertia of rotating parts quite large. A flywheel acts as a
reservoir of energy which stores and releases the energy
as per its requirements.

3.7.1 Mean Speed of Rotation

Let a machine be attached with a flywheel with moment
of inertia7 I. The maximum and minimum seeds of
rotation of the flywheel are ω1 and ω2, respectively.
Therefore, the mean speed of rotation of the flywheel
is

ω =
ω1+ω2

2
To quantify the fluctuation of speed, a term coefficient
of fluctuation of speed (ks) is defined as

ks =
ω1−ω2

ω

7Moment of Inertia of a disc is

Idisc =

∫ R

0

ρ×2πbrdr×r2 = 2
ρbπR2×R2

4
=

mR2

2

Using the definition of mean speed ω, and taking r =
ω1/ω2:

ks
2

=
r−1

r+1
rks+ks = 2r−2

r (2−ks) = 2+ks

r =
2+ks
2−ks

This expression relates speed ratio r to the coefficient of
fluctuation of speed (ks).

3.7.2 Energy Fluctuation

Let E be the kinetic energy of the flywheel at mean
speed ω:

E =
1

2
Iω2

The maximum fluctuation of energy (emax) is deter-
mined as

emax =
1

2
I(ω2

1−ω2)
2

= I(ω1−ω2)
ω1+ω2

2

= I
(ω1−ω2)

ω
.ω2

= Iω2ks

= 2×
Iω2

2
ks

= 2ksE

Thus,

ks =
emax

2E

A flywheel stores the extra energy (more than average)
supplied by engine during power stroke, and to reduce
variations in the power generation curve, it returns the
stored energy. Therefore, a flywheel must have sufficient
moment of inertia to become capable of absorbing the
maximum energy variation.

3.7.3 Turning Moment Diagrams

A turning moment diagram indicates the variation in the
turning moment or torque due to the pressure variation
in the cylinder for one complete revolution of the power
cycle. The profile and frequency of turning moment
diagram depends upon the type of engine or power pack
being in use.

Let torque equation (T–θ) on turning diagram be
presented as

T = f(nθ)
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Thus, the cycle repeats in every 2π/n radian. The mean
torque of the cycle will be given by

T̄ =
n

2π

∫ 2π/n

0
Tdθ

The excess energy is calculated by first finding θA and
θB between which maximum fluctuation (addition or
delivery) of energy occurs above the mean value. For
this, the following equation is solved forN different roots
of θ:

T − T̄ = 0

The variation in energy is calculated between the
successive roots of θ using the following equation (n
varying from 1 to N):

e =

∫ θn+1

θn

(T − T̄ )dθ

Out of such variations, θA and θB are chosen between
which the maximum variation of energy is given by

emax =

∫ θB

θA

(T − T̄ )dθ

Maximum and minimum speed occurs at the points of
maximum and minimum kinetic energy.

3.8 BELT DRIVE

A belt is a looped strip of flexible material used to
mechanically link two or more rotating shafts. A belt
drive offers smooth transmission of power between two
shafts at considerable distance. The drive is lubrication-
free and requires minimum maintenance. The pulleys
are usually less expensive than chain drive sprockets and
exhibit little wear over long periods of operation.

The belt drive is not a positive drive. Let s1 and s2 be
the slips in driver pulley and driven pulley, respectively.
Let N1 and N2 denote speeds of driver and driven
pulleys having diameter D and d, respectively. For belt
thickness t, speed ratio of the drive is given by

N2

N1
= (1−s1) (1−s2)

D+ t

d+ t

Therefore, the total slip is

s = (1−s1) (1−s2)

Belt drives have drawback of slippage, wear in belts, and
unsuitability in adverse service conditions. Slip in timing
belts (used in time crank and cam) is zero because they
are toothed belts.

3.8.1 Types of Belt Drives

In a two-pulley system, the belt can either drive the
pulleys in the same direction (open drive), or the belt can
be crossed so that the direction of the shafts is opposite
(crossed drive) [Fig. 3.43].

D1
D2

D1
D2

Open belt drive

Crossed belt drive

Figure 3.43 Open and crossed belt drives.

The two types of belt drives are explained as follows:

1. Open Belt Drive An open belt drive is used to
rotate the driven pulley in the direction of driving
pulley. Power transmission results makes one side
of the belt more tightened (tight side) as compared
to the other (slack side). In horizontal drives, tight
side is always kept in the lower side of two pulleys
because the sag of the upper side slightly increases
the angle of wrap of the belt on the two pulleys.

2. Crossed Belt Drive A crossed belt drive is used to
rotate driven pulley in the opposite direction of the
driving pulley. Higher the value of wrap enables
more power can be transmitted than an open belt
drive. However, bending and wear of the belt are
important concerns.

3.8.2 Length of Belts

The length of the belt depends upon the type of belt
drive. The expressions are derived as follows:

1. Open Belt Drive Consider an open belt drive
consisting of two pulleys of diametersD and d kept
apart by a center distance c [Fig. 3.44].
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Dd

β

c

Figure 3.44 Open belt drive.

Angle of lap β is related as

sinβ ≈ β =
D−d

2c

cosβ =
√

1−sin2 β

=

{

1−
(
D−d

2c

)2
}1/2

≈ 1−
1

2

(D−d)2

4c2

These expressions for β and cosβ is used as

L = 2
{π

2
−β
} d

2

+2
{π

2
+β
} D

2

+2c

{

1−
1

2

(D−d)2

4c2

}

= 2

{
π

2
−

D−d

2c

}
d

2

+2

{
π

2
+

D−d

2c

}
D

2

+2c

{

1−
1

2

(D−d)2

4c2

}

= π
(D+d)

2
+2c+

(D−d)2

4c

2. Crossed Belt Drive Consider a crossed belt drive
consisting of two pulleys of diametersD and d kept
apart by a distance c [Fig. 3.45].

Dd

β

c

Figure 3.45 Crossed belt drive.

Angle of lap β is related as

sinβ ≈ β =
D+d

2c

cosβ =
√

1−sin2 β

=

{

1−
(
D+d

2c

)2
}1/2

≈ 1−
1

2

(D+d)2

4c2

Length of the belt is expressed as

L = 2
(π

2
+β
) d

2
+2
(π

2
−β
) D

2
+2c cosβ

= 2

{
π

2
+

D+d

2c

}
d

2
+2

{
π

2
−

D+d

2c

}
D

2

+2c

{

1−
1

2

(D+d)2

4c2

}

= π
(D+d)

2
+2c+

(D+d)2

4c

3.8.3 Power Transmission

Let a belt of mass m per unit length rotate with
peripheral velocity v over a pulley of radius r [Fig. 3.46].
An elemental length δl = rδθ of the belt passing over the
pulley is subjected to centrifugal force, which creates
centrifugal tension Tc both on tight and slack sides. Let
µ be the coefficients of friction and R be the reaction
between belt and pulley.

3.8.3.1 Initial Tension The belt is assembled with an
initial tension. When power is transmitted, the tension
in tight side increases from Ti to T1 and on the slack
side decreases from Ti to T2. If the belt is assembled to
obey Hooke’s law and its length remains constant, then

T1−Ti = Ti−T2

Ti =
T1+T2

2
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θ

Tc

T1T2
r

Figure 3.46 Centrifugal tension in belt drives.

3.8.3.2 Centrifugal Tension The centrifugal tension
in the belt is determined as

m (rdθ)
v2

2
= 2Tc

dθ

2
Tc = mv2

3.8.3.3 Ratio of Driving Tensions Equilibrium of
the belt element is examined in two orthogonal direc-
tions:

1. Radial Direction

R+Tcdθ = (T +dT )
dθ

2
+T

dθ

2
R = (T −Tc) dθ (3.30)

2. Tangential Direction

T +dT −T = µR

dT = µR (3.31)

Using Eqs. (3.30) and (3.31),

dT = µ (T −Tc) dθ
∫ T2

T1

dT

T −Tc
=

∫ θ

0
µdθ

T1−Tc

T2−Tc
= eµθ

where T1 and T2 are actual tensions in the belt, T1−
Tc and T2−Tc are the driving tension or effective
tensions on the pulley. The equation indicates that if the
diameter of the driving and driven pulleys are unequal,
the belt will slip first on the pulley having smaller angle
of lap θ (i.e. smaller pulley in open belt, friction will
be less). Therefore, the angle of lap (also called angle
of wrap or contact) is taken for the angle subtended by
the segment of belt in contact with smaller pulley at the
center.

The idler pulleys are used to tighten the belts and
increases the angle of lap. Idler pulleys are held against
the belt by their own weight in addition to an adjustable
weight. Idler pulley are not provided crowning, and are
kept on loose sides, nearer to smaller pulley.

3.8.3.4 Power Transmitted The power transmitted
through the belt drive is determined as

P = (T1−T2) v

= {(T1−Tc)−(T2−Tc)} v
= (T1−Tc)

{

1−e−µθ
}

v

=
(

T1−mv2
) {

1−e−µθ
}

v

For maximum power transmission,

dP

dv
= 0

d

dv

(

T1−mv2
)

v = 0

T1−3mv2 = 0

Tc =
T1

3

Belt-velocity for maximum power transmission is

v∗ =

√

T1

3m

At this velocity, the maximum possible power transmis-
sion is

P =

(

T1−
T1

3

)
{

1−e−µθ
}

v

=
2T1

3

{

1−e−µθ
}

v

3.8.3.5 Effect of Centrifugal Tension If centrifugal
tension is neglected, then

1. Ratio of Driving Tensions

T1

T2
= eµθ

2. Power Transmitted

P = T1

{

1−e−µθ
}

v

Therefore, the effect of centrifugal is to reduce the
power transmitted. The maximum efficiency of belt
drive remains unaffected to 66.67%.

3.8.4 Crowning of Pulleys

Pulleys of flat drives are crowned by producing slightly
conical or convex surface on the rim. When the belt slips
off the pulley, the crown helps it to adhere to the cone
surface due to pull on the belt. Crowning is always done
on the driving pulley because tension is on entry side.
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3.8.5 Law of Belting

According to law of belting, the center line of the belt
when it approaches a pulley must lie in the mid-plane
of the pulley. Hence, in non-parallel shafts, rotation is
possible in only one direction.

3.8.6 Elastic Creep

Presence of friction between pulley and belt causes
differential tension in the belt. This differential tension
causes the belt to elongate or contract, and thus create a
relative motion between the belt and the pulley surface.
This slip is called elastic creep. This reduces the speed
of the belt and power transmission.

3.8.7 V-Belts

In V-belt drives, the angle of groove β results in a higher
coefficient of friction, known as effective coefficient of
friction, given by

µ′ =
µ

sin (β/2)
(3.32)

which is always greater than µ. This is the main reason
behind use of V-belts. V-belt groove angle is 34—36◦

while pulley groove angle is 40◦. To avoid locking,
V-belts are designed not to touch the bottom of the
V-groove.

3.9 FRICTION

The sliding of one solid body in contact with a second
solid body is always restricted by a force called the force
of friction. It acts in opposite direction to that of the
relative motion and is tangential to the surface of the
two bodies at the point of contact.

Friction is an important aspect in every machine
because it involves wearing of machine components and
consumes energy that dissipates into heat. Sometimes
friction is also desirable for functioning of a machine,
such as friction clutches, belt drives.

3.9.1 Theory of Friction

Consider a body of weight W resting on a smooth and
dry plane surface. The normal reaction at the surface is
Rn [Fig. 3.47].

If a small horizontal force F is applied to the body
to move it over the surface, until the body is unable to
move, the equilibrium equation of the body is given by

Rn = W

F = F ′

W

Rn

W

F ′ F ′

RnR

θ

Figure 3.47 Coefficient of friction.

where F ′ is the horizontal force resting on the motion of
the body. Let R be the resultant of Rn and F ′, expressed
as

Rn = R cos θ

F ′ = R sin θ

If the pull F is increased continuously, the above angle θ
would attain a limiting value φ [Fig. 3.48] when the body
will just move and with µ as the coefficient of friction,

F ′ = µRn

tanφ =
F ′

Rn

= µ

Here, φ is called angle of friction.

Maximum friction
(body is about to move)

F
ri
ct
io
n
fo
rc
e,

F
′

45◦

Applied force, F

(body is in motion)
Kinetic friction

Figure 3.48 Friction force versus applied force.

The cone of friction is the imaginary cone generated
in the case of non-coplanar forces by revolving the static
resultant reaction R about the normal. Its cone angle
will be 2φ [Fig. 3.49].

3.9.1.1 Friction Circle Greasy friction occurs in heavy
loaded, slow running bearings. When a shaft rests in
its bearing, the weight of the shaft W acts through its
center of gravity. The reaction of the bearing acts in line
with W in the vertically upward direction. The shaft
rests on the bearing in metal-to-metal contact.
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Cone of friction

R

F ′

φ

Figure 3.49 Cone of friction.

Rn

µRn

R

W

O C

φ

r sinφ

Figure 3.50 Friction circle.

When a torque is applied to the shaft, it rotates
and seat of pressure creeps or climbs up the bearing
in a direction opposite to that of rotation. Metal-to-
metal contact still exists and greasy friction criterion
applies as the oil film will be of molecular thickness. For
equilibrium, the resultant reaction R must vertically act
upward and must be equal to W , however, these two
forces at a distance OC, constitute a couple [Fig. 3.50].
If r is the radius of journal (shaft), the friction torque
will be given by

T = W ×r sinφ

A circle drawn with radius r sinφ is known as the friction
circle of the journal.

3.9.2 Inclined Plane

Consider a body of weightW over an inclined plane at an
angle α to the horizontal. The limiting angle of friction
between the surfaces is φ. Let a force F be applied to
cause the body slide with uniform velocity parallel to
the slope. On the limiting case, it will be equal to the
angle of friction φ.

Three situations are possible for body over inclined
plane: at rest, moving up, and moving down the plane.
The expressions for forces and efficiency in such cases
are derived as follows.

3.9.2.1 Body at Rest For the equilibrium of the
body at rest on the plane [Fig. 3.51], the limiting
resultant friction force R is given by

W sinα = µW cosα

tanα = µ

= tanφ

α = φ

Rn

F ′

R

α

W

φ

W cosα

W sinα

Figure 3.51 Body at rest on the plane.

Angle of repose is the maximum angle to which an
inclined plane can be raised before an object resting on
it starts moving under the action of its won weight and
friction resistance. Above equation shows that angle of
response is equal to the angle of friction.

3.9.2.2 Body Moving Up the Plane For the equilib-
rium of the body moving up the plane [Fig. 3.52], using
Lami’s theorem:

R

sin θ
=

F

sin (α+φ)
=

W

sin {θ−(α+φ)}

Therefore
F

W
=

sin (φ+α)

sin {θ−(α+φ)}
(3.33)

In the above equation, the pulling force will be
minimum if the denominator on right hand side is
maximum, therefore,

sin {θ−(α+φ)} = 1

θ−(α+φ) =
π

2

θ−
(π

2
+α
)

= φ
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Rn
F

R

α

W

φ

θπ/2−φ

π−θ+α+φ

Figure 3.52 Motion up the plane.

This equation indicates that the pulling force (F ) will be
minimum if the angle between F and inclined plane is
equal to the angle of friction. In that case, the minimum
pulling force will be given by

F = W sin (α+φ)

In this case, efficiency of inclined plane is the ratio of the
pulling force required to move the body without friction
(µ = 0) and with friction. Therefore, using Eq. (3.33),

η =
F0

F

=
sinα

sin (θ−α)
×

sin {θ−(α+φ)}
sin (α+φ)

=
cot (φ+α)−cot θ

cotα−cot θ

In the above equation, when pulling force F is applied
in horizontal direction (θ = π/2),

η =
tanα

tan (α+φ)

3.9.2.3 Body Moving Down the Plane For the
equilibrium of the body moving down the plane [Fig.
3.53], using Lami’s theorem:

F

sin {π−(φ−α)}
=

W

sin {θ−α+φ}
F

W
=

sin (φ−α)
sin {θ+(φ−α)}

(3.34)

If friction is neglected in the above case, then

F = −
−W sinα

sin (θ−α)

Negative sign in the above expression indicates that the
weight component adds the effort to move the body in
the downward direction, therefore, force is required in
opposite direction to oppose the downward motion.

Rn

F

R

α

W

φ

θ

π−θ

θ+φ−α
π−(φ−α)

Figure 3.53 Motion down the plane.

In this case, efficiency of inclined plane is the ratio
of the force required to move the body with friction and
without friction (µ = 0). Therefore, using Eq. (3.34),

η =
F

F0

=
sin (φ−α)

sin {θ+(φ−α)}
×

sin (θ−α)
− sinα

=
cotα−cot θ

cot (φ−α)+cot θ

In the above equation, when pulling force F is applied
in horizontal direction (θ = π/2),

η =
tan (φ−α)

tanα

3.9.3 Friction in Screw Threads

Screw and nut combinations are used to convert rotary
motion into translational motion and transmit power.
Screw threads are mainly of two types namely, square
threads and V-threads. The V-threads offer more re-
sistance to the motion than square threads, therefore,
the square threads are used in screw jacks, whereas V-
threads are used for tightening of two components.

The axial distance traveled by thread in one turn
is called lead. Pitch (p) is the distance between two
adjacent threads parallel to axis of the screw. For single
start threads, lead is equal to pitch. Helix angle (α) is
the slope or inclination of the threads with horizontal.
For single start screws [Fig. 3.54], if d is the mean
diameter of the helix, then

tanα =
p

πd

In the V-threads shown in Fig. 3.55, the reaction on
thread is inclined by angle β with vertical direction of
load W . Therefore, due to wedge effect, the effective
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πd

pα

d

Figure 3.54 Helix angle of screw threads.

coefficient of friction is given by

µ′ =
µ

cos (β/2)

Rn

β

Rn cosβ

β

W

Figure 3.55 Friction in V-threads.

The following derivations are for square threads
but V-threads can be analyzed by converting these
derivations into equivalent square threads with increase
in friction by cosine of half V-angle (β/2).

3.9.3.1 Lifting Consider a square thread screw used
as a jack to lift a load W . Using Eq. (3.33) for θ = π/2,

F = W
sin (φ+α)

sin {π/2−(φ+α)}
= W tan (α+φ)

If force f is applied at the end of the lever length l, then

f× l = F ×
d

2

f =
Wd

2l
tan (φ+α)

Screw efficiency in lifting a load is defined as the
ratio of work done in lifting the load per revolution and

work done by the applied force per revolution. In one
revolution of lifting, the load W travels axial distance
equal to lead (l), while the point of applied force F
moves the circumferential distance πd, therefore, screw
efficiency is given by

η =
W × l

F ×πd

=
tanα

tan (α+φ)
(3.35)

For maximum screw efficiency,

dη

dα
= 0

This results in

α =
π−φ
2

Putting this value in Eq. (3.35), the maximum screw
efficiency is found as

ηmax =
1−sinφ

1+sinφ

Mechanical advantage is the ratio of weight lifted and
applied force:

W

F
=

2L

d
tan (φ+α)

3.9.3.2 Lowering Now, consider a square thread
screw used as a jack to lower a load W . Using Eq. (3.34)
for θ = π/2,

F = W
sin (φ−α)

sin {π/2+(φ−α)}
= W tan (φ−α)

If force f is applied at the end of the lever length L, then

f×L = F ×
d

2

f =
Wd

2l
tan (α−φ)

This equation indicates that the angle of friction (φ)
should always be more than the helix angle of the screw
(α). Otherwise, the load will slide down of its own weight
W . When α = φ, the nut will be on the point of
reversing, and using Eq. (3.35) the screw efficiency in
lowering will be

η =
tanφ

tan (2φ)

For small values of φ, tanφ ≈ φ, hence

η =
1

2

Derived with condition α = φ, the above equation
indicates that the reversal of nut is avoided if the
efficiency of the thread is less than 50% approximately.
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3.9.4 Pivots and Collars

Pivots and collars are used to support a rotating shaft
subjected to axial loads. Collars are provided at any
position along the shaft and bears the axial load on
a mating surface. Pivots, sometimes called footstep
bearing, are recesses in which shafts is inserted at one
end to bear the axial load [Fig. 3.56]. The surfaces of
collars and pivots can be either flat or conical.

2α

FF

Flat collar

Conical collar

F F

Flat pivot Conical pivot

Figure 3.56 Flat and conical pivots.

The friction torque of a collar or pivot bearing can be
determined either by uniform pressure theory or uniform
wear theory. Each assumption leads to a different value
of friction torque.

3.9.4.1 Uniform Pressure Theory The uniform pres-
sure theory assumes that intensity of pressure on the
bearing surface is constant. This can be examined in flat
and conical collars/pivots:

1. Flat Collars and Pivots Consider a flat collar
of radii internal radius Ri, external radius Ro,
subjected to axial force F . The uniform pressure
intensity at any point in the collar is given by

p =
F

π
(

Ro
2−Ri

2
)

The friction torque will be given by

T =

∫ Ro

Ri

r×p×2πr×dr

=

∫ Ro

Ri

2pπr2dr

= µF ×
2

3
×

Ro
3−Ri

3

Ro
2−Ri

2

︸ ︷︷ ︸

R̄

(3.36)

Friction torque for flat pivot, based on uniform
pressure theory, can be derived using the above
expression by taking Ri = 0, Ro = R:

T = µF ×
2R

3

This expression is comparable to Eq. (3.36), where
average radius is R̄ given by

R̄ =
2

3
×

Ro
3−Ri

3

Ro
2−Ri

2

2. Conical Collars and Pivots Consider a conical
collar of radii internal radius Ri, external radius
Ro, half cone angle α, subjected to axial force F .
The uniform pressure intensity at any point in the
collar is given by

F =

∫ Ro

Ri

p×2πr×
dr

sinα

p =
F sinα

π
(

Ro
2−Ri

2
)

The friction torque is given by

T =
µ

sinα
F ×

2

3
×

Ro
3−Ri

3

Ro
2−Ri

2

︸ ︷︷ ︸

R̄

(3.37)

Friction torque for conical pivot, based on uniform
pressure theory, can be derived using the above
expression by taking Ri = 0, Ro = R:

T =
2

3
×

µ

sinα
×FR

This expression is comparable to Eq. (3.37), where
the average radius R̄ is given by

R̄ =
2

3
×

Ro
3−Ri

3

Ro
2−Ri

2

3.9.4.2 Uniform Wear Theory The uniform wear
theory assumes the uniform wearing of the bearing
surface. For this, the intensity of pressure should be
inversely proportional to the elemental areas. In this
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case, for the two locations at r1 and r2 with the same
width b, the pressure intensities are given by

p1×2πr1b = p2×2πr2b

p1r1 = p2r2

Hence
pr = constant

This can be examined in flat and conical collars/pivots:

1. Flat Collars and Pivots By this theory, for a
flat collar of radii internal radius Ri, external
radius Ro, subjected to axial force F , the pressure
intensity p at any radius r will be given by

p =
F

2πr (Ro−Ri)

The friction torque will be

T =

∫ Ro

Ri

2pπr2dr

=

∫ Ro

Ri

2
F

2πr (Ro−Ri)
πr2dr

= µF ×
Ro+Ri

2
︸ ︷︷ ︸

R̄

(3.38)

Friction torque for flat pivot, based on uniform
wear theory, can be derived using the above
expression by taking Ri = 0, Ro = R:

T =
1

2
µFR

This expression is comparable to Eq. (3.38), where
the average radius R̄ is given by

R̄ =
Ro+Ri

2

2. Conical Collars and Pivots Similarly, for a conical
collar of radii internal radius Ri, external radius
Ro, half cone angle α, subjected to axial force F ,
the pressure intensity p at any radius r will be
given by

p =
F

2πr (Ro−Ri)

The friction torque will be given by

T =

∫ Ro

Ri

r×
(

µp×2πr×
dr

sinα

)

(3.39)

=
µF

sinα
×

Ro+Ri

2
(3.40)

Friction torque for conical pivot can be derived
using above expression by taking Ri = 0, Ro = R:

T =
µ

sinα
×F ×

R

2

This expression is comparable to Eq. (3.40), where
average radius is R̄ given by

R̄ =
Ro+Ri

2

In the above cases, the effect of half cone angle α is to
increase the effective coefficient of friction as

µ′ =
µ

sinα

Also, by keeping α = π/2 (sinα = 1) on the
expressions for conical bearings (both collar and pivot),
the expressions for flat bearings are derived.

The expressions obtained by uniform pressure theory
and uniform wear theory give different values. In all the
above cases, uniform wear theory gives smaller friction
torque than that by uniform pressure theory.

3.9.5 Friction Clutches

A clutch is a device used to transmit the rotary motion
from one shaft to another. In friction clutches, the con-
nection of the two shafts is affected by friction between
the two mating concentric surfaces when pressed against
each other.

In case of multi-plate clutch having n1 and n2 plates
on driving and driven shafts, the number of friction
surfaces shall be given by

n = n1+n2−1

The expressions of friction torque derived for pivots
and collars can be used to determine the maximum
torque and power transmission. In design of clutches,
the objective is to make the clutch capable for maximum
torque transmission, therefore, using uniform wear
theory gives safer values.

3.10 GOVERNOR

Governor is a device used to maintain the speed of an
engine within specified limits when the engine works in
varying of load. This can be distinguished from that of
a flywheel which controls energy fluctuations per cycle
(Table 3.2). The functioning of flywheel is independent
of speed. The operation of a governor is intermittent
while that of a flywheel is continuous.

3.10.1 Types of Governors

Based on the source of controlling force, the governors
are of two types:



✐

✐

“WileyGateMe” — 2014/2/1 — 10:40 — page 180 — #218
✐

✐

✐

✐

✐

✐

180 CHAPTER 3: THEORY OF MACHINES

Table 3.2 Governor versus flywheel

Governor Flywheel

1. Provided on prime-
movers

Provided in engine
and machines

2. Regulates supply of
fuel

Stores mechanical
energy

3. Takes care of long
range variation in
load

Take care of varia-
tion in the cycle

4. Works only when
load changes

Works in each cycle

1. Centrifugal Governors In centrifugal governors,
two or more masses, known as governor balls,
are caused to revolve about the axis of a shaft,
which is driven through suitable gearing from the
engine crankshaft. Each ball is acted upon by a
force which acts in the radially inward direction,
and is provided by a deadweight, a spring or a
combination of two. This force is termed as the
controlling force and it must increase in magnitude
as the distance of the ball from the axis of rotation
increases. The inward or outward movement of the
balls is transmitted by the governor mechanism
to the valve which controls the amount of energy
supplied to the engine.

2. Inertia Governors In inertia governors, the balls
are so arranged that the inertia forces caused
by an angular acceleration or retardation of the
governor shaft tend to alter their position. The
obvious advantage of this type of governor lies in
its more rapid response to the effect of a change
of load. This advantage is offset, however, by the
practical difficulty of arranging for the complete
balance of the revolving parts of the governor. For
this reason, centrifugal governors are much more
frequently used than are inertia governors, and
thus, only the former type will be dealt with here.

The concept of some important governors is explained
as follows

3.10.1.1 Watt Governor Watt governor8, although
now obsolete, is interesting as being the forerunner of
the later examples of governors. It consists of two balls
attached to the spindle through four arms. The two
upper arms meet at the pivot on the spindle axis. The
lower arms are connected at a sleeve by pin joints. The
movement of the sleeve is restricted by stops [Fig. 3.57].

8Watt governor is the original form of governor as used by Watt
on some of his early steam engines.

mg

mωr2

Sleeve

Pivot

r

h

Figure 3.57 Watt governor.

Consider the situation when the rotation speed is N
rpm (=ω rad/s) and the balls are located at radius r and
height h measured from pivot. The centrifugal forces
acting on all four balls is mω2r. The weight of the balls
is mg. Taking moment of these forces acting on the balls
about the pivot gives

mω2r×h−mg×r = 0

h =
g

ω2

Using this equation, the height h can be expressed in
terms of speed N (rpm) as

h =
895

N2

Differentiating the above equation w.r.t. N , the change
in height is found to be related with change in speed as

δh ∝ −
δN

N3

Therefore, with increasing speeds, δh becomes insignif-
icant, and governor stops functioning. Therefore, Watt
governors are suitable for slow speed engines only.

3.10.1.2 Porter Governor The porter governor is a
modified Watt governor in which a heavy central mass
M is placed to the sleeve. The action is exactly the same
as that of the Watt governor [Fig. 3.58].

With equilibrium equation of balls, the expression for
height h can be derived as

h =
mg+(Mg±F ) (1+q) /2

mg
×

895

N2

where F is the frictional force on movement of central
mass, and q is a constant defined as

q =
tanα

tanβ
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Figure 3.58 Porter governor.

The quantity q will have a different values for each radius
of rotation of the governor balls, unless the upper and
lower arms are of equal length.

3.10.1.3 Proel Governor A Proel governor is similar
to the Porter governor in that it is has a heavily weighted
sleeve, but differs from it in the arrangement of balls
[Fig. 3.59]. These are carried on the extension of the
lower arm instead of being carried out at the junction of
the upper and lower arms. The action of this governor
is similar to Watt governor.

Sleeve

Pivot

M

Figure 3.59 Proel governor.

3.10.1.4 Hartnell Governor The Hartnell governor is
of the spring loaded type Fig. 3.60. It consists of two bell
crank levers pivoted at points offset to central axis. The
frame is attached to the governor spindle and rotates
with it. Each ball lever carries a ball at the end of
vertical arms, and roller at the other end of horizontal
arm. A helical spring provides equal downward forces on
the two rollers through sleeve.

a

b

Spring

Pivots

mm

Figure 3.60 Hartnell governor.

Let r1 and r2 be the radius of balls at two speeds
ω1 and ω2. The centrifugal forces acting on the balls in
both conditions will be

F1 = mω1
2r1

F2 = mω2
2r2

Taking moments of forces acting on the balls w.r.t.
pivots for both situations separately,

F1a1 =
Mg+fs+f

2
b1−mgc1

F2a2 =
Mg+fs+f

2
b2−mgc2

where fs is spring force, f is friction force, and c1 and
c2 are the offsets of the balls. Taking,

a1 ≈ a2 ≈ a, b1 ≈ b2 ≈ b, c1 = c2 = 0

Therefore,

F1a =
Mg+fs1 +f×b

2

F2a =
Mg+fs2 +f×b

2

Subtracting the above two equations,

(F2−F1) a = (fs2 −fs1)
b

2

The difference in spring force is

fs2 −fs1 =
2a

b
(F2−F1)

3.10.2 Sensitiveness and Stability

The following are the important terms related to sensi-
tiveness and stability of governors:

1. Sensitiveness Sensitiveness of a governor is
correctly defined as the ratio of the difference
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between the maximum and minimum equilibrium
speeds to the mean equilibrium speed:

Sensitiveness =
N1−N2

N

where N1 and N2 shows the speed range between
which the governor is insensitive, and N is the
mean equilibrium speed. This is also referred as
the coefficient of insensitiveness as a measure of
insensitiveness of a governor.

2. Isochronism A governor is said to be isochronous
when it has the same equilibrium speed for all the
positions of sleeve or the balls; any change of speed
results in moving the balls into extreme positions.
Thus, an isochrounous governor will have infinite
sensitiveness.

3. Stability A governor is said to be stable when
for each speed within the working range, there is
only one radius of rotation of the governor balls at
which the governor is in equilibrium.

4. Hunting Sensitiveness of a governor is a desirable
quality. However, if a governor is too sensitive, it
can fluctuate continuously because when the load
on the engine falls, the sleeve rises rapidly to a
maximum position. This shuts off the fuel supply.
If the frequency of fluctuations in engine speed
happens to coincide with the natural frequency of
oscillations of the governor, then due to resonance,
the amplitude of oscillations becomes very high
with the result that the governor tends to intensify
the speed variations instead of controlling it. Such
a situation is known as hunting.

3.10.3 Controlling Force

In a centrifugal governor, the resultant of all external
forces which control the movement of the ball can be
regarded as a single inward radial force acting at the
center of the ball. The variation of this force F with
radius of rotation r of the ball, which is necessary to
keep the ball in equilibrium at various configurations
(i.e. for different values of r). The force F is known as
controlling force which is function of single variable r:

F = f(r)

Let the ball rotates at a speed ω then centrifugal force
needed for maintaining the radius r is mω2r. So, for
given value of ω

F ∝ r

The governor is said to be stable when slope of speed
curve is less than that of controlling force curve. For a
given governor to be stable at all radii (i.e. throttling can
be controlled and will bring speed to the desired value
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Figure 3.61 Controlling force diagram.

without hunting), the controlling force curve should pass
r = +ve or 0 [Fig. 3.61]. For stability,

F

r
<
∂F

∂r

The friction force at the sleeve gives rise to the
insensitiveness in the governor. At any given radius r,
there will be two different speeds one being when sleeve
moves up and other being when sleeve moves down. Fig.
3.61 shows that when the speed increases from ω (N)
to ω1 (N1), r increases to r1, and F increases to F1

and sleeve closes the throttling value. Similarly, when
ω1 → ω2 (N2), and r decreases to r2.
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Figure 3.62 Stability and isochronism of gonvernors

Figure 3.62 depicts the plots of controlling force
versus radius of rotation of balls for different types
of governors. It is evident that Watt governor is an
isochronous governor. Porter governor is a stable gover-
nor while Proel governor is stable after a certain radius.
Hartnell governor is also a stable governor.


