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Properties of Metals,

Stress and Strain

Rigid and Deformable Material:

Rigid material is one which does not undergo any change in its geometry,
size or shape. On the other hand, a deformable material is the one in
which change in size, shape or both will occur when it is subjected to
force/moment.

Stresses and strain:

Stresses (Force/Area) are generated as a resistance to the applied
external forces or as a result of restrained deformations.

. L Load
Nominal stress (Engineering stress) =——
Original Area
Load
Actual/Truestress =——
Original (Actual) Area
Stresses
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Equality of shear stress on perpendicular planes

(1) Shear stress on opposite faces of an element are equal in
magnitude and opposite in direction.
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(2) Shear stress on adjacent and perpendicular faces of an element
are equal in magnitude and have directions such that both
stresses point towards or both point away from the line of
intersection of the faces. These are called Complimentary shear
stresses.
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(Shear stress on opposite face are equal and opposite)

Sign convention for shear stress

DO=0 =
N 4ve ?irection %
ee=®\| T (? ®= Cf @@:@J F)@=@
+ve  +ve
\ - face shear N~
©o=0 Stress O®=0

Stresses under general loading conditions

1. Stress is NOT a Vector
2. Stress is a 2" order Tensor.

A
On Ty T 2 Sz, ,
3. o (Stress tensor) = Ty Oy Ty )_» A/L* Oy
SZ 7xz
Tox sz G,

4. Magnitude has only one dimension Hence it a 3° = zero order
tensor

5. Direction has three dimension. Hence it is 3% = 1%t order tensor

2]

. Stress has 9-dimension (32 = 2" order tensor)
7. At any point in 3D condition 9 stress elements are there.
3 Normal stress components (c_, O, c,)

6 shear stress components (t T ,T ,T ,T)
vz “zy

T
xy? “yx? “xz’ Tzx?
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ONLY 6-stress components are required to define conditions
of stress at a point.

8.In 2-D condition, 4 stress elements exist (6, 6, 0, ©,) but
ONLY 3-stress components are required to define conditions
of stress at a point.

Design of members:

= yield stress
F.O.S
Margin of safety = FOS-1

Allowable stres

For Ductile material: FOS is applied on yield stress
For Brittle material: FOS is applied on Ultimate stress.
Normal Strain:
1. Deformation per unit length
SL

2. Strain = AL or —
L oL

3. Measured by EXTENSOMETER It is a dimensionless

quanity
Mathematical definition of strain
g = u Normal strain in Y. = du + Gl = Shearing strain in
X ox ¥ooo0x  dy
x-direction xy plane
av
&y = v Normal strain in Yoz = 9o + du = Shearing strain in
y ox 0z
y-direction xz plane
Jn d
€, = 9o Normal strain in Yyo =5+ LA Shearing strain in
0z dy 0z

y-direction yz plane
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Stress-strain Curve of mild steel (Low carbon steel-Ductile Steel) in
Tension

Shess

D E

oY)
O ———

Stssk

0} 0.12% 1.2-1.2%% 10-15% 20-30%%

OA =Linear curve
A =Proportional limit
B = Elastic limit
C = upper yield point
D =lower yield point
DE = plastic region
EF = strain hardening region
FG = Neeking region
F = ultimate stress point
G = Fracture point.

N 3 L, =Gauge length stress =& strain = £
= Initiai length A Ay

Salient points:

(1) Volume of specimen increases from O to D

(2) Lower yield point should be used to determine the yield strength
of material

(3) From D to E, large deformations but volume of specimen does
not changes.

(4) From E to F, its strain hardening, i.e material undergoes
changes in its crystalline structure.
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(5) F to G, diameter of portion decreases due to instability called
Necking.
(6) Cup cone failure occurs at 45° with the load in ductile material.

Mild steel in compression

(1) The stress strain curve will eventually be same through its
initial straight line portion and through the beginning of the
portion corresponding to yield and strain hardening

0 Tension

Compression

(2) Modular of Elasticity in Tension= Modular of Elasticity in
compression 0 = ¢
0.2% of proof stress

Stress Quenched, Tamponed
alloy steel [T~ 7

i
High strength low / E
alloy steel /o

1

Carbon steel S

1

Pure iron /

/ |

Stein 0.2% 0.4% 10-15% 20-25%

Stress-strain curves for other materials

(1) All of them possess some Modulas of Elasticity.
(2) As yield strength increases, Ductility falls.

(3) For ductile materials like Aluminium and Copper, do not have
defined yield point. Yield strength is defined by offset method.

1
(4) EAL = gEst

Stress-strain diagram for Brittle material

(1)¢=0
(2) Linear Elastic range in compression is more than Tension
(3) Rupture stress = Ultimate stress
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(4) No Necking occurs.

/Tension

0/ I,

Compression
TRICK: to Remember failure surface:- Remember any one of the
4 given below and change at least two columns every time keeping

the one constant.

(1) Ductile Tension 45°
(2) Ductile Torsion 90°
(3) Brittle Tension 90°
(4) Brittle Torsion 45°

Eg. Remember
Ductile Tension 45°

Sam({ J(Change J{

Ductile Torsion 90°

Brittle fracture:
(1) Ductile material at normal temp. may become brittle at very

low temp.
(2) A Brittle material at low temp. may become ductile at very

high temp.

True stress strain curve
_.--True curve

Engineering curve

Tension

True curve

Engineering curve
Compression
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(1) True stress curve is below Engineering stress in compression
because resisting area in compression increases

P
(2) Engineering stress = 1 True stress = —
A, A
)
Engineering stress = — True stress = AL

A,, L, — Original Area & length
Relation between True stress and Engineering stress

_ A A
In Tension: 1+¢ In compression A= 1—
c=0,1+&)
o=o0,1-9)

Properties of Materials

Elasticity:- Property by virtue of which material deformed under
the load is enabled to return to its original dimension when the load

is removed.

(e} o s

ﬁgding
Elastic limit Loading Elastic limit )
Loadin Elastic
y V) . limit
) /Unloadlng
// Unloading
€ €
-~
Linearing elastic material No-linearing elastic material Permaretit Elestic
Set Set

Plasticity:- The characteristics of material by which it undergoes
inelastic strain beyond those at the elastic limit.

Reloading:- Proportional limit increases from B to C but ductility
decreases from ‘B to F'to ‘C to F’
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Creep: Property by virtue of which a material undergoes additional
deformation (over and above due to applied load) with passage of time
under sustained loading with in elastic limit

Relaxation:- The decrease in stress in steel as a result of creep with
in steel under prolonged strain

Strain
Elastic
Stress ¥ I recovery
Permanent
Elastic plastic strain
strain
Time Time

Fatigue:- Deterioration of a material under repeated cycles of stress
or strain resulting in progressive cracking that eventually produces
fracture.

Endurance limit:- Stress level below which even large number of
stress cycle cannot produce fatigue failure.
Stress
Stress
End_ur_ance N\ For Non-ferrcur
limit =777 meterils

For ferrous material

No of cycle Cycle

1 .
For structural steel, Endurance limit = 3 x ultimate strength

Resilience:- Property of material to absorb energy when it is
deformed elastically and then upon unloading to have this energy
recovered.

Modular of Resilience: Elastic strain energy stored per unit
volume

elastic limit

ml.o
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Toughness:- Ability to absorb mechanical energy upto failure.
[¢)

F— Fracture paint

=—> Area of shaded portion
= modular of toughness

! €

Toughness — Resists fracture
Hardness — Resists scratch or abration

Tenacity:- Property of material to resist fracture under the action
of tensile load

Visco-Elastic material

Materials having both Viscous and Elastic properties and exhibit
time dependent strain.

Approximate stress-strain curves

— L

Elastic — Plastic Elastic — Plastic |deal — Fluid Ideal rigid
with strain hardving behaviour

Hooke’s law:-

(a) Homogenous m

(b) Isotropic
(¢) Linearly elastic materials
Deformation of member under axial load

(1 \

L
J Load P is acting then d = %

---------- To E

R
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(2)

A E, L,

A B, Ly

AsEsL,

Load P is acting then |§ = PlLl P2L2 P3L3

= + +
AR, AR, A

3) 6= L Peodx then
AXE
de
— > dX—— dx
\ X X
I~
p or —1>p
|~

/

L
Fore = P(x)
5 = L Pdx 5= L P(x)dx
AXE B AE

(4) (a) In prismatic bar due to self weight

dx1 'YL2 (‘%)L

1 XT d=-— or
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(b) Conical bar due to self weight

(deflection of prismatic bar of same

LW |

length and same density)

| _4PL
- [~ ~ 7D,D,E

pﬂF B . PLloge(B% j
A= 1

\ ~ Et(B,-B))

2 2 2
Y2 L, 02 A= yLi + vLiy + 79184 Ly

" 2E 2E  ¢2E
u 71 L, ¢4

Composite Bars

AZ E2
~—pP
A, E,
| L |
P=P, =P,
5,=5,= Nl _ Bl
AlEl A2E2

AEP | A,E,P

1T AE+ALE, 2 AE+A,E,



CiviL ENGINEERING

(1) Principle of superposition is applicable only when stress is
within proportional limit

(2) If temperature is increased and member is restrained, then
force produced is compressive. If temperature is decreased the

force produced is tensile.

(3) Temp T >more value of o. — compression
Temp {— more value of o — Tension

Nut and Bolt problem:
Extension of Bolt + Contraction of Tube = Movement of nut

opl | orl _

n
Eb Ec P

n =no. of rotations of bolt
p = pitch of thread.
Poisson’s Ratio:- For Homogenous and isotropic material,
Elongation (or contraction) produced by any Axial Force in the direction
of force is accompanied by contraction (or elongation) in all transverse

directions and all such contractions (or elongations) are same.
(e}

7
/
GX/
_ Lateral Strain —€y &y
Axial Strain )| = e ey

ORI

_A(y 1 =0 for cork
_ d|1=0.1-0.2 for concrete

= A% pn =0.5 Perfectly elastic rubber

Volume of rod remains unchanged as a result of combined effect of
elongation and transverse condition.
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Dilation, Bulk modulas:-

(ox +oy +0,)
=—2 " (1-2
€, 5 ( )
If 0,=0,=0,=p than
3p
g=—@10-2
v E( )
K-P__E
e, 3(1-2w

G,

1
I

y

/

oy + 0y +0,

HydrostaticPressure = 3

(1) Stretching of material in one direction i.e due to [x will lead
to increase in volume

(2) During plastic deformation, volume of specimen remains
constant.

Shearing Strain:-
(1) Hooke’s law for shearing stress and strain

Txy = G'ny

_E
21 +p)

(2) Modulas of rigidity or shear modulas G, |G

E E
as |0 0.5 then [ = <G <=
E gl

(3) If only shearing stresses are acting then volume of the specimen
does not change.

Relationship between Elastic Constants
E E IKG 3K - 2G
21+ ) 3(1-2w) 3K+ G 6K + 2G
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No. of Independent Elastic Constants

(1) Homogenous and Isotropic — 2

(2) Orthotropic (wood) — 9

(3) Anisotropic — 21

Saint-Venant Principle: Except in the immediate vicinity of
application of loads, the stress distribution may be assumed
independent of the actual mode of application of loads.

Plastic deformation:-
When yield stress of material is exceeded, plastic flow occurs.

o --------,-B ------ S et 9— ------ >
v S K Ruphere
< A
// / N— Unloading curve
A D €

Idealised curve for elasto plastic material

Residual stress:-When some part of an indeterminate structure
undergoes plastic deformation, or different part undergoes different
plastic deformation the stress in various parts of the structure will
not return to zero after the load has been removed. These stresses
are called Residual stresses

Thermal Stress and Strain:-

o =EaAT
A =LaAt
Strain = LoAt = aAt
0’Aluminum > aBrass > aCopper > aSteel

ITRICK A>B>C>S§|

When bar is not restrained, then there will be no induced
temperature stresses due to change in temperature.



Shear Force and

Bending Moment

Span of a beam:-

(i) The clear horizontal distance between the supports is called
clear span of the beam.

(i1) The horizontal distance between the centres of the end bearings
is called the effective span of the beam.

Types of Support:-
(1) A Simple or free support/Roller Support/Rocker support
(i1) Hinged or pinned support.
(ii1) A built in or fixed or encastre support
(iv) Slider support
(v) Link Support

Types (l)f Beam

Statically determinate Statically Indeterminate
Beam | Beam

l ! ¢ ) — Fixed Beam: Both end
Cantilever Simply Overhaninging fixed
beam Supported — End portion or
— One end beam rests  portions extended E
fixed, one freely in the form a _’Proppeq Cantilever
end free on supports  contilever beyond - Cz.mtllever supported
4 support by simply support at
2—' yS gl ﬁl free end or in between

—> Continuous Beam:
More than two
or more supports

Note:- A continuous beam may or may not be an overhanging beam.



e ENTRI

1

ME] Civi. EnGINEERING

Shear force:- It is the resultant of all transverse forces to the
right or left of the section.

S.F at a Section is +ve if the resultant of all transverse forces to the
right of the section is downward or resultant of transverse forces
to the left of section is upwards.

Leftside | Rightside Leftside 1 Right side
Section Section
Positive shear force Negative shear force

Bending moment:- It is the resultant moment at a section due to
all the transverse forces either to the left or right of the section.

e T Y

Left side | Right side Left side i Right side
Section Section
| Positive Bending moment = Sagging| | Negative Bending moment = Hogging |

Note:- Bending moment is the algebraic sum of moments at that
section while moment at a point is the summation of moment due
to all loading on the beam produced at that point.

Axial Thrust — Force acting along the longitudinal axis of the
members. Axial thrust is +ve if it tries to elongate the members.

N~—| ——N
Relationship between Bending moment, Shear force and
Loading
(i) Slope of the shear force diagram = Intensity of distributed load
Wy
dx

V /l \\ /I

’ \ ’

p . / + ve slope
/
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If the slope of SFD is positive, this implies the load intensity at
that point is +ve i.e upwards and if the slope of SFD is negative,
this implies the load intensity at that point is —ve ie downwards.

(ii) Slope of Bending moment diagram = Shear force at that section.

dM
=T _v
dx
NOTE:- AV = [W,dx
AM = [Vdx
M. . —M. . = Areaunder the Shear force diagram between those
final initial
two sections.
Loading Shear Diagram,% =W Moment Diagram, % =
P
(m£l ; Mg v Vr
T l t VR VL
Vi Vr Zero slope Mg
IVIL
Positive constant
slope
I}
m. m \—:l
( I:b ; Mr — M, Mg
Zero slope
\ /:VR
feooachooall | vl T, i
T T ¢ T 1 | 'R me, I
Vi Vg
_.W1 Ve
w, N " . /E
w —W3
ML - MR Vii 1 I.| 1 MR
t f : Ve m, } :
\T/L \¢/R Ve increasing slope +ve decreasing slope
IS N /‘VR
]
1
—w. !
M, W Mg 2 VLI I mg
( 3 m; i
_— 1
T l Negative decreasing Positive decreasing
Vi Ve slope slope
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W, wy
() P (i) ' (i)
—c—) W 'l: | \iSIOPe = -w,
SFD o Wl | + ope = 0
/
SFD 2 SFD
slope =0
ol 7 wr 7 wit [ 2
BMD - e Slope =0
Slope = w,| AR
BMD 2  BMD
('V) P (V) w (VI) W
A a b B c 0
o c & A el
Pb Slope = o, _
A - : V_Vcl_ 1 —>: w.l
Q_% SED 2 B 5
S'::D ! 1£ Slope=
! wy skp "0
Slope = ! Pag B:SI 0 !
¥ 1 Slope =
Pb ! 2 Slope = P !
e a S'°"S'°pv8| Al
; tb | wylt = a3 |
@ gyp b 2 BMD BMD
(vii) ©o _Wl
/‘/‘/l\[\l\ Parabolic Slope 4:1_ _
w m Slope =
—0 +
* ’ | N
4 wl®
loading SFD 12 BMD



Principal Stress and

Principal Strain

Whenever any structural component is under equilibrium due to
external forces then each and every point inside the volume of the
structural component must be in equilibrium and must have stress
less than the permissible stress.

Plane stress:- When two faces of cubic elements are free of any
stress, the stress condition is termed as plane stress condition

Gzztzxzrzyzo

So plane stress components are and ¢, o, and Ty
Transformation of Plane Stress

)9\ f Ly y D xy Gy
Oy | \\\\ — Gy Ox AA _‘\0/+
AN X
(

Zy~ z, Acos )~ |

S, 3, (zxyAsin 0)
, 0,+0, O0,—-0 .
Oy == 5 I 4 5 J c0s20+Z,, sin 26
o, -0, ) .
Zy, = —( 5 = Js1n29 + Z,, 0820

! !
Oy +0, =0y +0y

NOTE:- The sum of normal stresses exerted on a cubic element of
a material is independent of the orientation of element.

Principal Stress and maximum shear stress:- It is the
maximum or minimum normal stress which may be developed
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on a loaded body. The plane of principal stress does not carry any

shear stress.
o, +0 c, — O 2
X x 2
cSmax/min = 2 . * ( 2 . ) + TXy

Tmax

‘ny Ox Omax

Tmax

oyt oy

2

Mohr’s Circle for plane stress — It is the locus of points representing
the magnitude of normal and shear stress at various plane in a
given stress element.

. o = Principal stresses, end points of diameter on c—axis
. T, = max shear stress, whose magnitude is equal to radius of
mohr’s circle
—(o,+o 2t
tan 20, = “loxroy) tan20, = —=—
Ty Oy — Oy
So tan 20, x tan 26 = -1
= 20, and 20  are 90° apart.

Hence, plane of Max. Shear stress are 45° to the principal planes
(i.e. 0, and 6, are 45° apart)

. Normal stress on a plane of maximum shear stress is represented
by co-ordinates of centre of Mohr’s circle.

. In hydrostatic loading — Mohr circle reduces to a point.
. In Pure Shear case — centre of mohr circle will fall at origion.
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Strain Energy per unit Volume:-
1. Plane Stress Condition:-

1
U= E(GXSX +oy8, + txyyxy)
When o, and o, principal stresses then

1
V= E 62 + 05 - 2u6162)

2. Under Triaxial Stress Condition:
1
V= E(GXSX +OyEy + 0,8, + TyyVuy + Ty ¥y + szyzx)

V= %( % +oy+o; _2“(GXGy +0y0, * GZGX))

Angle of obliquity:- Angle that line of action of resultant stress
on a plane makes with the normal to the plane is called angle of
obliquity.

o = Angle of obliquity

_ 12 2
c,.= ,/GX +Tyryr

X

Plane Strain:- If the deformations are those in x-y plane only then
only 3-strain components exist ¢, € Yy

NOTE:- Strain energy only leads to distortion of element. It does
not lead to change in volume. Normal stresses on the other hand
leads to change in volume.
Transformation of Plane Strain

Ext &y &y &

€1 = + =—Yc0s20 + Yﬂsin%
X 2 2 2
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€
€. = - y cos26—y7xysin29

€, —¢
Tyt o Ex ysin26+Y§cos29

2 2

Comparison of Plane Stress and Plane Strain

Plane Stress Plain Strain

c=01t =01t =0 . =0,1t =0
Stress ‘ N yz * v
6,0,and T, — non zero 6,06,06,T. — Non-zero
X y Xy X y Z Xy

V=0 7v,=0 g,=0y,=0v,=0

Strain
e,¢,¢,¢c_ ¢ Non zero e, ¢c,¢c_¢ Non-zero
x’? 7y Tz? Txy x’? 7y Txy

Mohr circle for Plane Strain:-

1. Principal Strains

8max/min = 2 2

2 2
Ext £y (sx —ey) . [rxy]

2. Maximum In plane shearing strain = Radius of Mohr’s circle (R)

2 2
R:(ymax) _ (ex —2y) J{YﬂJ
2 in plane 2 2

Strain Rosette — A group of three gauges arranged in a particular
pattern such that it can measure normal strain in three different
directions on the surface of a structural element.

€y +&, € —E Yy .
g =—=—Y 4 X ycos291+%sm291

€
+ Y c0s20, + 1/%sin%z
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Ly

€
€) !
&3 9,

!

Special Case:- when ¢, — along x-axis ie ¢_

0, — 45°

¢, — along y-axis i.e. &

g, +¢
then, =7

or



Deflection of Beams

Deflection of structure is caused by its internal loadings such as
Normal force, Shear force, Bending Moment, Torsion.

For Beams and Frames, major deflection is due to Bending
For Trusses, deflection is caused by internal Axial Forces
Some standard results of deflection and slopes.

Loading Deflection Slopes
p
3 2
A= B o= 1
1 A 3EI 2EI
4 m
2 2
A A=ML o= ML
2EI EI
C

Z w 4 3
R A wL 0= wL
8EI 6EI

P
3 2
l A PU o PL
W 48EI 16EI
m%v\ 5 wL! wL?

A:—— e =
P~ 384 EI 24EI



AN

7777777

2L/3
ﬂ)
LW3
eA

DEeFLECTION OF BEAMS
3
A=l PL
4| 48EI1

pclf 5wt
" 5(384 EI

2,2
A= Pa“b
3EIL

313
A=Pab
3EIL}

_ wlt
" 30EI

_ ML?
" 27EI

Ao ML?
9V3EI

9= ML
24E1

_ wlL?
" 24E1

_ML
T 4EI

_ML , _ML
ATBEI P 3EI

Maxwell’s Reciprocal Theorem:- In any beam, frame or truss,
the deflection at any point due to load P at any point A is equal to
deflection at any point A due to load P at any point B.

| Ia
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AW Bl ArrrvrvyyvrvrvyB Ay=24,
A, A, C— mind
point of AB

Methods of determining slope and deflection at a point
(1) Double Integration Method = Gives deflection only due to
bending

dy_M dfdy) M de _M
dx? EI dx\dx ) EI dx _EI
where, EI = Flexural rigidity
Flexural Stiffness = Flexural rigidity
Length
d3_y=deX = dS_y = l = d4_y=d%x = d4_y=ﬂ
dx® EI dx®> EI dx* EI dx* EI

(2) Macaulay’s Method = Modification is done in loading pattern
so that udl or uvl becomes continuous up to last segment.

2
EISTZ =M= %x+ %(x—2a)
Integrate and put boundary conditions
(a)x=0,y=0 (b) x=2a,y=0
—Pa?

Then, Deflection at x = 3a, y= o
i

(3) Moment Area Method - Mohr’s Method

Theorem 1:- The change in slope between two points on elastic

curve equals the area of % diagram between these two points.

05, = Slope of B with respect to tangent drawn on elastic curve at

A = Area of % diagram between A and B.

— > Xx (+ve)
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Theorem 2:— Deflection of any point A on elastic curve with
respect to tangent drawn at another point B (tAB) equals the
moment of area under diagram between A and B about point A.

N 87

-7 Oga

B

M
tap = X[ o-d
AB X;[EI *

(4) Moment diagram by parts:- The resultant BM at any section is
the algebraic sum of bending moments at that section caused by
each loading separately (either from left or right of that section).
So the effect of individual load can be considered instead of taking
effects of all the loads together for drawing BMD.

(5) Conjugate beam method:-

V=jwdx M=I(IWdX)dx
J ) \2 )
0= % dx y= j( %dxj dx

Slope at any point in real beam =

A ) Deflection at any point in real
Shear at that point in conjugate

beam = BM at that point in con-

beam jugate beam
Real Beam Conjugate Beam
AN AN
End pin End pin
& s
End Roller End Roller
Fixed Free Free Fixed
- A - A
Internal pin Internal pin
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I D
Internal Roller Internal Roller
Internal Hinge Internal Hinge

Slider Slider

NOTE:- (1) Area moment theorem requires understanding of
geometry of deflected shape and applicable only when deflected
shape is continuous, while in conjugate beam method, principle of
statics is used. Hence, this method can also be used when deflected
shape is not continuous i.e, Internal Hinge case.

(2)
3—0 D

Real Beam Conjugate Beam

Astatically intermediate real beam can have unstable conjugate
beam.

(6) Method of virtual work (Unit load method)

External virtual work = Internal virtual work

=

Virtual  Real Virtual Real
| force displacementI 1 load displacemenlt
External Internal
L “my,Md
m M dx _ [y X
IxA=[=—— 1x0=|— "
So, ! EI o EI

Note:- Unit load method can be applied to plastic range of stress-

M
strain also, but d6 will not be equal to ﬁdx
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(7) Castigliano’s theorem (Method of least work —its 2" theorem)

AU 9. U
oP oM
M2 d
For beam’s and frames U = 2EIX
L M@ dx L M@ dx
o EI o EI

Note:- This theorem is applicable only when there is constant
temperature, unyielding support and linear elastic material
response.
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Theories of Failure

Under uniaxial tension or compression practically, yielding begins
at the yield strength at which plastic deformation is significant.
But when several components exist, the yielding depends on some
combination of these components. The theory of failure is used to
establish, the behaviour of material subjected to simple tension
or compression, the point at which failure will occur under any
type of combined loading. These theories are applicable to static
loading only.

(1) Maximum principal stress theory (Rankine’s theory, Lame’s

theory are max stress theory)

fy
o<
FOS

Applicable for brittle material

G,/ f,

1 /—> No yielding

oy/f,

1
x» Failure yielding

(2) Max principal strain theory (St. venant theory)

fy
_ < _7
o1 — (o, +G3) <
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Theories or Farure [EIER I

0,9,

1% No yielding
N Failure yielding

Satisfactorily applicable to brittle material, but over estimates the
strength of ductile material. Even not suitable for pure shear case.

(3) Max shear stress theory (Tresca, Guest, coulomb theory)

min |

fy
<
2 J 2(FOS)

O...:

Max of |:| Omax — cSmin| .
|2 |

Applicable for ductile material and gives the most conservative
design out of various other theories of failure
o,ffy

1 _— No yielding

c$1/fy

\j

(4) Maximum strain energy theory (Beltrami - Haigh theory)

Failure yielding

f
[f + 05 + 0§ ~ 2u(010, + 0305 + 040 | < [ngj

o,/fy
Parallelograms by

max strain theory

o /fy
No yielding

‘\—> Failure yielding

Applicable for ductile material and not suitable for brittle material
or pure shear case.
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(5) Max shear strain energy theory (Distortion energy theory)
— Huber-Hencky von mises theory

%[(51 ~03)" +(0y —03)" + (05 — 01)2] : [F?)’Sf

Applicable in pure shear case

s4/d,

No yielding
M
1 s4/d,
=1

Failure yielding

(6) Octahedral shear stress theory

f 2
o? 1 of + 0,0, (_ngj

Applicable to ductile material in pure shear case
NOTE:
Total strain energy = volumetric strain energy + Distortion energy.

1
Volumetric strain energy = — X volumetric stress x volumetric strain

2
Volumetricstrainenergy= [ 91+ %2 + O (01 + 03 +03)(1=20)
2 3 E
2, 2 2
-2
Total strain energy = L |ortop oz —an (1)
2E (0164 + 0503 + 0307 )

Hence, (2)-(1) =

Distortion Energy = ﬁ[(% -G, )2 + (o9 — o3 )2 + (03— oy )1




Combined Stress

Combined Bending and Torsion

ey _Vm Omax Tmax
== 4 X L
B 2z X T / /
Plain stress condition Bending  Torsional shear
stress stress
For point A:-
16T _32M
foox T ops Omax T
For point B:-
-16T
T = 3
Y 1D

Principal Stresses at A:-

o =161 [Mi\/Mz +T2}
max/min TED3
o = % M2+ T2)
TC

o 16T
Principal Stresses at B:- [Omax/ . = +——3
min D

Equivalent Moment |M 1 (M +VM?2 + T? )

"3

Equivalent Torque |T, = M2 + T2
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Combined Bending and Axial Force
P (Pe)x (Pey)y
°TA 1 I
(—ve means compressive)

Kern:- It is the area of the x-section on which if compressive

loading occurs then there will be no tension anywhere on the entire
x-section (when bending occurs due to axial force)

Kern for Rectangular Section Kern for Circular Section

| h |
: 1 I | D |
_ i | |
Tb/G
== S W S %
L : D/4
h/6

Rhombus shape Circular shape of diameter=D/4



CoMmBINED STRESS

Kern for I-section Kern for hallow circular section

Elevation Plan
D? +d?
4D

Rhombus shape Diaof Kern =




Bending Stress in Beam

Symmetric Bending:- When member possess a Plane of
symmetry and loading acts in the plane of symmetry then
bending is called symmetric sending.

Unsymmetric Bending:- When bending couple does not acts
in the plane of symmetry of member either because they act in
different plane or because the member does not possesses a plane
of symmetry

Pure Bending:- Bending of beam under constant Bending
moment.

Non-uniform Bending:- Bending in presence of Shear force.

Flexure Formula: |[M _ S _ E

1 y R

where I = MOI about C.G axis about which bending occurs

M
Here, Omax = Ty
I . . .
Where, ; = Z| = Section modulas about bending axis.
. I
Moment of resistant (MOR) = o, (—]
y
IMOR =o,,,, x Z|

max




Section modulas (Z)

Benoa Stress w Beaw [T

I about N.A ymax Z=lly
mgx
Rectangular section
- p —
! ha? a | b
O _NA 12 2 6
Solid circular section
4 3
o | ___NA nD D nD
64 2 32
P
D
Hollow circular section
n(D* - d*) D Tc(D4 —d4)
64 2 32D
bh? 2h bh?
36 3 24
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Parallel axis theorem
=1, =1, +AY?

Vas Area =A

Perpendicular axis theorem

I, =T, +L,

Beam of constant strength or fully stressed beam:- It is the
beam in which max. stress at every X-Section of the beam is equal
to the maximum allowable bending stress in the beam.

Rectangular beam | Max. bending b= d=
loading stress constant | constant
x<~—P

6Px

b d d, avx b, ax
2
| — b d:
oo x 3ox

s 4 — o d, o Jx d, ax
| XX

Equation of Neutral axis in
Twisting case)

y = (I—Xtan e]x
Iy

Unsymmetrical bending (No

Slope of N.A= |tan¢ = i—xtane
y

N.A Y
Mo\ |
Couple due E
moment !

NOTE:- Neutral axis is always
and the minor principal axis.

located between the couple vector



Shear Stress in Beams

Normal stress is produced by bending and shear stress is produced
by shear force. The Vertical shearing stress is accompanied
by a horizontal shearing stress of equal magnitude known as
complimentary shear stress.

AH = l(GA_GB)dA

AH:VTAy Ax

Where,
AH = Shear force in length Ax of beam

V = S.F at the section where shear stress is to be found.

A = Moment of area of section above the level at which shear stress
is to be found out.

I = Moment of inertia of complete section about N.A.



CiviL ENGINEERING

AH_ VA

Shear force per unit length = I

_VAy
b
b = width of section at the level where shear stress is to be found.

Note:-
Ay = Agyy

A, =Shaded area
A, =unshaded area

Shear Stress at the level y from N.A = |q

C. G, Area A,

21\ 4

2
Shear stress = l(d—
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swean Stress i Beans (KT

Tmax = §Tavg
2
A\
T ba
Shear stress in I - section
V(D*~d’)
F;ﬁ 8l .
’—[ ____________ ~— Parabolic
D| - B Y e S : vd®
i 8l
__________________ ! Parabolic

Shear stress in flange = A D—2 -
=12 7

Shear stress in flange > ——— - x —+ —
81 t 21

Note:- In I-section’s nearly 80-85% shear is resisted by web.

Shear stress in circular section
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Shear stress in triangular section
Vy(h-y)
31

Shear stress=

Tmax

Distance b/w N.Aand t_

a:

. location = E
6

Shear stress in Quadrilateral section about diagonal

Shear stress=1t = b—;(h -y)2y +h)
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swean Stress i Beans [T

Shear stress of thin walled section

Tmax

Shear Centre:- It is the point through which if transverse bending
load passes, the beam will have no twisting. It is the point through
which resultant of shearing force on the section passes. Shear
centre always lies on the axis of symmetry (if exists).

5] [ ese] ] o
[}

o

S = Shear Centre
G = Centre of gravity

(I

Distance of Shear Centre of Important sections:-
1. Channel Section

_ b*h%*
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2. Circular arc

£

2R

—sinfcosf

j(sinﬁ —BcosP

Special cases
(a) Semi-circular :

2R
/2




Torsion of Circular
Shaft

Torsion means twisting of a member when it is loaded by torques
that tend to produce rotation about the longitudinal axis of the bar

ﬂii@' Axis of bar

T

Pure torsion:- When its cross-sections are subjected to only
torsional moments and not accompanied by axial forces or bending
moment or transverse shear. For pure torsion, bar should be
prismatic.

Assumptions in Torsion formula
1. Circular section remains circular

2. Plane section remains plane and do not warp. (warping occurs in
Non-circular sections)

3. Stress do not exceed proportional limits.

4. Shaftisloaded by twisting couples in planes that are perpendicular
to the axis of shaft.

Torsion formula

o
L

T =Torque
J = Polar moment of Inertia
T = Shear stress
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r = distance from centre of shaft
G = shear modulas

0 = Angle of twist

L = Length of shaft

Tmax
.................... 6 % Trmax
..................... e -~
Solid section
Tmax
( Tmin
/ Hollow section
Note:-
T — ¢ plot is used to determine
The value of G using Torsion text
GJ
T=| —
()

¢

Get o from the graph and then by knowing J and L we can easily
get the value of G.



Torsion or Circurar Swart [T

Compound shaft
1. Series connection

dap = 0a —0p
= (¢A _¢B)+(¢B _¢C)+(¢C _¢D)

|¢AD = Oap * Ppc + ¢CD|

Ts

Te

To

2. Parallel Connection

2
T
T
Strain variation Strain variation
EEE;;ELL:ELL
GlJl G2J2
R

T = G'lJl T, = G2J2
G d,+G.d, 2 GJ,+G,d
191 292 1¥1 292

Torsion in fixed beam (statically Indeterminate)

T,= Tb T, = Ta
a+b a+b
®,,=0
/T
2A . B¢

—
—
o
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Torsional strain energy

2
= —T 0= —T TL _ = tmax . Volume of shaft
2 GJ 4G
Strain energy density = Strainenergy _1 XTXY

Volumeof shaft 2
Power transmitted by shaft

T =Torque
® = Speed of rotation
N = Rotation per minute
Where o= 2xnf
21N

60
Thin walled Hollow shaft

or W=

T X t = L
2A
Where, T =Shear stress

T = thickness of the section
T =Torque applied

A_ =Area under mean circle.

Area = A
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Note:-

Hollow Thin circular shaft

Torsion of Non-circular

Torsion or Circurar Swart [T I

Hollow thin circular shaft

members

/\V

Centre line
of larger side

max

¢

T
- Clab2

TL
~ C,ab’G

Where b < a

Shear stress at corners will be zero, Where as it will be maximum
along the centre line of larger side.



Columns

Vertical members carrying vertical loading and moments is called

column.
Failure of column’s
|
Y
Long column Intermediate column short column
Buckling Buckling and Crushing Crushing

Assumptions of Euler’s theory

1. Applicable to long columns only.(i.e Buckling failure only)
2. Material is isotropic, homogenous and linear elastic.

3. Purely axial loading.
4

. Perfectly straight axis of column after unloading.

Euler’s Formula

2
Leff

P, =Buckling load
I . =Minimum MOI about centroidal axis.
L., = Effective length of column.
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Effective length of column based on end conditions

End One end fixed | Both end | Both end | One end fixed
condition | one end free | Hinged Fixed one end Hinged
L, 2L L L/2 L
(Theoretical) J2
L, (As per 2L L 0.65L 0.8L
IS code.
Validating of Euler’s theory
Pe - n2E‘2r1%un
Leff
P _ P - nz—E
critical A 2
()
Thin
2
P, = g
A

T
1 1
1 1
1 1
1 1
1 1
1 1
1 1 .
safe | safe | Failure Curve
short | inter | Y
1 1
column ! column: safe
' ! long column
i i
1 1
: ! N
A

Where, 1 = Slenderness ratio, ie ratio of effective length to least
radius of gyration.
For mild steel P_ =250 E =2 x10° N/mm?

Hence |A, = 88.89



CiviL ENGINEERING

Rankine’s Formula:- For Both Short and Long column
1 1 1
P, P P
P, = Rankine load
P,=Crushing load =, x A
P, =Euler’s load

P c A c A
PR = € = € = € = P
2 R
1+ & 1+ GCA 1+ ol
Pe 1I2E
a2
Where, A = Area of column

. c
o = Rankines constant = 2°
’E

Note: For long column in which eccentric loading is applied,
secant formula is used.



When load is applied on the spring it either gets deflected or
distorted. and it recovers its original shape when load is released.
During deflection or distortion it absorbs energy and releases
the same as unloaded.

Types

Helical springs Leaf springs
(Laminated or carriage springs)

¢ ¢ - Maximum bending stress remains same in
every plate and there by it behaves like
% beam of uniform strength

Closed coil Opened coil
* Helix angle < 10° «Helix angle > 10°
« Resist loading by *Resist leading by

TORSION Bending and Torsion
« Also celled as «Also called as

Torsion spring Bending Spring.

Proof load:- Greatest load that the spring can carry without
getting permanently distorted.

Proof Stress:- Max stress in the spring when proof load is
applied.

Proof Resilience:- Strain energy stored when proof load is
applied.

Spring Constant:- It’s the stiffness of the spring measured in
load per unit deflection.
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Closed coil helical spring

2
Strain energy U = 1T°L
2 GJ
4
T=PR L=20Rn J=£
32
Axial deflects U _ 64PR’n
ial deflection (3) : 5= P Gd®

4
Stiffness of Spring (K) K= P__Gd

§ 64R°n
Proof load p -,
Troo oa max 16R max

]T= PR

Note:- If the spring is cut into two halves, then the stiffness of
each half will be doubled to that of original spring.
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SPRINGS
Equivalent Spring Constant
1. Series connection

K1

K2

K, 1 1 1 1 1
m bttt —

Kn eq Kl K2 KS Kn

P

2. Parallel connection

LLJLLLLLILLLLLLPLILILLLL LIl

> S
KiZ2 K = K

VvV

<
<
<

VVVy
~




Pressure Vessels

Thin shells are the shells in which thickness of the wall is less
than %th or %th of its internal diameter. In thin shells normal
stress is uniformly distributed throughout the thickness of the

1 1
wall. While if thickness of wall is greater than ﬁth or Eth of
internal diameter it’s called Thick Shell.

Thin Cylinder subjected to internal pressure

1. Hoop Stress = o

h = ot
2. Longitudinal Stress = 6=

pd

4t

3. Radial pressure = Inside = p
outside =0

4. Hoop Strain ¢, = %(2 —1i)

d

5. Longitudinal Strain ¢, = Q—E(l -2p)
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Pressune Vessers [TET I

6. Volumetric Strain ¢, = g, + 2¢,

7. Maximum shear stress in plane of o, and o,

pd

Tmax (in plane) = 8_t

; _pd p
8. Absolute maximum shear stress  Tabsmax — pr + 9

Thin sphere subjected to internal pressure

05

(o2

p

1. Hoop stress = Longitudinal stress

pd
=01 4t
2. Hoop strain = Longitudinal strain
- Pd
0, =0 1-
BT P tE ( P-)
3. Volumetric strain ¢ = 3¢, = 3¢
3pd
=-2P%q_
&= gl M

4. Maximum shear stress in plane = 0

pd

5. Absolute maximum shear stress T psmax = 8t

Lame’s theorem:- Analysis of thick shells
Assumptions:-
1. Material is homogenous, isotropic and linear elastic.

2. Plane section of cylinder, perpendicular to longitudinal axis remains
plane under pressure.
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Lame’s equation’s for thick cylinder

1. Hoop stress — Tensile o, = ? +A

pR?
R2 -R?

2. Longitudinal stress ¢, =

. . B
3.Radial stress — compressive o, = ? -A

Variation of stress in thick cylinder

Note:- 1. Radial and Hoop compression vary hyperbolically.
2. Longitudinal stress remains constant (Tensile)

Radial

stress didl
Zero T - Tensile max stress
C — Compressive
Due to internal pressure Due to external pressure

Lame’s equation for thick sphere
1. Hoop stress = Longitudinal stress

n

G, =0, = % + A (Tensile)
2. Radial stress R

Op = 2R—]: —A (Compressive)
Note:- Both lame’s constant A and B are positive for internal
pressure and both are negative for external pressure.



