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Civil Engineering





Rigid and Deformable Material:
Rigid material is one which does not undergo any change in its geometry, 
size or shape. On the other hand, a deformable material is the one in 
which change in size, shape or both will occur when it is subjected to 
force/moment.

Stresses and strain:
Stresses (Force/Area) are generated as a resistance to the applied 
external forces or as a result of restrained deformations.

Nominal stress (Engineering stress) = Load
Original Area

Actual/Truestress = Load
Original (Actual) Area

  Normal stress = ∂
∂

= ⇒ ∫P
A

P = dAσ σ

Equality of shear stress on perpendicular planes
(1) Shear stress on opposite faces of an element are equal in 

magnitude and opposite in direction.

1Properties of Metals, 
Stress and Strain



1.4 CIVIL ENGINEERING

(2) Shear stress on adjacent and perpendicular faces of an element 
are equal in magnitude and have directions such that both 
stresses point towards or both point away from the line of 
intersection of the faces. These are called Complimentary shear 
stresses.

(Shear stress on opposite face are equal and opposite)

Sign convention for shear stress

Stresses under general loading conditions
1. Stress is NOT a Vector
2. Stress is a 2nd order Tensor.

3. V (Stress tensor) = 

σ τ τ
τ σ τ
τ τ σ

xx xy xz

yx yy yz

zx zy zz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

� #��<PV]XcdST�WPb�^][h�^]T�SX\T]bX^]�7T]RT�Xc�P�"Ò�,�iTa^�^aSTa�
tensor

5. Direction has three dimension. Hence it is 32 = 1st order tensor
6. Stress has 9-dimension (32 = 2nd order tensor)
7. At any point in 3D condition 9 stress elements are there.

  3 Normal stress components (Vxx, Vyy, Vzz)
  6 shear stress components (Wxy, Wyx, Wxz, Wzx, Wyz, Wzy)
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  ONLY 6-stress components are required to define conditions 

of stress at a point.
8. In 2-D condition, 4 stress elements exist (Vx, Vy, Vxy, Vzy) but 

ONLY 3-stress components are required to define conditions 
of stress at a point.

Design of members:

Allowable stress= yieldstress
F.O.S

Margin of safety = FOS-1 

For Ductile material: FOS is applied on yield stress
For Brittle material: FOS is applied on Ultimate stress.
Normal Strain:

1. Deformation per unit length

2. Strain = 
∆L
L

or δ
δ
L
L

3. Measured by EXTENSOMETER It is a dimensionless
quanity

0DWKHPDWLFDO�GH¿QLWLRQ�RI�VWUDLQ

� Hx = 
w
w
u
x

Normal strain in Jxy = ∂
∂

+ ∂
∂

u
x

u
y

 = Shearing strain in

x-direction xy plane

εy
v
y

= ∂
∂ Normal strain in γ ω

xz x
u
z

= ∂
∂

+ ∂
∂

 = Shearing strain in

y-direction xz plane

ε ω
z z

= ∂
∂

Normal strain in γ ω
yz y

v
z

= ∂
∂

+ ∂
∂

 = Shearing strain in

y-direction yz plane
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Stress-strain Curve of mild steel (Low carbon steel-Ductile Steel) in 
Tension

OA = Linear curve
A = Proportional limit
B = Elastic limit
C = upper yield point
D = lower  yield point

DE = plastic region
EF = strain hardening region
FG = Neeking region

F = ultimate stress point
G = Fracture point.

Salient points:
(1) Volume of specimen increases from O to D
(2) Lower yield point should be used to determine the yield strength 

of material
(3) From D to E, large deformations but volume of specimen does 

not changes.
(4) From E to F, its strain hardening, i.e material undergoes 

changes in its crystalline structure.
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(5) F to G, diameter of portion decreases due to instability called 

Necking.
� �%��2d_�R^]T�UPX[daT�̂ RRdab�Pc�#$Ò�fXcW�cWT�[^PS�X]�SdRcX[T�\PcTaXP[�

Mild steel in compression
(1) The stress strain curve will eventually be same through its 

initial straight line portion and through the beginning of the 
portion corresponding to yield and strain hardening

(2) Modular of Elasticity in Tension= Modular of Elasticity in 
compression T = I

Stress-strain curves for other materials
(1) All of them possess some Modulas of Elasticity.
(2) As yield strength increases, Ductility falls.
(3) For ductile materials like Aluminium and Copper, do not have 

defined yield point. Yield strength is defined by offset method.

(4) E EAL st 1
3

Stress-strain diagram for Brittle material
(1) I�= T
(2) Linear Elastic range in compression is more than Tension
(3) Rupture stress = Ultimate stress
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(4) No Necking occurs.

  TRICK: to Remember failure surface:- Remember any one of the 
4 given below and change at least two columns every time keeping 
the one constant.

(1) Ductile Tension #$Ò

(2) Ductile Torsion (�Ò

(3) Brittle Tension (�Ò

(4) Brittle Torsion #$Ò

Eg. Remember

Torsion

5

Brittle fracture:
(1) Ductile material at normal temp. may become brittle at very 

low temp.
(2) A Brittle material at low temp. may become ductile at very 

high temp.

True stress strain curve

Compression

Tension
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(1) True stress curve is below Engineering stress in compression 

because resisting area in compression increases

(2) Engineering stress = 
0

P
A

True stress = 
P
A

  Engineering stress = 
G

0L
True stress = 

L
L
'

A0, L0 o Original Area & length

Relation between True stress and Engineering stress

In Tension:
 

� [
V  V � [

o

o

A
A

1
(1 )

In compression  
�

 �
1
(1 )

o

o

AA
[

V V [
Properties of Materials

Elasticity:- Property by virtue of which material deformed under 
the load is enabled to return to its original dimension when the load 
is removed.

Plasticity:- The characteristics of material by which it undergoes 
inelastic strain beyond those at the elastic limit.

Reloading:- Proportional limit increases from B to C but ductility 
decreases from ‘B to F’ to ‘C to F’  
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Creep: Property by virtue of which a material undergoes additional 
deformation (over and above due to applied load) with passage of time 
under sustained loading with in elastic limit

Relaxation:- The decrease in stress in steel as a result of creep with 
in steel under prolonged strain

Fatigue:- Deterioration of a material under repeated cycles of stress 
or strain resulting in progressive cracking that eventually produces 
fracture.

Endurance limit:- Stress level below which even large number of 
stress cycle cannot produce fatigue failure.

ferrous

For structural steel, Endurance limit = 
1
2
u  ultimate strength 

Resilience:- Property of material to absorb energy when it is 
deformed elastically and then upon unloading to have this energy 
recovered.

Modular of Resilience: Elastic strain energy stored per unit 
volume
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= y
y

1
2 E

V
u V u

=
2
y

2E
V

Toughness:- Ability to absorb mechanical energy upto failure.

Toughness o  Resists fracture
Hardness o Resists scratch or abration
Tenacity:- Property of material to resist fracture under the action 

of tensile load
Visco-Elastic material
Materials having both Viscous and Elastic properties and exhibit 

time dependent strain.
Approximate stress-strain curves

Hooke’s law:-

(a) Homogenous E.V  [
(b) Isotropic
(c) Linearly elastic materials
Deformation of member under axial load
1

Load P is acting then PL
AE

G  
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     Load P is acting then 3 31 1 2 2

1 1 2 2 3 3

P LP L P L
A E A E A E

G  � �

(3)
L

0

P(x)dx
A(x)E

G  ³ then

L

0

Pdx
A(x)E

G  ³
L

0

P(x)dx
AE

G  ³
     

(4) (a) In prismatic bar due to self weight

� �2 W LL 2or
2E AE
JG  
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(b) Conical bar due to self weight

2L
6E
JG  =

1
3

(deflection of prismatic bar of same 

length and same density)
5.

1 2

4PL
D D E

'  
S

6.

2
e

1

2 1

BPL log B
Et(B -B )

§ ·¨ ¸© ¹'  

7.
2 2 2
1 2 1 1 2

2
2

L L L L
2E 2E E
J J JI

'  � �
I

Composite Bars

P = P1 = P2

G1 = G2 = 1 2

1 1 2 2

P L P L
A E A E

 

P1 = 1 1 2 2
2

1 1 2 2 1 1 2 2

A E P A E P
P

A E +A E A E +A E
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(1) Principle of superposition is applicable only when stress is 
within proportional limit

(2) If temperature is increased and member is restrained, then 
force produced is compressive. If temperature is decreased the 
force produced is tensile.

(3) Temp nomore value of D�o compression
  Temp po more value of D�o Tension

Nut and Bolt problem:
  Extension of Bolt + Contraction of Tube = Movement of nut

b T

b c

L L
np

E E
V V

�  

n = no. of rotations of bolt
p = pitch of thread.

Poisson’s Ratio:- For Homogenous and isotropic material, 
Elongation (or contraction) produced by any Axial Force in the direction 
of force is accompanied by contraction (or elongation) in all transverse 
directions and all such contractions (or elongations) are same.

Lateral Strain
AxialStrain

§ ·
P  �¨ ¸

© ¹
= y Z

x x

�H H
 �

H H

d

d
d

l
l

'�
P  

'

µ = 0 for cork
µ = 0.1 ��0.2 for concrete
µ = 0.5 Perfectly elastic rubber

  Volume of rod remains unchanged as a result of combined effect of 
elongation and transverse condition.
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Dilation, Bulk modulas:-

x y z
v

( )
(1 2 )

E
V � V � V

H  � P

If Vx = Vy = Vz = p than

Hv = 3p
(1 2 )

E
� P

v

p E
K

3(1 2 )
  
H � P

x y zHydrostaticPressure
3

V � V � V
 

� � ��BcaTcRWX]V�^U�\PcTaXP[�X]�^]T�SXaTRcX^]�X�T�SdT�c^��g�fX[[�[TPS�
to increase in volume

(2) During plastic deformation, volume of specimen remains 
constant.

  Shearing Strain:-
(1) Hooke’s law for shearing stress and strain

xy xyGW  J

(2) Modulas of rigidity or shear modulas G, 
EG

2(1 )
 

� P

  as 0 0.5� P � then E EG
3 2
� �

(3) If only shearing stresses are acting then volume of the specimen 
does not change.

Relationship between Elastic Constants
E E 9KG 3K 2G

G K E
2(1 ) 3(1 2 ) 3K G 6K 2G

�   P  
� P � P � �



1.16 CIVIL ENGINEERING

No. of Independent Elastic Constants
(1) Homogenous and Isotropic o 2
(2) Orthotropic (wood) o 9
(3) Anisotropic o 21

  Saint-Venant Principle: Except in the immediate vicinity of 
application of loads, the stress distribution may be assumed 
independent of the actual mode of application of loads.

  Plastic deformation:-
  When yield stress of material is exceeded, plastic flow occurs.

Idealised curve for elasto plastic material
  Residual stress:-When some part of an indeterminate structure 

undergoes plastic deformation, or different part undergoes different 
plastic deformation the stress in various parts of the structure will 
not return to zero after the load has been removed. These stresses 
are called Residual stresses

  Thermal Stress and Strain:-
V = ED'T
' = LD't

Strain = L t t
L
D'  D'

DAluminum > DBrass > DCopper > DSteel

TRICK A > B > C > S

  When bar is not restrained, then there will be no induced 
temperature stresses due to change in temperature.



Span of a beam:-
(i) The clear horizontal distance between the supports is called 

clear span of the beam.
(ii) The horizontal distance between the centres of the end bearings 

is called the effective span of the beam.
Types of Support:-

(i) A Simple or free support/Roller Support/Rocker support
(ii) Hinged or pinned support.

(iii) A built in or fixed or encastre support
(iv) Slider support
(v) Link Support

Note:- A continuous beam may or may not be an overhanging beam.

2Shear Force and 
Bending Moment

Note:- A continuous beam may or may not be an overhanging beam..
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  Shear force:- It is the resultant of all transverse forces to the 
right or left of the section.

  S.F at a Section is +ve if the resultant of all transverse forces to the 
right of the section is downward or resultant of transverse forces 
to the left of section is upwards.

  Bending moment:- It is the resultant moment at a section due to 
all the transverse forces either to the left or right of the section.

–

Note:- Bending moment is the algebraic sum of moments at that 
section while moment at a point is the summation of moment due 
to all loading on the beam produced at that point.
Axial Thrust o Force acting along the longitudinal axis of the 
members. Axial thrust is +ve if it tries to elongate the members.

Relationship between Bending moment, Shear force and 
Loading
(i) Slope of the shear force diagram = Intensity of distributed load

x
dV Wdx  

Note:- Bending moment is the algebraic sum of moments at that
section while moment at a point is the summation of moment due
to all loading on the beam produced at that point.

t
e
t
e
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  If the slope of SFD is positive, this implies the load intensity at 

that point is +ve i.e upwards and if the slope of SFD is negative, 
this implies the load intensity at that point is –ve ie downwards.
(ii) Slope of Bending moment diagram = Shear force at that section.

dM Vdx  

NOTE:- 'V = xW dx³
'M = Vdx³

Mfinal – Minitial = Area under the Shear force diagram between those
two sections.

Loading Shear Diagram, Moment Diagram,
dM
dx

= VdV
dx

= W

NOTE:- 'V = xW dxx³
'M = Vdx³

Mfinal – Minitial = Area under the Shear force diagram between those
two sections.

ee
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loading SFD BMD

4
+

!

Parabolic

4

4

12

2

(vii)

W lo

SFD

2

2

2

2
2

9 3

2

2

6



  Whenever any structural component is under equilibrium due to 
external forces then each and every point inside the volume of the 
structural component must be in equilibrium and must have stress 
less than the permissible stress.

  Plane stress:- When two faces of cubic elements are free of any 
stress, the stress condition is termed as plane stress condition

z zx zy 0V  W  W  

  So plane stress components are and Vx, Vy and Wxy

Transformation of Plane Stress

xcV = x y x y
xycos2 +Z sin22 2

V � V V � V
 � R R

x yZ c c = x y
xysin2 Z cos22

V � V§ ·
� �¨ ¸
© ¹

R R

x y x yc cV � V  V � V

  NOTE:- The sum of normal stresses exerted on a cubic element of 
a material is independent of the orientation of element.
Principal Stress and maximum shear stress:- It is the 
maximum or minimum normal stress which may be developed 

3Principal Stress and 
Principal Strain

 NOTE:- The sum of normal stresses exerted on a cubic element of
a material is independent of the orientation of element.

 f f
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on a loaded body. The plane of principal stress does not carry any 
shear stress.

Vmax/min =
2

x y x y 2
xy2 2

V � V V � V§ ·
r � W¨ ¸

© ¹

Wmax =
2

x y 2max min
xy2 2

V � V§ ·V � V
 � W¨ ¸

© ¹

xy

!

!

!

xy

!

!

  Mohr’s Circle for plane stress o It is the locus of points representing 
the magnitude of normal and shear stress at various plane in a 
given stress element.

1. Vmax/min = Principal stresses, end points of diameter on V–axis
2. Wmax = max shear stress, whose magnitude is equal to radius of 

mohr’s circle

3.
� �x y

s
xy

tan2 2
� V � V

W
R � xy

p
x y

2tan2 W
V � V

R �

  So tan 2Ts u tan 2Tp = –1
� � �              2Ts and 2Tp�PaT�(�Ò�P_Pac�

7T]RT��_[P]T�^U�<Pg��BWTPa�bcaTbb�PaT�#$Ò�c^�cWT�_aX]RX_P[�_[P]Tb�
(i.e. Ts and Tp�PaT�#$Ò�P_Pac�

4. Normal stress on a plane of maximum shear stress is represented 
by co-ordinates of centre of Mohr’s circle.

5. In hydrostatic loading o Mohr circle reduces to a point.
6. In Pure Shear case o centre of mohr circle will fall at origion.
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Strain Energy per unit Volume:-

1. Plane Stress Condition:-

 U =
( )

ó å ó å ãx x y y xy xy

1
+ +

2
t

When V1 and V2 principal stresses then

 V =
( )

ó ó ìó ó

2 2
1 2 1 2

1
+ 2

2E
-

2. Under Triaxial Stress Condition:

 V = � �x x y y z z xy xy xz xz zx zx
1  +  +  + 2 V H V H V H W J � W J � W J

 V = � �� �2 2 2
x y z x y y z z x

1  + 22E V V � V � P V V � V V � V V

Angle of obliquity:- Angle that line of action of resultant stress 
on a plane makes with the normal to the plane is called angle of 
obliquity.

D = Angle of obliquity

Vr =
21 2

x x y+ c cV W

  Plane Strain:- If the deformations are those in x-y plane only then 
only 3-strain components exist Hx, Hy, Jxy

NOTE:- Strain energy only leads to distortion of element. It does 
not lead to change in volume. Normal stresses on the other hand 
leads to change in volume.
Transformation of Plane Strain

1xH = x y x y xy+  + cos2  + sin22 2 2
H H H � H J

T T

NOTE:- Strain energy only leads to distortion of element. It does
not lead to change in volume. Normal stresses on the other hand
leads to change in volume.

y y

s 
d 

g

s
d

g
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1yH = x y x y xy+ cos2 sin22 2 2
H H H � H J

� T � T

Hx1 + Hy1 = Hx + Hy

1 1x y
2

J
= x y xysin2 + cos22 2

H � H J
� T T

Comparison of Plane Stress and Plane Strain

Plane Stress Plain Strain

Stress
Vz = 0 Wxz = 0 Wyz = 0
Vx, Vy, and Wxy o non zero

Wxz = 0, Wyz = 0
Vx, Vy, Vz, Wxy o Non-zero

Strain
Jxz = 0 Jyz = 0
Hx, Hy, Hz, Hxy H Non zero

Hz = 0 Jxz = 0 Jyz = 0
Hx, Hy, Hxy H  Non-zero

Mohr circle for Plane Strain:- 
1. Principal Strains

Hmax/min =
� �2 2

x yx y xy+  ±  + 2 2 2
H � HH H W§ ·

¨ ¸
© ¹

� !�� <PgX\d\�8]�_[P]T�bWTPaX]V�bcaPX]�,�APSXdb�^U�<^Wa´b�RXaR[T��A�

 R = � �2 2
x y xymax

in plane
+2 2 2

H � H J§ ·J§ ·  ¨ ¸¨ ¸© ¹ © ¹

Strain Rosette o A group of three gauges arranged in a particular 
pattern such that it can measure normal strain in three different 
directions on the surface of a structural element.

H1 = x y x y xy
1 1

 + + cos2  + sin22 2 2
H H H � H J

T T

H2 = x y x y xy
2 2

 +  + cos2  + sin22 2 2
H H H � H J

T T
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Special Case:- when H1 o along x-axis ie Hx

    T2 o�#$Ò
   H3 o along y-axis i.e. Hy

then, H2 = x y xy +  + 2 2
H H J

or Jxy = � �2 x y+H � H H



  Deflection of structure is caused by its internal loadings such as 
Normal force, Shear force, Bending Moment, Torsion.

  For Beams and Frames, major deflection is due to Bending
  For Trusses, deflection is caused by internal Axial Forces
  Some standard results of deflection and slopes.

Loading Deflection Slopes

3Pl= 3EI'
2Pl= 2EIT

2ML= 2EI'
ML= EIT

4wL
8EI'  

3wL= 6EIT

3PL= 48EI'
2PL=16EIT

45 wL= 384 EI'
3wL= 24EIT

4Deflection of Beams
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!

P 31 PL= 4 48EI
§ ·

' ¨ ¸¨ ¸© ¹

41 5 wL= 5 384 EI
§ ·

' ¨ ¸¨ ¸© ¹

2 2Pa b= 3EIL'

3 3

3
Pa b=
3EIL

'

ML= 24EIT

4wL= 30EI'
3wL= 24EIT

2ML= 27EI'
ML= 4EIT

2ML=
9 3EI

' A B
ML ML= =6EI 3EIT T

  Maxwell’s Reciprocal Theorem:- In any beam, frame or truss, 
the deflection at any point due to load P at any point A is equal to 
deflection at any point A due to load P at any point B.  

'A = 'B

TA = TB
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'2 = 2 '1

Co mind 
point of AB

Methods of determining slope and deflection at a point
(1) Double Integration Method � Gives deflection only due to 

bending

è2

2
d y M d dy M d M=       =       =EI dx dx EI dx EIdx

§ ·� �¨ ¸© ¹

where, EI = Flexural rigidity

 Flexural Stiffness =
Flexural rigidity

Length
3 3 4 4dM dVdx dx

3 3 4 4
d y d y V d y d y W=        =    =  EI EI EI EIdx dx dx dx

�  � �

(2) Macaulay’s Method � Modification is done in loading pattern 
so that udl or uvl becomes continuous up to last segment.

2

2
d yEI
dx = � �P 3PM = x + x 2a2 2

� �

  Integrate and put boundary conditions
(a) x = 0, y = 0 (b) x = 2a,y = 0

  Then, Deflection at x = 3a, 
3Pay= Ei

�

(3) Moment Area Method – Mohr’s Method
  Theorem 1:- The change in slope between two points on elastic 

curve equals the area of M
EI

 diagram between these two points.
    
TB/A = Slope of B with respect to tangent drawn on elastic curve at 

A = Area of  M
EI

 diagram between A and B.



DEFLECTION OF BEAMS 1.29
Theorem 2:o Deflection of any point A on elastic curve with 
respect to tangent drawn at another point B (tAB) equals the 
moment of area under   diagram between A and B about point A.

B
A/B

A

Mt = x dxEI³

(4) Moment diagram by parts:- The resultant BM at any section is 
the algebraic sum of bending moments at that section caused by 
each loading separately (either from left or right of that section). 
So the effect of individual load can be considered instead of taking 
effects of all the loads together for drawing BMD.

(5) Conjugate beam method:-

V = wdx

M=  dxEI

p n

T

³

³
Slope at any point in real beam = 
Shear at that point in conjugate 
beam

� �M = wdx dx

My = dx  dxEI

p n

§ ·
¨ ¸© ¹

³ ³

³ ³

Deflection at any point in real 
beam = BM at that point in con-
jugate beam
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Slider Slider

NOTE:- (1) Area moment theorem requires understanding of 
geometry of deflected shape and applicable only when deflected 
shape is continuous, while in conjugate beam method, principle of 
statics is used. Hence, this method can also be used when deflected 
shape is not continuous i.e, Internal Hinge case.

   (2) 

  Astatically intermediate real beam can have unstable conjugate 
beam.

(6) Method of virtual work (Unit load method)

External virtual work = Internal virtual work

 So,

L

0

m M dx1 = EIu ' ³
L

0

m M dx1 = EI
Tu T ³

  Note:- Unit load method can be applied to plastic range of stress-

strain also, but dT will not be equal to
M dxEI

NOTE:- (1) Area moment theorem requires understanding of
geometry of deflected shape and applicable only when deflected
shape is continuous, while in conjugate beam method, principle of
statics is used. Hence, this method can also be used when deflected
shape is not continuous i.e, Internal Hinge case.

   (2) 

Astatically intermediate real beam can have unstable conjugate
beam.

f
d 
f
d 

e

f
d
f
d

e

 Note:- Unit load method can be applied to plastic range of stress-

strain also, but dT will not be equal to
M dxEI

 --
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(7) Castigliano’s theorem (Method of least work – its 2nd theorem)

U
P

w'  
w

U
M
wT  
w

For beam’s and frames  U = 
2M dx

2EI

So,
L

0

MM dxP
EI

w
w'  ³

L

0

MM dxm
EI

w
wT  ³

Note:- This theorem is applicable only when there is constant 
temperature, unyielding support and linear elastic material 
response.

Note:- This theorem is applicable only when there is constant
temperature, unyielding support and linear elastic material
response.

t 
l 
t
l



 Under uniaxial tension or compression practically, yielding begins 
at the yield strength at which plastic deformation is significant. 
But when several components exist, the yielding depends on some 
combination of these components. The theory of failure is used to 
establish, the behaviour of material subjected to simple tension
or compression, the point at which failure will occur under any 
type of combined loading. These theories are applicable to static
loading only.

(1) Maximum principal stress theory (Rankine’s theory, Lame’s 
theory are max stress theory)

fy
FOS

T d

  Applicable for brittle material

f

f

(2) Max principal strain theory (St. venant theory)

� �1 2 3
fy

FOS
V � P V � V d

5Theories of Failure
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  Satisfactorily applicable to brittle material, but over estimates the 
strength of ductile material. Even not suitable for pure shear case.

(3) Max shear stress theory (Tresca, Guest, coulomb theory)

max min max min fy
Max of

2 2 2 2(FOS)
ª ºV � V V V

� � d« »
¬ ¼

  Applicable for ductile material and gives the most conservative 
design out of various other theories of failure 

f

f

(4) Maximum strain energy theory (Beltrami - Haigh theory)

� �
2

2 2 2
1 2 3 1 2 2 3 3 1

fy2
FOS

§ ·ª ºV � V � V � P V V � V V � V V d ¨ ¸¬ ¼ © ¹

"

2
f

"

1

f

Failure yielding

strain theory

  Applicable for ductile material and not suitable for brittle material 
or pure shear case. 
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(5) Max shear strain energy theory (Distortion energy theory) 
– Huber-Hencky von mises theory

� � � � � �
2

2 2 2
1 2 2 3 3 1

1 fy
2 FOS

§ ·ª ºV � V � V � V � V � V d ¨ ¸« »¬ ¼ © ¹

  Applicable in pure shear case

(6) Octahedral shear stress theory

2
2 2
1 2 1 2

fy
FOS

§ ·V � V � V V ¨ ¸© ¹

  Applicable to ductile material in pure shear case
  NOTE:
  Total strain energy = volumetric strain energy + Distortion energy.

  Volumetric strain energy =  
1
2
u  volumetric stress u volumetric strain

  Volumetric strain energy = � �� �1 2 31 2 3 1 21
2 3 E

§ ·V � V � V � PV � V � V§ ·
¨ ¸¨ ¸© ¹© ¹

  Total strain energy =
� �

2 2 2
1 2 3

1 2 2 3 3 1

21
2E

ª ºV � V � V � P
« »

V V � V V � V V« »¬ ¼
..(1)

  Hence, (2)-(1) = 

� � � � � �2 2 2
1 2 2 3 3 1

1Distortion Energy
12G

ª º V � V � V � V � V � V« »¬ ¼

NOTE:
Total strain energy = volumetric strain energy + Distortion energy.

Volumetric strain energy = 
1
2
u volumetric stress u volumetric strain

Volumetric strain energy = 1
2 3

§ ·� �� �1 2��1 2 32 1 2§ ·1 2 3V � V � V1 22 ¨ ¸
� �� �1 2 3

E
§ ·§ ·� �P��1 2 3 ��1 2 32 1 2

¨ ¸
1 2 3§ ·§ ·1 2 3

© ¹33¨ ¸¨ ¸3333 © ¹E ¸̧E

Total strain energy = 1
2E

ª º2 2 2 22 2 22
1 2 32 2

« »
� �

1 2 3ª ºª ºV � V � V P1 2 32 21 2 32 2

« »� �
« »« »

� �¬ ¼� �1 2 2 3 3 1« »« »� �1 2 2 3 3 1V V � V V � V V1 2 2 3 32 2 3 3

..(1)

 Hence, (2)-(1) =

1Distortion Energy
12G

ª º� � � � � �2 2 2� � � � ª� � � � � ºº�ªª� � � � �¬ ¼« »« »� � � � � �1 2 2 3 3 1� � � � ºººº�1V� 1 2 2 3 32 2 3 3� � � �ªªªª� � � � �1 2 2 3 32 2 3 3� � � �

n

)

 

.

n

)



Combined Bending and Torsion

!

For point A:- 

Wmax = max3 3
16T 32M

D D
V  

S S
For point B:- 

Wxy = 3
16T
D

�
S

Principal Stresses at A:-

Vmax/min = 2 2
3

16T M M T
D

ª ºr �« »¬ ¼S

Wmax = 2 2
3

16T ( M T )
D

�
S

Principal Stresses at B:- max 3min
16T

D
V  r

S

Equivalent Moment � �2 2
e

1M M M T2 r �

Equivalent Torque  2 2
eT M T �

6
Combined Stress
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Combined Bending and Axial Force

V =
yx

y x

(Pe )y(Pe )xP
A I I
� � �

(–ve means compressive)

Equation of Neutral axis (put V�= 0)

yx
2 2
y x

ee x y
r r

§ · § ·
¨ ¸ � ¨ ¸¨ ¸¨ ¸ © ¹© ¹

= 1

Kern:- It is the area of the x-section on which if compressive 
loading occurs then there will be no tension anywhere on the entire 
x-section (when bending occurs due to axial force)

Kern for Rectangular Section    Kern for Circular Section

Rhombus shape Circular shape of diameter=D/4
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Kern for I-section        Kern for hallow circular section

Rhombus shape
2 2D dDia of Kern 4D
� 



Symmetric Bending:- When member possess a Plane of 
symmetry and loading acts in the plane of symmetry then 
bending is called symmetric sending.

Unsymmetric Bending:- When bending couple does not acts 
in the plane of symmetry of member either because they act in 
different plane or because the member does not possesses a plane 
of symmetry

Pure Bending:- Bending of beam under constant Bending 
moment.

Non-uniform Bending:- Bending in presence of Shear force.

Flexure Formula: M E
I y R

V  

  where I = MOI about C.G axis about which bending occurs

  Here, max
My

IV  

  Where,
I Zy   = Section modulas about bending axis.

  Moment of resistant (MOR) = max
I
y

§ ·V ¨ ¸
© ¹

maxMOR Z V u

7Bending Stress in Beam
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  Section modulas (Z)

I about N.A ymax Z=I/ymax

Rectangular section

3bd
12

d
2

2bd
6

Solid circular section

4D
64
S D

2
3D

32
S

Hollow circular section

� �4 4D d
64

S � D
2

� �4 4D d
32D

S �

Triangular section

3bh
36

2h
3

2bh
24
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Parallel axis theorem 
� IAB = INA + AY2

Perpendicular axis theorem 
IZZ = IXX + IYY

Beam of constant strength or fully stressed beam:- It is the 
beam in which max. stress at every X-Section of the beam is equal 
to the maximum allowable bending stress in the beam.

Rectangular beam 
loading

Max. bending
stress

b=
constant

d=
constant

2
x x

6Px
b d xd xB xb xB

2

2
x x

3 x
b d
Z

xd xB xb xB

2
x x

3 x
b d
Z

xd xB xd xB

Equation of Neutral axis in Unsymmetrical bending (No 
Twisting case)

x
y

Iy tan xI
§ ·

 T¨ ¸¨ ¸© ¹

  Slope of N.A =  x
y

Itan tanI G R

  NOTE:- Neutral axis is always located between the couple vector 
and the minor principal axis.
NOTE:- Neutral axis is always located between the couple vector
and the minor principal axis.

rr



  Normal stress is produced by bending and shear stress is produced 
by shear force. The Vertical shearing stress is accompanied 
by a horizontal shearing stress of equal magnitude known as 
complimentary shear stress.

'H = � �A B
A

 dAV � V³

VAH= y xI' '

H

y

–

  Where,
'H = Shear force in length 'x of beam

  V = S.F at the section where shear stress is to be found.
  A  = Moment of area of section above the level at which shear stress 

is to be found out.
  I = Moment of inertia of complete section about N.A.

8
Shear Stress in Beams
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  Shear force per unit length = 
H VAy=x I

'
'

  Shear Stress at the level y from N.A = VAyq= Ib
  b = width of section at the level where shear stress is to be found.

Note:-

1 1 2 2A y A y 

A1 = Shaded area
A2 = unshaded area

Shear stress in rectangular section

Shear stress =
2

2v d y2I 4
§ ·

�¨ ¸¨ ¸© ¹

Note:-

1 1 2 2A y A y1 1 21 2

A1 = Shaded area
A2 = unshaded area
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Wmax = Wavg
3
2

Wavg = V
bd

Shear stress in I – section

Shear stress in flange �
2

2v D y2I 4
§ ·

�¨ ¸¨ ¸© ¹

Shear stress in flange �
� �2 2 2

2V D d B v d y8I t 2I 4
� § ·

u � �¨ ¸¨ ¸© ¹

Note:- In I-section’s nearly 80-85% shear is resisted by web.

Shear stress in circular section
!

!

avg

Shear stress = W = 
2

2
4 V y1-3 A R

§ ·§ ·
¨ ¸¨ ¸¨ ¸© ¹© ¹

Wmax = avg
4
3 W

Wavg =
V
A

Note:- In I-section’s nearly 80-85% shear is resisted by web.
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Shear stress in triangular section

Shear stress=
Vy(h-y)

3I

Wmax = Wavg
3
2

WNA = Wavg
4
3

!

!

6

!

Distance b/w N.A and Wmax  location = h
6

Shear stress in Quadrilateral section about diagonal

Shear stress = W = 3
V (h y)(2y h)

bh
� �

Wmax = Wavg
9
8

!

!
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Shear stress of thin walled section

!

!

Wmax = 2 Wavg

Wavg =
V
A

Shear Centre:- It is the point through which if transverse bending 
load passes, the beam will have no twisting. It is the point through 
which resultant of shearing force on the section passes. Shear 
centre always lies on the axis of symmetry (if exists).

  S = Shear Centre
  G = Centre of gravity

Distance of Shear Centre of Important sections:-
1. Channel Section

2 2b h t
4IE  



1.46 CIVIL ENGINEERING

2. Circular arc

2R (sin cossin cos
§ · E � E E¨ ¸E � E E© ¹

Special cases
(a) Semi-circular :

E= 90q
S
2Re= /2

(b) Open slit case

e = 2R



  Torsion means twisting of a member when it is loaded by torques 
that tend to produce rotation about the longitudinal axis of the bar

Pure torsion:- When its cross-sections are subjected to only 
torsional moments and not accompanied by axial forces or bending 
moment or transverse shear. For pure torsion, bar should be 
prismatic.

Assumptions in Torsion formula
1. Circular section remains circular
2. Plane section remains plane and do not warp. (warping occurs in 

Non-circular sections)
3. Stress do not exceed proportional limits.
4. Shaft is loaded by twisting couples in planes that are perpendicular 

to the axis of shaft.
Torsion formula

T G=J r L
W T 

T = Torque
J = Polar moment of Inertia
W = Shear stress

9Torsion of Circular 
Shaft
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r = distance from centre of shaft
G = shear modulas
T = Angle of twist
L = Length of shaft 

!

!

!!

!

!

!

!

Note:-
 T – M plot is used to determine
The value of G using Torsion text

T = GJ
L

§ ·I¨ ¸© ¹

  Get D from the graph and then by knowing J and L we can easily 
get the value of G.

Note:-
T – M plot is used to determine
The value of G using Torsion text

T = § ·GJ I¨ ¸
§ ·§ ·GJ
© ¹L¨ ¸¨ ¸L

Get D from the graph and then by knowing J and L we can easily
get the value of G.

yy
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Compound shaft
1. Series connection

AD A D

A B B C C D

AD AB BC CD

( ) ( ) ( )
I � I � I

� I � I � I � I � I � I

I � I � I � I

#

2. Parallel Connection
T

  

1 2
1 2

1 1 2 2

T TL L=G J G JT  T �

1 1 2 2

1 1 2 2
1 2

1 1 2 2 1 1 2 2

TL
G J +G J

G J G JT = T =G J +G J G J +G J

I  

Torsion in fixed beam (statically Indeterminate)

a b
Tb TaT = T =a+b a+b

)AB = 0
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Torsional strain energy

U=
2
max1 1 TLT. T. Volumeof shaft2 2 GJ 4G
W

T   u

Strain energy density = Strainenergy 1=Volumeof shaft 2 u W u J

Power transmitted by shaft

P = T u Z

T = Torque
Z = Speed of rotation
N = Rotation per minute

Where Z= 2Sf

or Z = 2 N
60
S

Thin walled Hollow shaft

m

Tt = 2AW u

Where, W = Shear stress
T = thickness of the section
T = Torque applied

Am = Area under mean circle.
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Note:-

2
m mA R S 2

mA b 

Hollow Thin circular shaft Hollow thin circular shaft

Torsion of Non-circular members

Wmax = 2
1

T
C ab

 Where b < a

I = 3
2

TL
C ab G

  Shear stress at corners will be zero, Where as it will be maximum 
along the centre line of larger side.

Note:-

2
m mA Rm

2
mA bm

Hollow Thin circular shaft Hollow thin circular shaft



  Vertical members carrying vertical loading and moments is called 
column.

Assumptions of Euler’s theory

1. Applicable to long columns only.(i.e Buckling failure only)

2. Material is isotropic, homogenous and linear elastic.

3. Purely axial loading.

4. Perfectly straight axis of column after unloading.

Euler’s Formula

2
min

e 2
eff

EIP
L

S
 

Pe = Buckling load
Imin = Minimum MOI about centroidal axis.
Leff = Effective length of column.

10Columns
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Effective length of column based on end conditions

End
condition

One end fixed 
one end free

Both end 
Hinged

Both end 
Fixed

One end fixed 
one end Hinged

Leff

(Theoretical)
2L L L/2 L

2

Leff (As per 
IS code.

2L L 0.65L 0.8L

Validating of Euler’s theory

Pe =
2 2

min
2
eff

EAr
L

S

Pcritical =
2

e
2

eff
min

P E
A L

r

S 
§ ·
¨ ¸© ¹

2
cr 2

EP S 
O

safe

safe

safe

 Where, O�= Slenderness ratio, ie ratio of effective length to least 
radius of gyration.

For mild steel Pcr = 250        E = 2 u105 N/mm2

Hence c 88.89O  
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Rankine’s Formula:- For Both Short and Long column

R

1
P =

c e

1 1
P P�

PR = Rankine load
Pc = Crushing load = Vc u A
Pe = Euler’s load

PR = c c c
R2c c

2e
2

P A A PP A 11 1P E

V V
   

V � DO� �
§ ·S
¨ ¸¨ ¸O© ¹

Where, A = Area of column

D = Rankines constant = c
2E
V
S

  Note: For long column in which eccentric loading is applied, 
secant formula is used.
Note: For long column in which eccentric loading is applied,g
secant formula is used.

,



  When load is applied on the spring it either gets deflected or 
distorted. and it recovers its original shape when load is released. 
During deflection or distortion it absorbs energy and releases
the same as unloaded.

Proof load:- Greatest load that the spring can carry without 
getting permanently distorted.
Proof Stress:- Max stress in the spring when proof load is 
applied.
Proof Resilience:- Strain energy stored when proof load is 
applied.
Spring Constant:- It’s the stiffness of the spring measured in 
load per unit deflection.

11
Springs
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Closed coil helical spring

Strain energy U =
21 T L

2 GJ

ðð
4dT=PR      L=2 Rn      J=

32

Axial deflection (G) : G=
3

4
U 64PR n
P Gd

w  
w

Stiffness of Spring (K) K =
4

3

P Gd
64R n

�
E

Proof  load Pmax=
3

max
d

16R
S u V

Note:- If the spring is cut into two halves, then the stiffness of 
each half will be doubled to that of original spring.
Note:- If the spring is cut into two halves, then the stiffness of
each half will be doubled to that of original spring.

ff
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Equivalent Spring Constant

1. Series connection

   

K

1

K

2

K

3

K

n

P

1
K K K K Keq n

= + + + +1 1 1 1
1 2 3

....

2. Parallel connection

K

1

K

2

K

3

K

n

P

  Keqa = K1 + K2 + K3 + ..... Kn



  Thin shells are the shells in which thickness of the wall is less 

than
1 1th or th10 15  of its internal diameter. In thin shells normal

  stress is uniformly distributed throughout the thickness of the 

wall. While if thickness of wall is greater than 
1 1th or th10 15  of 

internal diameter it’s called Thick Shell.
Thin Cylinder subjected to internal pressure

1. Hoop Stress = Vh = pd
2t

2. Longitudinal Stress = ó L
pd= 4t

3. Radial pressure = Inside = p
outside = o

4. Hoop Strain Hh = 	 
ìpd 24tE �

5. Longitudinal Strain Hh = � �pd 1 24tE � P

12
Pressure Vessels
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6. Volumetric Strain Hh = H1 + 2Hh

Hv = � �pd 5 44tE � P

7. Maximum shear stress in plane of Vh and Vl

    max (in plane)
pd= 8tW

8. Absolute maximum shear stress τabs max
pd
4t

p= + 2
Thin sphere subjected to internal pressure

1. Hoop stress = Longitudinal stress 

Vh = V1

pd
4 t

2. Hoop strain = Longitudinal strain

Vh = Vl � �pd 14t E � P

3. Volumetric strain Hv = 3Hh = 3Hl

Hv = � �3pd 14t E � P

4. Maximum shear stress in plane = 0

5. Absolute maximum shear stress abs max
pd
8tW  

Lame’s theorem:- Analysis of thick shells
Assumptions:-

1. Material is homogenous, isotropic and linear elastic.
2. Plane section of cylinder, perpendicular to longitudinal axis remains 

plane under pressure.
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Lame’s equation’s for thick cylinder

1. Hoop stress o Tensile Vh = 2
B A
R

�

i

2. Longitudinal stress Vl = 
2
i

2 2
o i

pR
R R�

3.Radial stress o compressive VR = 2
B A
R

�

Variation of stress in thick cylinder
Note:- 1. Radial and Hoop compression vary hyperbolically.
            2. Longitudinal stress remains constant (Tensile)

Due to internal pressure Due to external pressure
Lame’s equation for thick sphere
1. Hoop stress = Longitudinal stress

  Vn = Vl = 3
B A
R

� (Tensile)
2. Radial stress

VR = 3
2B A
R

� (Compressive)

Note:- Both lame’s constant A and B are positive for internal 
pressure and both are negative for external pressure.
Note:- Both lame’s constant A and B are positive for internal
pressure and both are negative for external pressure.

ll


