

Irrigation and its Methods 1

Irrigation is the science of artificial application of water to the land, in accordance with the crop requirements throughout the crop period for full-fledged nourishment of the crops.

Crop yield expressed in quintal/ha or tonnes/ha.

Productivity is expressed as crop yield per mm of water applied.

Types of irrigation projects

Methods of irrigation

(1) Free flooding or ordinary flooding or wild flooding

12.4 CIVIL ENGINEERING

• used for rolling land where borders, checks, basins and furrows are not feasible.

(2) Border flooding 100 – 400 m Supply ditch Slope \rightarrow Drain Levees $\overrightarrow{10-200}$ m $t = 2.303 \frac{y}{a} \log$ $f \stackrel{\sim}{_{\sim}} Q - f$ $\overline{\text{Q}}$ $Q - fA$ *Q* = Discharge through supply ditch *A* = Area of land strip to be irrigated

 $y =$ depth of water flowing over the border Strip.

- f = Rate of infiltration of soil.
- *t* = Time required to cover the given Area A

$$
A_{\text{max}} = \frac{Q}{f}
$$

 $\textbf{Note:} \text{Surface flow will stop after } A_{\text{max}}$ and deep percolation will start.

(3) Check flooding

- Close growing crops like jowar & paddy.
- Deep homogeneous loam or clay soil with medium infiltration rate.
- Suitable for both permeable and less permeable soil.

(4) Basin flooding

- Special type of check flooding and adopted specially for orchard trees.
- Basin shape may be irregular, square, rectangular, circular.
- Not suitable for coarse sand.

(5) Furrow irrigation

- Less evaporation
- Less wastage of land
- Wide range of natural slopes
- Preferred in flat or gentle slopes.

(6) Sprinkler irrigation

- Not suitable for soil with low infiltration rates (eg clay).
- Best suited for very light soil.
- xGenerally used for Tea, Coffee, Not at all used in Rice or Jute.

Note: For rice and jute, standing water is used

12.6 CIVIL ENGINEERING

(7) Drip irrigation

- Best suited for row crops and orchards like grapes, tomatoes, cabbage etc.
- Water and fertilizer is slowly and directly applied to the root zone of the plants.
- Achieved with the help of specially designed drippers and emitters.

Note : Sprinkler and drip irrigation systems falls under a category known as pressurised irrigation systems.

Soil-moisture 2 Plant Relationship

Classification of Soil water

Gravitational Water^{->}Not held by soil and drains out freely

Capillary Water^{->}Held in the soil by surface tension.

→ Also designated as available water

PWP (Permanent wilting point)

Hygroscopic Water→It is absorbed by the particles of dry soil from the atmosphere and is held as a very thin film on the surface of the soil particles due to adhesion. It is not available for plant use.

Soil moisture tension: Tenacity with which water is retained in the soil, measured as force per unit area. Generally expressed in atmosphere.

Soil moisture Stress = Soil moisture tension + Osmotic Pressure

The Osmotic pressure of the soil solution must be maintained as low as possible by controlled leaching.

12.8 CIVIL ENGINEERING

Saturation capacity \rightarrow Max water holding capacity of the soil.

Field capacity \rightarrow Max amount of moisture which can be held against gravity.

Soil moisture tension at permanent willing point ranges from 7 to 32 atmospheres.

Depth of water stored in the root zone (d_w)

Field capacity = $\frac{\text{wt. of water retained in certain volume of soil}}{\text{wt. of same volume of dry soil}} \times 100$

$$
d_w = \frac{\gamma_d}{\gamma_w} \times d \times F
$$

 $F =$ Field capacity

 $d =$ depth of root zone

 γ_d = dry unit wt. of soil

 γ_w = unit wt. of water

Note:- γ_d is the unit weight of dried soil sample, not of soil solids.

Available moisture depth to plant, $d'_w = \frac{d}{dx} \times d$ *w* γ $\frac{a}{\gamma_w} \times a$ (F.C-PWP)

Readily available moisture depth to plant, $d_w'' = \frac{d_d}{dt} \times d$ *w* γ $\frac{du}{\gamma_w} \times a$ (F.C-Readily) available moisture)

$$
Porosity = Field capacity \times \frac{\gamma_d}{\gamma_w}
$$

Irrigation Water Quality:

(1) Total concentration of soluble salts

• Generally expressed in ppm or mg/l.

• Indirectly measured by determination of electrical conductivity expressed in micro mho's per centimetre

SOIL-MOISTURE PLANT RELATIONSHIP 12.9

(2) Proportion of Sodium ions to other Cations

Sodium Adsorption Ratio,
$$
SAR = \frac{Na^{+}}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}}
$$

Note: High conc. of bi-carbonate ions may result in precipitation of calcium and magnesium bicarbonates, which will relatively increase the sodium concentration, and will become hazardous.

Crop period: Time b/w sowing of crop and its harvesting.

Base period: Time b/w first watering and last watering done before harvesting.

OMC Moisture content -

```
Crop period > Base period
```
Duty: Area of land in hectares that can be irrigated when one cumec of water is supplied throughout entire base period. Expressed in hectare per cumec.

Delta: Total depth of water applied over an irrigated land at different watering throughout entire base period. Denoted by and expressed in cm or m.

$$
\Delta = \frac{8.64}{D} B \qquad B \rightarrow \text{Base period in days}
$$

$$
D \rightarrow \text{hec/m}^3
$$

WATER REQUIREMENT OF CROPS 12.11

If duty at $A = D$ And there are 20% losses then, Duty at $F = 0.8D$

Commanded area: Area to be irrigated by canal system.

Gross command area (GCA): Total area that can be irrigated if unlimited supply of water is available.

Culturable command area (CCA): That part of GCA which is fit for cultivation.

Intensity of irrigation: Percentage of CCA that is proposed to be cultivated annually.

Note: Intensity can be even greater than 100%. For Eg. If If intensity of Rabi crop is 70% and that of Kharif crop is 50% then, Total intensity is $70+50 = 120\%$

Crop-Ratio: Ratio of area's of land irrigated in Rabi and Kharif season. It is to be selected such that discharge through canal remains uniform.

Paleo Irrigation: Watering done prior to sowing of crop.

Kor Watering (Kor depth or Kor period): First watering after the plants have grown few centimetres (similarly for other's)

Outlet Factor: Duty of water at the head of field channel, also called outlet discharge factor.

Capacity Factor: Ratio of mean supply discharge of canal to maximum discharge capacity

12.12 CIVIL ENGINEERING

Duty on capacity: Duty at the head of canal.

Time Factor: No. of days canal actually run to the total number of days of the watering period.

Cash crops: Crops that cannot be consumed directly by the cultivators. Crops like Jute, Tea, Cotton, Sugarcane, tobacco are excluded from the list of cash crops.

Irrigation Efficiencies

1. Water Conveyance Efficiency (η_c)

$$
\boxed{\eta_c = \frac{W_f}{W_r} \times 100 \quad W_f = \text{water delivered to field}}
$$
\n
$$
W_r = \text{water diverted from River to canal}
$$

It accounts for losses in conveyance system.

2. Water Application Efficiency (η_a)

$$
\boxed{\eta_a = \frac{W_s}{W_f} \times 100 \quad W_s = \text{water stored in the root zone} \quad W_f = \text{water delivered to field}}
$$

It accounts for loss due to surface runoff and deep-percolation. 3. Water Use Efficiency (η_{μ})

$$
n_u = \frac{W_u}{W_f} \times 100 \quad W_u = \text{water used beneficially including leading}
$$

4. Water Storage Efficiency (η_s)

$$
\eta_s = \frac{W_s}{W_a} \times 100 \quad W_s = \text{water stored in the root zone}
$$

during irrational

Where, W_n = Field capacity – Available moisture 5. Water distribution Efficiency (η_d)

$$
\eta_d = \left(1 - \frac{y}{d}\right) \times 100 \text{ y} = \text{average numerical deviation in water depth.}
$$

$$
d = \text{average depth of water stored in root zone.}
$$

WATER REQUIREMENT OF CROPS 12.13

6. Consumptive use Efficiency (η_{cu})

 $\eta_{cu} = \frac{W_{cu}}{W}$ *d cu d W W W* $=\frac{Vcu}{V} \times 100 \, \text{W}$ = $100 \, |W_d|$ consumptive use of water net amount of water depleted from root zone

Irrigation requirements of crops

1. Consumptive Irrigation requirement (CIR)

 $\overline{CIR} = E_t - R_e \overline{R_t}$ $\overline{E_{t}-R_{e}}\Biggr]\frac{E_{1}}{R_{e}}=$ T_1 = Evapotranspiration Effective Rainwall

2. Net Irrigation requirement (NIR)

LR = Leaching requirement

 \overline{NIR} = \overline{CIR} + \overline{LR} + \overline{PSR} + \overline{NEW} | \overline{PSR} = Pre Sowing requirement

NSR = Nursery water requirement

3. Field Irrigation Requirement (FIR)

$$
FIR = \frac{NIR}{\eta_c} \bigg| \eta_a = \text{Application Efficiency}
$$

4. Gross Irrigation Requirement (GIR)

$$
GIR = \frac{FIR}{\eta_c} \bigg| \eta_a = \text{conveyance efficiency}
$$

 $Note: $\overline{GIR > FIR > NIR > CIR}$$

Design of lined canals

(1) Triangular section (For ${\rm Q < 150m^3/sec})$

 $\mathbf{A} = y^2 \left(\boldsymbol{\theta} + \cot \boldsymbol{\theta} \right)$ $P=2y (\theta + \cot \theta)$

(2) Triangular section (For Q>150m3/sec)

 $\mathbf{A} = \mathbf{y}\left(\mathbf{B} + \mathbf{y}\boldsymbol{\theta} + \mathbf{y}\ \text{cot}\ \boldsymbol{\theta}\right)$ $\mathrm{P} = \mathrm{B} + 2y \; (\theta + \cot \theta)$

Top of lining


```
CANAL-DESIGN 12.15
```
Economic justification of lining of canal:

Benefit cost ratio ≥ 1

Average Annual Benefits = $mR_1 + PR_2$

 $m \rightarrow$ cumec of water saved due to lining

 $R_1 \rightarrow \rm{irrigation~water~ sold~ to~ farmer's~ at}$ $\overline{\tau}$ R_1/\rm{cumec}

 $P \rightarrow \%$ of saving achieved in maintenance cost by lining

 $R_2 \rightarrow$ Rate of maintenance cost in Rupees per year

c = Total initial investment

 y = service life in years

 $r =$ rate of annual simple interest

Design of unlined canal

 $\boxed{\tau_0 = \gamma RS}$

Where, τ_0 = Tractive force at the bottom of the channel

$$
\frac{\tau'_0}{\tau_0}=0.75
$$

 τ'_0 = Average tractive force at the channel side

$$
\tau_c = 0.056 \gamma_{\omega} d(G_s - 1)
$$
\n
$$
\psi_0
$$

12.16 CIVIL ENGINEERING

 τ_c = critical tractive stress at channel bottom

 G_{s} = specific gravity of sediment ≈ 2.667

$$
\tau_c = \tau_c \sqrt{1 - \frac{\sin^2 \theta}{\sin^2 \phi}}
$$

 θ = side slope angle

 φ = angle of repose of soil

Note: For no sediment movement from

 (a) Channel bottom $\tau_0 \leq \tau_c$ i.e $d \geq 11 \text{ RS}$

(*b*) Channel sides $\tau'_{0} \leq \tau'_{c}$

Kennedy's theory

(1) $V_0 = 0.55$ *m* $y^{0.64}$ where Critical velocity ratio, $m = \frac{V}{V}$ *V*0 $=\frac{\text{Actual mean velocity}}{\text{total}}$ critical velocity *m* = 1, standard particles $m = 1$ to 1.2, coarser sediments $m = 0.7$ to 1, finer particles (2) y 1_V nH B $A = (B + ny)y$...(1) $A = \frac{Q}{V}$ V_{0} ...(2)

Get B from (1) and (2)

(3)
$$
P = B + 2y\sqrt{n^2 + 1}
$$

(4) $R = \frac{A}{P}$ R = Hydroulic mean depth

CANAL-DESIGN 12.17

(5)
$$
V = C\sqrt{RS}
$$
 where $C = \frac{\frac{1}{n} + \left(23 + \frac{0.00155}{S}\right)}{\frac{1}{n} + \left(23 + \frac{0.00155}{S}\right)\frac{n}{\sqrt{R}}}$
or
 $V = \frac{1}{n}R^{2/3}S^{1/2}$

(6) If $V \approx V_0$ then ok, otherwise repeat.

Lacey's theory:

He gave three regime concept (*a*) True (*b*) Initial (*c*) Final

- x Equations given by lacey are based on final regime concept.
- x Total no of independent equations of Lacey's regime theory are **3**.
- (1) $v = \left(\frac{Qf}{14}\right)$ $\overline{}$ \int $\big\}^{1/6}$ 140 / where, silt factor $f = 1.76 \sqrt{d_{\text{mm}}}$ (2) $R = \frac{5}{2} \frac{V}{f}$ 2 (3) $A = \frac{Q}{V}$ (4) $P = 4.75\sqrt{Q}$ (5) $S = \frac{f^{5/3}}{3340Q}$ $3340 Q^{1/6}$ / / (6) Lacey's regime scour depth = 1.35 $2)^{1/3}$. $q^2\big)^{1/2}$ *f* $\sqrt{2}$ $\overline{}$ \mathcal{L} $\sqrt{2}$

Earthen-Dams 5

Built with natural material with very less processing and use of primitive equipments.

Measures to control seepage through earth dam

An artificial channel constructed to carry water from aa river, tank or reservoir for various purpose.

 \rightarrow Cross drainage works

 \rightarrow Cross drainage works

not required

 are required \rightarrow Generally in hilly areas

 \rightarrow Cross-drainage works not required

Water-Logging 7

War bandhi: System of equitable water distribution by turns, according to predetermined schedule.

Mulching: Spreading of extraneous material ont he surface of soil to increase water filteration.

Reclamation: Process by which an uncultivable land is made fit for cultivation.

Leaching: Process in which land is flooded with water. So that alkali salts get dissolve in water and percolate to join the water table.

Spacing between the title drains

 $k =$ Permeability coefficient (m/sec)

q = discharge per unit length

 $b =$ height of water table above impervious layer

 $a =$ height of centre of drain above impervious layer

Note: For Reclamation of Alkaline soil, Gympsum as well as leaching is done while for Acidic soil, limestone is used.

Gravity Dams 8

A dam is a barrier constructed across river in order to create a reservoir for impounding water.

Gravity dam: It is a solid masonry or concrete structure with an approximate triangular cross-section, so that external forces exerted on it are resisted by its own weight.

(a) When there is no drainage gallery

12.24 CIVIL ENGINEERING

(3) Earthquake Forces: India is divided into 4 seismic zones, zone I, zone III, zone IV & zone V.

Zone V is most serious zone.

 (i) Effect due to vertical acceleration $(\alpha_{\mathbf{v}})$

Net effective wt. of the dam reduces to = $W = \frac{W}{g} \alpha_v$ $= W(1 - K_v)$

$$
v = k v g
$$

Vertical acceleration acting downward reduces weight of the dam. (*ii*) Effect due to horizontal acceleration (α_h)

(*a*) Horizontal Inertia force $F_H = \left(\frac{W}{g}\right) \alpha_H$

(*b*) Hydrodynamic pressure

$$
P_e = 0.555 K_h \gamma_w H
$$

GRAVITY DAMS **12.25**

Acts at a height of
$$
\frac{4H}{3\pi}
$$
 from the base

\nMoment about base $M_e = P_e \left(\frac{4H}{3\pi} \right)$

\n
$$
\boxed{M_e = 0.42 P_e H}
$$

\n(4) Silt Pressure $\boxed{P_{\sin} = \frac{1}{2} \gamma_{\text{sub}} h^2 K_a}$ $K_a = \frac{1 - \sin \phi}{1 + \sin \phi}$

If the u/s face is inclined, the vertical weight of the silt supported on the slope also acts as vertical force.

(5) Wave Pressure

 h_w = height of wave (meter)

V = Wind Velocity (Km/hr)

 $F =$ Fetch (Km)

 $\overline{\text{Max.} \, P_w} = 2.4 \gamma_w h_w$ acting at height of $\frac{h_w}{8}$ from still water

Total force due to wave action

12.26 CIVIL ENGINEERING

(6) Ice Pressure: Pressure thrust on the face of the dam due to expanding or melting of ice.

- (7) Weight of the dam: $W = \gamma_c V$
	- γ_c = unit weight of concrete
	- *V* = Volume of dam body per unit length.

Criteria of Structural Stability and modes of failure of Gravity dam

(1) Overturning about Toe

$$
F_R = \sqrt{F_H^2 + F_y^2}
$$

$$
e = \frac{B}{2} - \bar{x}, \bar{x} = \text{distance of } \overline{F_R} \text{ from to } \theta
$$

$$
F_S = \frac{M_R}{M_O} > 1.5
$$

 M_R = Restoring moment about toe (due to ΣF_V) M_{O} = Overturning moment about toe (due to ΣF_{H})


```
GRAVITY DAMS 12.27
```
(2) Compression or crushing failure

$$
\sigma_{\max/\min} = \frac{\Sigma V}{B} \left(1 \pm \frac{6e}{B} \right)
$$

 Σ_V = Total vertical force

 $B =$ Base width

 $e =$ eccentricity of resultant force from the centre of the base.

(3) Tension failure: max. permissible tensile stress for high concrete gravity dams under loading conditions may be taken as 500 KN/m2. For No tension at the base of the dam, $\sigma_{\min} = 0$

$$
1 - \frac{6e}{B} = 0 \Rightarrow \boxed{e = \frac{B}{6}}
$$

Middle third rule: For No tension at base, max. permissible value of eccentricity on either side is B/6.

(4) Failure due to sliding

$$
\boxed{\text{FOS}_{\text{sliding}} = \frac{\mu \Sigma F v}{\Sigma H}}
$$

$$
\frac{\Sigma H}{\Sigma V} = \text{sliding factor}
$$

12.28 CIVIL ENGINEERING

Note: If Shear resistance of joint is also considered, then equ. of FOS against sliding is measured by shear friction factor (SFF)

Principal and Shear Stresses

(1) **Principal Stress** put $\Sigma v = 0$

So,

 $p' \sin^2\!\alpha + \sigma\,dr \cos^2\alpha = p_v$

Resolving

 $\sigma = p_v \sec^2 \alpha - p' \tan^2 \alpha$

GRAVITY DAMS **12.29**

(*b*) If hydrodynamic pressure p'*^e* then

$$
\sigma = p_v \sec^2 \alpha - (p' - p_e) \tan^2 \alpha
$$

(2) **Shear Stress** put $\Sigma H = 0$

 $\int \sigma dr \sin \alpha - p' ds \cos \alpha = \tau_0 db$

Substituting and Resolving, $\boxed{\tau_0 = (p_v - p') \tan \alpha}$

 (a) For No tail water $P^1=0$ $\boxed{\tau_0\,=\,p_v\tan\alpha}$

(*b*) If hydrodynamic pressure p_e , then $\boxed{\tau_0 = [p_v - (p' - p_e')] \tan \alpha}$

Elementary Profile of a gravity dam

(1) For No tension at base, when reservoir is full

$$
B \ge \frac{H}{\sqrt{G-C}}
$$

- G = Specific gravity of material of dam
- C = uplift coefficient

when uplift is not considered, $C = 0 \left| B \ge \frac{H}{\sqrt{2}} \right|$ *G* \geq

12.30 CIVIL ENGINEERING

(2) For No sliding $B \ge \frac{H}{\mu(G - C)}$ Max. stress at toe, $P_V = \gamma_\omega H (G - C)$ Min stress at heel $P_V=0$ Principal Stress near toe $\sigma = \gamma_{\omega}H(G - C + 1)$ Shear Stress near toe $\tau_0 = \gamma_\omega \stackrel{_\smile}{H} \sqrt{G - C}$

Note: If max represents the allowable stress of the dam material then maximum height of the dam

$$
M_{\text{max}} = \frac{\sigma_{\text{max}}}{\gamma_{\omega}(G+1)}
$$

If Height of dam is less than $\boldsymbol{\mathrm{H}}_{\text{max}},$ then its $\boldsymbol{\mathrm{low}}$ $\boldsymbol{\mathrm{gravity}}$ dam. And if Height is greater than $\boldsymbol{\mathrm{H}}_{\text{max}}$ then its **High gravity dam**. of