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C

Type of Events

Complementary Event  :  The event E   is called complemen-
tary event for the event E.  It  consists of all outcomes not in E,
but in S.  For example, in a dice throw,  if E  =  {Even nos}  =
{2, 4, 6} then  E     =  {Odd nos}  =  {1, 3, 5}.

Equally Likely Events  :
Two events E and F are equally likely iff  p(E)  =  p(F)
 For example,    E   =  {1, 2, 3}
       F  =  {4, 5, 6}
 are equally likely, since  p(E)  =  p(F)  =  1/2.

Mutually Exclusive Events  :
 Two events E and F are mutually exclusive, if E ∩ F  =  ϕ
i.e.,  p(E ∩ F)  =  0.  In other words, if E occurs, F cannot occur
and if F occurs, then E cannot occur (i.e., both cannot occur
together).

Collectively Exhaustive Events  :
 Two events E and F are collectively exhaustive, if E    F  =  S.
i.e., together E and F include all possible outcomes, p(E     F)
=  p(S)  =  1.

Independent Events  :
 Two events E and F are independent iff
     p(E ∩ F  =  p(E) * p(F)
 Also    p(E | F)  =  p(E) and p(F | E)  =  p(F).
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∩



            

         

 

               

                         

        

   

Page - 2

 Whenever E and F are independent.  i.e., when two events
E and F are independent , the conditional probability becomes
same as marginal probability i.e., probability E is not affected
by whether F has happened or not, and vice-versa.  i.e., when E
is independent of F, then F is also independent of E.

DeMorgan’s Law :

1.  E    =  E

 Example  :  (E      E  )     =  E   ∩ E
     (E  ∩ E  )     =  E       E
 Note that E   ∩ E    is the event neither E   nor E
 E     E   is the event either E   or E   (or both).
Demorgan’s law is often used to find the probability of neither
E   not E  .
 i.e.,  p(E   ∩ E  )  =  p(E      E  )  ]  =  1 - p(E      E  )

Approaches to Probability
There are 2 approaches to quantifying probability of an Event  E.
1. Classical Approach  :
     P(E)    =     =

 i.e., the ratio of number of ways an event can happen to the
number of ways sample space can happen, is the probability of the
event.  Classical approach assumes that all outcomes are equally
likely.
Example 1  :
If out all possible jumbles of the word “BIRD”, a random word is
picked, what is the probability, that this word will start with a “B”.
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Solution  :
   p(E)   =

In this problem  : n(S)  =  all possible jumbles of BIRD  =  4!
    n(E)  =  those jumbles starting with “B”  =  3!

 So,  p(E)  =  =     =

Example 2  :
 From the following table find the probability of obtaining
“A” grade in this exam.
    Grade   A B C D
      Number of Students  10 20 30 40
Solution  :
  N  =  total number of students  =  100
 By frequency approach,
    p(A grade)  =         =    =  0.1

Axioms of Probability
 Consider an experiment whose sample space is S.  For each
event E of the sample space S we assume that a number P(E) is
defined and satisfies the following three axioms.
 Axiom - 1  :  0 ≤ P(E) ≤ 1
 Axiom - 2  :  P(S)  =  1
 Axiom - 3  :  For any sequence of mutually exclusive events
E  , E  , ...... (that is events for which E  ∩ E   =  ϕ when i ≠ j.

  P      E  =    P(E )

Example   :  P(E      E  )  =  P(E  ) + P(E  ) where (E  , E   are
mutually exclusive).

_____n(E)
n(S)

_____n(E)
n(S)

_____3!
4!

_____n(A grade)
       N
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100

∞
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Rules of Probability
 There are six rules of probability using which probability
of any compound event involving arbitrary event A and B, can
be computed.
Rule 1  :
  p(A   B)  =  p(A) + p(B) - p(A ∩ B)
This rule is also called the inclusion-exclusion principle of pro-
bability.
This formula reduces to  p(A    B)  =  p(A) + p(B)
If A and B are mutually exclusive, since p(A ∩ B)  =  0 in such a
case.
Rule 2  : 
   p(A ∩ B)  =  p(A) * p(B/A)  =  p(B) * p(A/B)
where p(A/B) represents the conditional probability of A given B
and p(B/A) represents the condition probability of B given A.
(a) p(A) and p(B) are called the marginal probabilities of A and
 B respectively.  This rule is also called the multiplication rule
 of probability.
 (b) p(A ∩ B) is called the joint probability of A and B.
 (c) If A and B are independent events, this formula reduces
  to   p(A ∩ B)  =  p(A) * p(B)
  since when A and B are independent   
  p(A/B)  =  p(A) and p(B/A)  =  p(B)
  i.e., the conditional probabilities become same as the
  marginal (unconditional) probabilities.
 (d) If A and B are independent, then so are A and B   ; A
  and B and A   and B  .
 (e) Condition for three events to independent :
  Events A, B  and C are independent iff
    p(ABC)   =  p(A) p(B) p(C)
  and     p(AB)   =  p(A) p(B)

C C
C C
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  and     p(AC)   =  p(A) p(C)  
      A, B, C arepairwise independent.
  and     p(BC)   =  p(B) p(C)
Note  :  If A, B, C are independent, then A will be independent
of any event formed from B and C.
For instance, A is independent of B    C.
Rule 3  :  Complementary Probability.
      p(A)  =  1 - p(A  )  
  p(A  ) is called the complementary probability of A and
p(A  ) represents the probability that the event A was not happen.
    p(A)  =  1 - p(A  )
  p(A  ) is also written as p(A′)
Notice that  p(A) + p(A′)  =  1
i.e.,  A and A′ are mutually exclusion as well as collectively ex-
haustive.
Also notice that by Demorgan’s law since A  ∩ B   =  (A    B)
  p(A  ∩ B  )  =  p(A    B)     =  1 - p(A    B)
i.e.,   p(neither A nor B)  =  1 - p (either A or B)
Rule 4  :  Conditional Probability Rule
Starting from the multiplication rule.
    p(A ∩ B)  =  p(B) * p(A/B)
by cross multiplying we get the conditional probability formula.

    p(A/B)  =

By interchanging A and B in this formula we get
        
     p(B/A)  =

∴
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Probability Distributions

Random Variables
 It is frequently the case when an experiment is performed
that we are mainly interested in some function of the outcome
as opposed to the actual outcome itself.
 For instances, in tossing dice we are often interested in the
sum of two dice and are not really concerned about the separate
value of each die.  That is, we may be interested in knowing
that the sum is 7 and not be concerned over whether the actual
outcome was (1, 6) or (2, 5) or (3, 4) or (4, 3) or (5, 2) or (6, 1).
 Also, in coin flipping we may be interested in the total num-
ber of heads that occur and not care at all about the actual head
tail sequence that results.  These quantities of interest, or more
formally, these real valued functions defined on the sample space,
are known as random variables.
 Because the value of a random variable is determined by the
outcome of the experiment, we may assign probabilities to the
possible values of the random variable.
 Types of Random Variable  :  Random variable may be dis-
 crete or continuous.
Discrete Random Variable  :  A variable that can take one value
from a discrete set of values.
Example  :  Let x denotes sum of 2 dice.  Now x is a discrete ran-
dom variable as it can take one value from the set {2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12}, since the sum of 2 dice can only be one of
these values.
Continuous Random Variable  :  A variable that can take one
value form a continuous range of values.
Example  :  x denotes the volume of Pepsi in a 500 ml cup.  Now
x may be a number from 0 to 500, any of which value, x may take.
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Probability Density Function (PDF)
 Let x be continuous random variable then its PDF F(x) is de-
fined such that
1. R(x) ≥ 0  2.   F(x)dx  =  1

3. P(a < x < b)  =    F(x) dx

Probability Mass Function (PMF)
 Let x be discrete random variable then its PMF p(x) is defined
such that
1. p(x)  =  P[X  =  x]  2. p(x)  ≥  0  3. ∑p(x)  =  1

Distributions
 Based on this we can divide distributions also into discrete
distribution (based ob a discrete random variable) or continuous
distribution (based on a continous random variable).
 Examples of discrete distribution are binomal, Poisson and
 hypergeometric distributions.
 Examples of continuous distribution are uniform, normal and
 exponential distributions.

Properties of Discrete Distribution
   ∑P(x)  = 1
   E(x)   =  ∑x P(x)
   V(x)  =  E(x²) - (E(x))²  =  ∑x² P(x) - [∑x P(x)]²
E(x) denotes expected value or average value of the random varia-
ble x, while V(x) denotes the variance of the random variable x.

Properties of Continous Distribution
         f(x)dx  =  1

 F(x)  =   f(x)dx (cumulative distribution function)

a
∫
b
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∞
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∞
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   E(x)  =   xf (x) dx

V(x)  =  E(x²) - [E(x)]²   =     x²f(x)dx -     xf(x)dx

p(a < x < b)  =  p(a ≤ x < b)  =  P(a < x ≤ b)  =  P(a ≤ x ≤ b)

    =     f(x)dx

Types of Distributions

Discrete Distributions  :
 1. General Discrete Distribution
 2. Binomial Distribution
 3. Hypergeometric Distribution
 4. Geometric Distribution
 5. Poisson Distribution

General Discrete Distribution
Let X be a discrete random variable.
A table of possible values of x versus corresponding probability
values p(x) is called as its probability distribution table.

Expectation E(x)
The mean value of the probability distributiobn of a variety is
commonly known as its expectation.

µ   E(X)  =        x  x  f(x  x  x ) (Discrete case)

µ   E(X)  =    x  x  f(x  x  x ) dxdx  (Continuous case)
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Variance Var(X)
  Var X  =  E[(x - µµ  )²]
  Var X  =  ∑(x  x - µµ)² f(xx )  (Discrete case)
 
  Var X  = (xx - µµ)² f(x)dx  (Continuous case)

 It can be proved that Var X  =  E(XX²) - [E(X)]²

Properties of Expectation and Variance.
If x  and x  are two random variance and a and b are constants,
  E(ax  + b)  =  a E(x  ) + b
  V(ax  + b)  =  a²V(x  )
  E(ax  + bx  )  =  a E(x  ) + b E(x  )
  V(ax  + bx  )  =  a² V(x  ) + b²V(x  ) + 2ab cov(x  , x  )
Where cov (x  , x  ) represents the covariance between x  and x
If x  and x   are independent, then cov(x  , x  )  =  0 and the above
formula reduces to
   V(ax  + bx  )  =  a²V(x  ) + b²V(x  )
For example, from above formula we can say
   E(x  + x  )  =  E(x  ) + E(x  )
   E(x  - x  )  =  E(x  ) - E(x  )
   V(x  + x  )  =  V(x  - x  )  =  V(x  ) + V(x  )
Formula for calculating covariance between X and Y
  Cov (x, Y)  =  E(XY) - E(X) E(Y)
 If X, Y are independent  E(XY)  =  E(X) E(Y)
 and hence  Cov(X, Y)  =  0

Binomial Distribution
The probability of obtaining x-successes from n trials is given by
the binomial distribution formula.
   P(X  =  x)  =  nC   p  (1 - p)

∴
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Where p is the probability of success in any trial and (1 - p)  =  q
is the probability of failure.

Geometric Distribution
 Consider repeated trials of a Bernoulli experiment ∈ with
probability P of success and q  =  1 - P of fail.
Let x denote the number of times ∈ must be repeated unit finally
obtaining a success.  The distribution of random variable x is
given as follows.
       k  1  2  3  4  5
     P(k)  P qP q²P q³P q  P 
The experiment ∈ will be repeated k times only in the case that
there is a sequence of k - 1 failures follow by a success.
   P(k)  = P(x - k)  =  q    P
The geometric distribution is characterized by a single para-
meter P.

Points to Remember  :
Let x be a geometric random variable with distribution GEO(P).
Then
1. E(x)   =    2. Var(x)  =

3. Cumulative distribution F(k)  =  1 - q
4. P(x > r)  =  q
Geometric distribution possesses “no-memory” or “lack of
memory” property which can be stated as
  P(x > a + r | x > a)  =  P(x > r)

Poisson Distribution
 A random variable X, taking on one of the values 0, 1, 2,
.......... is said to be a Poisson random variable with parameter
λ if for some λ > 0.
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   P(x  =  x)  =

For Poisson Distribution  :
    Mean       =  E(x)  = λ
    Variance  =  V(x)  = λ
Therefore, expected value and variance of a Poisson random
variable are both equal to its parameters λ.
Here λ is average number of occurrences of event in an obser-
vation period ∆t.  So, λ  =  α∆t where α is number of occurren-
ces of event per unit time.

-λ x_____e   λ
  x!
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    PROBABILITY

Prob  =   ∑ P(x)  =  1  → Discrete
  ∫P(x)  =  1

     Distribution

(i) Binomial Distribution  (ii) Poisson Distribution

Binomial Distribution   =      C  p  q
  n  →  lot number of variable
  r  →  event   p + q  =  1   q  =  1 - p

* Position cannot be found
* To find only 2 success or 2 failure is other words specific number of
 success.

 Mean or expectation,   µ  =  n p
         Variance   =  npq
  Standard deviation  =  √ npq

Poisson Distribution

 p(x)  =     e  →  0, 1, 2, .........
         random variable
       λ  →  mean  =  xp
   SD  =  √ xp   Variance  =  xp.

Continuous

i)        p(x)  =  1   E(x)  =  ∫ n p(n)

  Var(x)  =  ∫ x² p(x)  -  [ ∫ x p(x)]²

x_____-λe    λ
   x !
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b

 a
∫

Properties

* E(constant  =  constant
* E(ax + by)  =  a E(x) b E(y)
* E(ax - by)  =  a E(x) - b E(y)
* E(xy)  =  E(x) . E(y)  If x & y are independent
* Variance (constant)  =  0
* v(ax ± by)  =  a² v(n) + b² v(y)
* Co-Variance (xy)  =  E(x . y) - E(x) . E(y)
* If x  &  y are independent, the covariance (x . y)  =  0

Uniform Distribution

 [a, b]   p(x)  =       =  1

Mean  =     Variance  =

Normal Distribution  or  Gaussian

p(x)  =  e     µ  →  mean
        σ  →  SD
       
       µ - σ  →  µ + σ  →  68.34% 
          or  0.6834

       µ - 2σ  →  µ + 2σ  →  95.5% 
          or  0.955

       µ - 3σ  →  µ + 3σ  →  99.7% 
          or  0.997

_____  1
b - a

_____  1
b - a

_____a + b
   2

_____(b - a)²
   12

__________     1
√ 2�σ²

_____-(x - µ)²
    2σ²

µ - σ µ + σµ 

µ - 2σ µ + 2σ

µ - 3σ µ + 3σ
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_____1
λ²

_____1
λ

-λn

Exponential Distribution

P(x)   =  λe    x  ≥  0
    =  0   x < 0

 Mean  =    Var  =

Standard Normal Distribution

µ  =  0  σ  =  1

 p(x)  =         e
_____-x²
 2

__________    1
√ 2�
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Arithmetic Mean for Raw Data
 The formula for calculating the arithmetic mean for
 
       raw data is x   =
 x    :  Arithmetic mean
 x    :  Refers to the value an observation
 n    :  Number of observations

Example  :
 The number of visits made by ten mothers to a clinic
 were  ;  8 6 5 5 7 4 5 9 7 4
 Calculate the average number of visits.

The Arithmetic Mean for Grouped Data (Frequency Dis-
tribution)
 The formula for the arithmetic mean calculated from a
 frequency distribution has to be amended to include the
 frequency.  It becomes
      x    =

Example  :
 To show how we can calculate the arithmetic mean of a
 grouped frequency distribution, there is a example of
 weights of 75 pigs.  The classes and frequencies as given
 in following table  :
 Weight (kg)  Midpoint of classNumber of pigs   fx
            x      f(frequency)
 0 & under 20        15    1    15
 20 & under 30       25    7         175
 30 & under 40       35    8         280
 40 & under 50       45         11         495
 50 & under 60       55         19        1045
 60 & under 70       65         10         650
 70 & under 80       75    7         525
 80 & under 90       85     5         425
 90 & under 100       95     4         380
 100 & under 110      105        3         215
  Total             75        4305

_____∑x
  n

_____∑(fx)
  ∑f
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n1 2

Median for Raw Data  :
 In general, if we have n values of x, they can be arranged
 in ascending order as :   x  < x   < ...... < x

 Suppose n is odd, then  Median  =  the   -th value

 However, if n is even, we have two middle points

  Median   =

Example  :
 The heights (in cm) of six students in class are 160, 157,
 156, 161, 159, 162.  What is median height ?

Median for Grouped Data

1. Identify the median class which contains the middle obser-
 
 vation       observation.  This can be done by observing

 the first class in which the cumulation frequency is equal

 or more than       .  Here,  N  =  Σf  =  Total number of

 observations.
2. Calculate Median as follows :
     Median  =  L +     × h.

_____(n + 1)
     2

thth_____n
2

_____n
2(      ) (             )_____value +      + 1    value

2

th(             )_____N + 1
    2

_____N + 1
    2

[                      ]_____
m

(             )_____N + 1
    2

- (F + 1)

 f
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 Where, l  =  Lower limit of median class
   n  =  Total number of observations
   cf  =  Cumulative frequency of the class pre-
      ceding the median class.
   f    =  Frequency of median class
   C  =  class length
Example  :
 Consider the following table giving the marks obtained by
 students in an exam.
 Mark Range   f No. of Students Cumulative Frequency
       0 - 20   2     2
     20 - 40   3     5
     40 - 60        10          15
     60 - 80        15          30
    80 - 100        20          50

Mode
 Mode is defined as the value of the variable which occurs
 most frequently.

Mode for Raw Data
 In raw data, the most frequently occurring observation is
 the mode.  That is data with highest frequency mode.  If
 there is more than one data with highest frequency, then
 each of them is a mode.  Thus we have Unimodal(single
 mode), Bimodal (two modes) and Trimodal (three modes
 data sets.

Example  :
 Find the mode of the data set  :  50, 50, 70, 50, 50, 70, 60.



            

         

 

               

                         

        

   

Page - 18

Mode for Grouped Data
 Mode is that value of x for which the frequency is maxi-
 mum.  If the values of x are grouped into the classes (such
 that they are uniformly distributed within any class) and
 we have a frequency distribution then  :
 1. Identify the class which has the largest frequency
  (modal class)
 2. Calculate the mode as
      Mode  =  L +       × h
 Where, 
  L    =  Lower limit of the modal class
  f     =  Largest frequency (frequency of Modal Class)
  f     =  Frequency in the class preceding the modal class.
  f     =  Frequency in the class next to the modal class
  h    =  Width of the modal class

Example  :
 Data relating to the height of 352 school students are given
 in the following frequency distribution.
 Calculate the modal height.
    Height (in feet)  Number of students
     3.0 - 3.5     12
     3.5 - 4.0     37
     4.0 - 4.5     79
     4.5 - 5.0          152
     5.0 - 5.5     65
     5.5 - 6.0      7
        Total          352

2

1

0

0

0

1

1

2
_____   f   - f
2f  - f  - f
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Properties Relating Mean, Median and Mode
 1. Empirical  mode  =  3 median - 2 mean
  When an approximate value of mode is required above
  empirical formula for mode may be used.
 2. There are three types of frequency of distributions.
  Positively skewed, symmetric and negatively skewed
  distribution.

  (a)   (Positively Skewed)     (a)  Symmetric      (a)  Negatively Skewed 

  (a) In positively skewed distribution.
       Mode  ≤  Median  ≤  Mean
  (b) In symmetric distribution
       Mean  =  Median  =  Mode
  (c) In negatively skewed distribution
       Mean  ≤ Median  ≤  Mode

Standard Deviation
 Standard Deviation is a measure of disperson or variation
 amongst data.
 Insteady of taking absolute deviation from the arithmetic
 mean.  We may square each deviation and obtain the arith-
 metic mean of squared deviations.  This gives us the vari-
 ance of the values. 
 The positive square root of the variance is called the
 “Standard Deviation” of the given values.

►
►

►

►
►

►

►

►
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Standard Deviation for Raw Data
 Suppose x , x , ...... x   are n values of the x, their arith-
 metic mean is  :
    
 x    = Σx   and x  - x, x  - x, ..... x  - x  are the deviations

 of the values of x from x.  Then,

 σ²  = Σ(x  - x)² is the variance of x.  It can be shown that

 σ²  =   =   Σx² - x²  =

 It is conventional to represents the variance by the symbol
 σ².  Infact, σ is small sigma and Σ is capital sigma.
 Square root of the variance is the standard deviation.

 σ =  +  Σ(x  - x)²    =   Σx² - x²  =

Example  :
 Consider three students in a class, and their marks in exam
 was 50, 60 and 70.  What is the standard deviation of this
 data set ?

Example  :
 The frequency distribution for heights of 150 young ladies
 in a beauty contest is given below for which  we have to
 calculate standard deviation.
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