
Chapter 1 

Finite Automata and Regular Languages 

  

LEARNING OBJECTIVES 

Fundamental, Languages, Operations, Finite state machine, NFA 

with   ∈ -moves, Conversion of NFA to DFA, Minimization of DFA, 

Equivalence between NFA and DFA ,Mealy and Moore machines , 

Equivalence of Moore and Mealy machine ,Regular 

languages,  Constructing FA for given RE, Pumping lemma for regular 

sets ,Closure properties of regular sets ,Regular grammar. 

 

FUNDAMENTALS 

Alphabet: An alphabet is a finite non-empty set of symbols. 

Example: Portion of a calculator: {0, 1, 2, 3 … 9, ‚, =, –, +, ×, (,)} 

Note: 1. At least one symbol is necessary. 

          2. ‘Ʃ’ denote Alphabet. 

String: A string over an alphabet ‘A’ is a finite ordered sequence of 

symbols from ‘A’. The length of string is number of symbols in string, 

with repetitions counted. 

Example: If Ʃ = {0 – 9, ÷, =, –,+, × (,)} then Strings valid: 12+ 34, 90 × 

10, (1+ 2) × (1÷ 3)  

 Strings Invalid: sin (45), log (10) etc. These strings are not valid 

because sin ( ), log ( ) are not defined over the alphabet set. 

Note: Repetitions are allowed.  

Length of |12+ 34| = 5(1, 2,+ , 3, 4) 

 •    The Empty string denoted by ‘Ɛ ’, is the (unique) string of length 

zero. 

Note: Empty string,  Ɛ ≠ empty set, Ø . 

 • If S and T are sets of strings, then ST = {xy|x∈ S and y ∈T} Given an 

alphabet A, 

  A
o
 = {Ɛ } 



 A
n +1

 = A.A
n
 

... 

A
* 

=  An 

 

LANGUAGES  

•  A language ‘L’ over 𝚺 is any finite or infinite set of strings over 𝚺. 

•    The elements in L are strings – finite sequences of symbols. 

•    A language which does not contain any elements is called ‘empty 

language’. 

Note: Empty language, { } ≠{Ɛ }, empty string because { } =Ø≠ Ɛ 

i.e., Empty language resembles empty set i.e.,Ø . 

•  A language L over an alphabet A is subset of A
*
 i.e., L⊂ A

*
. 

 Example 1: Language (L) for strings that consists of only 0’s or only 

1’s and have an odd length over alphabet {0, 1} is 

(A) {0, 1, 00, 11, 000, 111 ,...} 

(B) {00, 11, 01, 10 ,…}   

(C) {000, 101, 110, 111 ,…} 

(D) {0, 1, 000, 111, 11111, 00000 ,…} 

Solution: (D) 

Only 0’s → should have only 0’s. It should not be combination of 0’s 

and 1’s. 

Only 1’s → should have only 1’s. It should not be combination of 0’s 

and 1’s. 

Odd length → only odd number of 0’s or odd number of 1’s i.e., length 

of string should be odd. 

An Empty Languages :An empty language is a language which does 

not accept any strings includinge. The Finite automata for empty 

language can be represented as 

 



 

 

 

 

 

(i.e., One state, non-accepting and no transitions). 

A language which only accepts (Ɛ ) 

E: The language which only accepts ‘Ɛ ’ can be represented as 

 

 

 

 

 

This machine accepts E – only. 

𝚺 
*
: The set of all strings over an alphabet will be denoted by 𝚺 

*
. 

𝚺 
+
: This will denote the set 𝚺 

* 
– { Ɛ }. 

Ex: If 𝚺 = {0, 1} then 

𝚺 
*
 = { Ɛ , 0, 1, 00, 01, 10, 11, 000, 001,… } 

𝚺
 +

= {0, 1, 00, 01, 10, 11, 000, 001,} 

 

OPERATIONS 

Operations on strings 

1.Concatenation: Combines two strings by putting one after other. 

Example 2: Two strings are defined as x = java, y = script. 

The concatenation (x.y) of two strings results in _______. 

(A) scriptjava   (B) javascript 

(C) jascriptva   (D) scrijavapt 

Solution: (B) 



x.y = java.script = javascript 

Note: Concatenation of empty string with any other string gives string 

itself. 

i.e., x. Ɛ  = Ɛ .x = x 

2.Substring: If ‘w’ is a string, then ‘v’ is a substring of ‘w’ if there 

exists string x and y such that w = xvy. 

‘x’ is called ‘prefix’ and y is called suffix of w. 

Example 3: String, w = ‘gymnastics’ is defined with prefix, x = ‘gym’ 

and suffix, y = ‘cs’. The substring of the given string is _______ 

(A) nasti    (B) mnas 

(C) gymnastics   (D) ics 

Solution: (A) 

Because, w = xvy 

⇒ gymnastics = gymvcs  

∴ v = nasti 

3.Kleen star operation: Let ‘w’ be a string, w
*
 is set of strings obtained 

by applying any number of concatenations of w with itself, including 

empty string. 

Example: a
*
 = { , a, aa, aaa,…} 

4.Reversal: If ‘w’ is a string, then w
R
 is reversal of string spelled 

backwards. 

Rules: 

x = (x
R
) 

R
 

(xz)
R
 = z

R
.x

R
 

Example 4: A string, x is defined as, x = butter. Then (x
R
)
R
 

is _______ 

(A) butter   (B) rettub 

(C) butret   (D) retbut 

Solution: (A) 

x → butter 



x
R
 → rettub 

(x
R
)
R
 → butter. 

Operations on languages 

1.Union: Given some alphabet  Ʃ, for any two languages, L1, L2 over    

    Ʃ, the union  L1∪ L2 of L1 and L2 is the language, 

    L1∪ L2 = {w∈ Ʃ *| w∈ L1 or w ∈ L2} 

2.Intersection: Given some alphabet Ʃ , for any two languages L1,L2    

   over Ʃ the intersection L1 ∩ L2 of L1 and L2 is language,    

   L1 ∩ L1 = {w ∈ Ʃ
*
 |w ∈ L1 and w ∈L2} 

3.Difference: Given some alphabet Ʃ , for any two languages L1,L2 over  

   Ʃ the intersection L1 −  L2 of L1 and L2 is language,  

   L1 − L1 = {w ∈ Ʃ
* 

|w ∈ L1 and w ∉L2} 

Note: Difference is also called ‘Relative Complement.’ 

A special case of difference is obtained when L1 = Ʃ *, in which case. 

Complement  of language, L is defined as,  = {w∈ Σ
*
| w ∉ L} 

4.Concatenation: Given an alphabet Ʃ , for any two languages L1, L2 

over Σ, the concatenation L1 L2 of L1 and L2 is language 

L1L2 = {w ∈ Σ
*
| Ǝ u ∈ L1, Ǝ v ∈L2, w =uv} 

Properties: 

LØ = Ø = ØL 

L {Ɛ} = L = {Ɛ} L 

(L1 ∪{Ɛ})L2 = L1L2 ∪L2 

L1 (L2 ∪{Ɛ}) = L1L2 ∪L1 

L
n
 L = LL

n
 = L

n+1
 

Note: L1L2 ≠ L2L1 

Example 5: Let L1 = {00, 11}, L2 = {01, 10}. Then L1o L2 _______ 

A. {00, 11, 01, 10} 

B. {0001, 0010, 1101, 1110} 

C. {0001, 0010, 11, 01, 10} 



D. {00, 1101, 1110, 11, 10} 

Solution: (B) 

L1oL2 = {00, 11} o {01, 10} = {00.01, 00.10, 11.01, 11.10} = {0001, 

0010, 1101, 1110} 

5.Kleen 
*
 closure (L

*
): Given an alphabet Ʃ, for any language L over Ʃ, 

the 
*
 closure L

*
 of L is language,L

*
= U n≥0 L

n
 

6.Kleen+  closure (L
+
): The kleen +closure, L

+
 of L is the language, 

L
+
=U n≥1L

n
 

L
*
 = L

0
 ∪ L

1
 ∪ L

2
 ∪ … L

n
 ∪ … 

L
+ 

= L
1
 ∪ L

2
 ∪ L

3
 … ∪ L

n
 ∪ … 

Properties: 

Ø
*
 = {Ɛ} 

L
+
 = L

*
L 

(L
*
)
*
 = L

*
 

L
*
 L

*
 = L

* 

 

FINITE STATE MACHINE (FSM) 

• FSM is simplest computational model of limited memory computers. 

• FSM is designed to solve decision problems i.e., to decide whether   

   given input satisfies certain conditions. 

• The next state and output of a FSM is a function of input and of   

   current state. 

 

 

 



Types of FSM: 

1. Melay machine. 

2. Moore machine 

Finite Automata (FA): 

• FA is a state machine that comprehensively captures all possible states    

  and transitions that a machine can take while responding to a stream   

  (sequence) of input symbols. 

• FA is recognizer of ‘regular languages’. 

 

 

  

Types of FA 

1. Deterministic Finite Automata (DFA): 

• DFA machine can exists in only one state at any given time. 

• DFA is defined by 5-tuple: {Q, Ʃ, q0, F, 𝛿}, where 

Q → Finite number of states (elements) 

Ʃ → Finite set of symbols (alphabets) 

qo → Start/Initial state 

F → Set of final states. 

𝛿 → Transition function, which is a mapping between 

𝛿: Q × Ʃ → Q. 

How to use DFA: 

Input: A word w in Ʃ 
*
 

Question: Is w acceptable by DFA? 



Steps: 

• Start at ‘initial state’, qo. 

• For every input symbol in sequence w, do. 

• Compute the next state from current state, given the current input   

   symbol in w and transition function. 

• If after all symbols in ‘w’ are consumed, the current state is one of the  

  final states (𝑓) then accept ‘w’; 

• Otherwise, reject w. 

Transition diagram: State machines are represented by directed graphs 

called transition (state) diagrams. 

• The vertices denoted by single circle represent the state and arcs  

   labeled with input symbol correspond to transition. 

• The final states are represented with double circles. 

Transition Table: Transition function can be represented by tables. 

 

Example 6: The following finite state machine accepts all those binary 

strings in which the numbers of 0’s and 1’s are respectively. 

  

(A) Divisible by 3 and 2   (B) Odd and even 



(C) Divisible by 5 and 3   (D) Divisible by 2 and 3 

Solution: (C) 

Number of 0’s is divisible by 5. 

Number of 1’s is divisible by 3. 

 

Note: Minimum number of states for k-divisibility is k-states. 

In above example, q0 – q14 → 15 – states. 

∴ 5 × 3 = 15 

The given binary strings have number of 0’s divisible by 5 and number 

of 1’s divisible by 3. 

2. Non-deterministic finite Automata (NFA): 

• The machine can exist in multiple states at the same time. 

• Each transition function maps to a set of states. 

• NFA is defined by 5-tuple: {Q, Ʃ, qo, F,   }, where 

Q → Finite number of states (elements) 



Ʃ → Finite set of symbols. (Alphabets) 

qo → Start/Initial state 

F → Set of final states. 

𝛿 → Transition function which is a mapping between 

𝛿 = Q ×Ʃ → 2
Q 

How to use NFA: 

Input: a word w in Ʃ 
*
 

Question: Is w accepted by NFA? 

Steps: 

• Start at ‘start state’ qo. 

• For every input symbol in the sequence, w does. 

• Determine all possible next states from current state, given the current  

   input symbol in w and transition function. 

• If after all symbols in w are consumed, at least one of the current states  

  is a final state then accept w. 

• Otherwise, reject w. 

Example 7: What is the language, L generated by the below NFA, given 

strings defined over alphabet, Ʃ = {0, 1}. 

 

(A)Strings that end with ‘0’ 

(B) Strings that start with ‘0’ and end with ‘0’ 

(C) Strings that contain ‘01’ as substring 

(D) Strings that contain ‘01’ as substring and end with ‘0’ 

Solution: (D) 



  

 

String: 0100100 

  

 

Difference between NFA and DFA 

 

 

 

 



Relation between DFA and NFA 

• A language ‘L’ is accepted by a DFA if and only if it is accepted by a    

NFA. 

• Every DFA is special case of a NFA. 

 

Example 8: Let N𝑓 and D𝑓 denote the classes of languages accepted by 

non-deterministic finite automata and deterministic finite automata 

respectively. Which one of following is true? 

(A) D𝑓 ⊂ N𝑓 (B) D𝑓 ⊃ N𝑓 

(C) D𝑓= N𝑓 (D) D𝑓 ∈ N𝑓 

Solution: (C) 

According to ‘subset construction’, every language accepted by NFA is 

also accepted by some DFA. 

∴ D𝑓 = N𝑓 

 

NFA WITH ∈ -MOVES 

• ∈-transitions in finite automata allows a state to jump to another state  

   without consuming any input symbol. 

Conversion and Equivalence: 

∈-NFA →NFA → DFA 

NFA without ∈-moves: 

• Two FA, N∈ and N are said to be equivalent, if L(N∈) =L(N) i.e., any   

  language described by some N∈, there is an N that accepts the same 

language. 

• For N∈ = (Q, Z, 𝛿, q0, F) and N = (Q, Ʃ′, 𝛿′, q0, F′), Find 

• 𝛿′ (q, a) = ∈-closure (𝛿 (∈-closure(q), a)) 

• F′ = {F ∪  {q0}}, if ∈-closure (q0) contains a member of F = F, 

otherwise. 

Note: When transforming N∈ to N, only transitions are required to be 

changed and states remains same. 



Example 9: Consider following NFA with ∈-moves. 

 

  

 

If given NFA is converted to NFA without ∈-moves, which 

of following denotes set of final states? 

(A) {q0, q1}    (B) {q1, q2} 

(C) {q1, q2, q3}    (D) {q1} 

Solution: Let N = (Q, Ʃ
1
, 𝛿

1
, q0, F

1
) 

F
1
 = F {q0} 

Ɛ -closure (q0) = {q0, q1} 

∴ F
1
 = {q1} {q0, q1} = {q0, q1} 

Conversion N∈→N: 

To compute, 𝛿
1
 

∈-closure (q0) = {q0, q1}, ∈-closure (q3) = {q3, q1} 

𝛿
1
(q0, a) = {q1, q2}, 𝛿

1
(q0, b) = Ø, 𝛿

1
(q2, a) = Ø. 

𝛿
1
(q1, a) = {q1, q2}, 𝛿

1
(q1, b) = Ø, 𝛿

1
(q2, b) = {q1, q3} 

𝛿
1
(q3, a) = {q1, q2}, 𝛿

1
(q3, b) = Ø 

 

  



  

 

CONVERSION OF NFA TO DFA 

Let a NFA be defined as, N = (QN, Ʃ, 𝛿 N, q0, FN) 

The equivalent DFA, D = (QD, Ʃ, 𝛿 D, q0, FD) where: 

Step I:QD= 2
QN 

; i.e., QD is set of all subsets of QN i.e., it is power set of   

                QN. 

Step II: FD is set of subsets S of QN such that S ∩FN ≠   Ø. i.e., FD is all 

             sets of N’s states that include atleast one accepting state of N. 

Step III: For each set, S ≤ QN and for each input symbol a in  

              Σ : δD (S ,a ) =  ∪P∈S δN ( P , a ) 

That is, to compute δD(S, a), look at all states P in S, see what states N 

goes to starting from P on input a, and take the union of all those states. 

Note: For any NFA, N with ‘n’ states, the corresponding DFA, D can 

have 2n states. 

Example 10: What is the number of final states in DFA 

constructed from the given NFA? 



  

 

(A) 1   (B) 2 

(C) 3   (D) 4 

 

Solution: 

  

  

 



  

 

Hence final states in obtained DFA is ‘4’. 

DFA is: Choice (D) 

 

 



MINIMIZATION OF DFA 

Given a DFA, M = (Q, Σ, δ , q0 , F) we construct a reduced 

DFA, M′ = (Q′, Σ′, δ ′, q′0 , F′) 0 as follows 

1. Remove all inaccessible states. All states that are unreachable  

from the initial state are removed. 

2. Consider all pairs of states (p, q), If p ∈ F and q ∈ F or vice    

versa mark the pair (p, q) as distinguishable. 

3. Repeat until no previously unmarked pairs are marked. For all  

pairs (p, q) and all a ∈ Σ, compute δ ( p, a)= pa and δ ( p, q)= qa. 

If the pair (pa, qa) is marked as distinguishable mark (p, q) as 

distinguishable. 

4. Find the sets of all indistinguishable states, say {qi, qj ,… qk },  

{qℓ , qm ,… qn }, etc. For each set   {qi, qj, …qk} of such 

indistinguishable states, create a state labelled ij …k for M. 

5. For each transition rule of M of the from δ (qr , q)= qp, find the  

sets to which qr and qp belong. If qr ∈ {qi,qj,… qk} and    qp∈ {q 

ℓ ,q m , q n },  add a rule to δ: δ ′(ij…k, a) = ℓm…n. 

Example 11: A DFA with alphabet Ʃ = {a, b} is given below: 

 

  

 

Which of the following is valid minimal DFA which accepts same 

language as given DFA? 

 



 

 

Solution: (B) 

Initially, {1, 5}, {2, 3, 4} 

Depending on next states and inputs, the partitions of states can be as: 

{{1, 5}, {2}, {3}, and {4}} 

Since, 1 to 5 have same transition, unite {1, 5} 

State 4 is dead state → It has transition only to itself. 

Since, {2}, {3} are singletons, they exist. 

∴ States in minimized DFA are {1, 2, and 3} 

 {1} → {1, 5} 

For transitions, since 1 3 , 1  2 in given DFA, in minimized 

DFA, transitions are added from 1 3 , 1 2 . Also, since 2

1, 3 1 in given DFA, the minimized DFA, transitions are 

added from  2 1 , 3 1 . 



EQUIVALENCE BETWEEN NFA AND DFA 

There is a DFAD for any NFAN i.e., 

L (D) = L (N). 

Construction: 

• In DFA or NFA, whenever an arrow is followed, there isa set of  

  possible states. This set of states is a subset of Q. 

• Track the information about subsets of states that can be reached from 

   initial state after following arrows. 

• Consider each subset of states of NFA as a state of DFAand every  

   subset of states containing a final state as a finalstate of DFA. 

Example 12: Which of following is equivalent DFA for the 

NFA given below: 

 

 



 

 

Solution: (A) 

 

  

 



 

 

 

 

Equivalence of Finite Automatas: 

• Two automatas A and B are said to be equivalent if both accept exactly  

   the same set of input strings. 

• If two automatas M1 and M2 are equivalent then 

(i) If there is a path from the start state of M1 to a final state of M1       

labeled a1a2 … ak then there is a path from the start state of M2 to 

the final state of M2 labeled a1a2… ak. 

(ii) If there is a path from the start state of M2 to a final state M2 

labeled b1b2 … bi then there is a path from the start state of M1 to 

the final state of M1 labeled b1b2 … bi . 

Example: 

 



  

 

M2: 

 

  

In M2, states p1 and p3 are equivalent (as both are reaching 

either final or non-final states with same input). After minimizing 

M2, we will get 



  

∴ M1 and M2 are equivalent. 

Union: The union of two languages L and M is the set of 

strings that are in both L and M. 

Ex: L = {0, 1}, M = {111} 

L U M = {0, 1,111}. 

Concatenation: The concatenation of Languages L and M is the set of 

strings that can be formed by taking any string in L and concatenating it 

with any string in M. 

Example: L = {0, 1}, M = { Ɛ, 010} 

LM = {0, 1, 0010, 1010}. 

Closure, Star or Kleen star of a language L: 

Kleen star is denoted as L
*
. It represents the set of strings that can be 

formed by taking any number of strings from L with repetition and 

concatenating them. It is a Unary operator. 

L
0
 is the set; we can make selecting zero strings from L. 

L
0
 ={ Ɛ } 

L
1
 is the language consisting of selecting one string from L. 

L
2
 is the language consisting of concatenations selecting two strings 

from L. 

… 

L
* 
is the union of L

0
, L

1
 , …L

∞
. 



Ex: L ={0,10} 

L
*
 ={0,00,000,10,010, …} 

Intersection: 

Let two DFAs M1 and M2 accept the languages L1 and L2. 

M1 =(Q1, Ʃ, 𝛿1, , F1) 

M2=(Q2, Ʃ, 𝛿2, , F2) 

The intersection of M1 and M2 can be given as 

M =(Q1, Ʃ, 𝛿, q0 F) 

Q =Pairs of states, one from M1 and one from M2 i.e., 

Q ={(q1, q2) | q1 ∈ Q1 and q2 ∈ Q2} 

Q =Q1 × Q2. 

q0=( , ) 

𝛿 ( ), x) =( 𝛿1 ( , x), 𝛿2 ( , x)) 

F ={(q1, q2) | q1∈ F1 and q2 ∈ F2} 

Example: 

M1: Strings with even number of 1’s. 

  

  

M2: Strings with odd number of 0’s. 

  

M1 ∩ M2: Strings with even number of 1’s and odd number of 0’s. 



 

 

  

Union of M1 and M2: 

  

Difference: The difference of L1 and L2 can be given as 

L1 − L2 with M = (Q, Ʃ, 𝛿, q0, F). 

Q = Q1 ×Q2 

q0= ( , ) 

𝛿 (( , ), x) = (𝛿1 ( , x), 𝛿2( , x)) 

F = {(q1, q2) | q1 ∈ F1 and q2 ∉ F2} 



  

Reversing a DFA: 

• M is a DFA which recognizes the language L. 

• M
R
 will accept the language L

R
. 

To construct M
R
: 

• Reverse all transitions 

• Turn the start state to final state 

• Turn the final states to start state. 

• Merge states and modify the FA, 

such that the resultant contain a single start state. 

 

MEALY AND MOORE MACHINES 

Moore Machine 

A moore machine is a finite state machine, where outputs are 

determined by current state alone. 

A Moore machine associates an output symbol with each state and each 

time a state is entered, an output is obtained simultaneously. So, first 

output always occurs as soon as machine starts. 

Moore machine is defined by 6-tuples: 

(Q, Ʃ, 𝛿, q0, Δ, 𝜆), where 

Q → Finite set of states 



Ʃ → Finite set of input symbols 

Δ → It is an output alphabet 

𝛿 → Transition function, Q × Ʃ → Q (state function) 

𝜆 → Output function, Q → Δ (machine function) 

q0 → Initial state of machine 

Note: The output symbol at a given time depends only on present state 

of moore machine. 

Example 13: The language generated by the following moore machine 

is: 

 

  

 

(A) 2’s complement of binary number. 

(B) 1’s complement of binary number. 

(C) Has a substring 101. 

(D) Has a substring 110. 

Solution: (B) 

Binary number: 1011 

1’s complement: 0100 

 

  

 



Mealy Machine 

• A mealy machine is a FSM, where outputs are determined by current  

  state and input. 

• It associates an output symbol with each transition and the output    

  depends on current input. 

• Mealy machine is defined on 6-tuples: (Q, Ʃ, 𝛿, q0, Δ, 𝜆), where 

Q – Finite set of states. 

Ʃ – Finite set of input symbols. 

𝛿 – (Q  × Ʃ → Q) is transition function. 

q0 → q0 ∈ Q is initial state. 

Δ → Finite set of output symbols. 

𝜆 → Output function, 𝜆 (Q → Δ) 

Note: In Moore machine, for input string of length n, the output 

sequence consists of (n + 1) symbols. 

In Mealy machine, for input string of length n, the output sequence also 

consists of ‘n’ symbols. 

Example 14: Let (Me)
2
 mean that given a Mealy machine, an input 

string is processed and then output string is immediately fed into the 

machine (as input) and reprocessed. 

Only this second resultant output is considered as the final output of 

(Me)
2
. If final output string is same as original input string then (Me)

2
 

has an identity property. Consider following machines 

 

  



Which of above machines have identity property? 

(A) (i) only 

(B) (i) and (ii) but not (iii) 

(C) (i) and (iii) but not (ii) 

(D) All have identity property 

Solution: (D) 

(i) Consider i/p string 

 

 

  

(ii) 

 
 

(iii) 

 

 

 
 

 



EQUIVALENCE OF MOORE AND MEALY 

MACHINE 

(a) Mealy machine equivalent to Moore machine: 

If M1 = (Q, Ʃ, Δ, 𝛿, 𝜆, q0) is a Moore machine, then there is a Mealy 

machine M2 equivalent to M1. 

Proof: Let M2 = (Q, Ʃ, Δ, 𝛿, 𝜆1
, q0) and define 𝜆1

 (q, a) to be 𝜆 (𝛿 (q, a)) 

for all states q and input symbol ‘a’. 

Then M1 and M2 enter the same sequence of states on the same input, 

and with each transition M2 emits the o/p that M1 associates with the 

state entered. 

Let us consider Mealy Machine 

  

 

To convert the Mealy machine to Moore machine, 

• We look into the next state column for any state, say qi and determine  

   the number of different outputs associated with qi in next column. 

• Split qi into several different states, the number of such states being  

   equal to the number of different outputs associated with qi. 



  

The pair of states and outputs in the next state column can be rearranged 

as: 

  

Moore machine equivalent to Mealy machine 

Let M1 = (Q, Ʃ, Δ, 𝛿, 𝜆, q0) be a Mealy machine. Then there is a 

machine M2 equivalent to M1 

Proof: Let M2 = (QXΔ, Ʃ, Δ, 𝛿1
, 𝜆1

, [q0, b0]), where b0 is an arbitrary 𝜆 

selected member of Δ. 

That is, the states of M2 are pairs [q, b] consisting of a state of M1 and 

output symbol, Define 𝛿1
 ([q, b], a) = [(q, a), 𝜆,(q, a)] and 𝜆1

([q, b]) =b. 

The second component of a state [q, b] of M2 is the output made by M1 

on some transition into state q. 

Only the first components of M2’s states determine the moves made by 

M2. 



Every induction on ‘n’ shows that if M1 enters states q0, q1 … qn on 

inputs a1, a2 …an and emits output b1, b2, …bn then M2 enters states [q0, 

b0], [q1, b1] … [qn, bn] and emits outputs b0, b1 … bn. 

Let us consider the Moore machine 

 

  

 

 To convert Moore into Mealy machine, we must follow the reverse 

procedure of converting Mealy machine into Moore machine. 

  For every input symbol we form, the pair consisting of the next 

state and the corresponding output and reconstruct the table for 

Mealy machine. 

 For example, the state q3 and q1 in the next state column should be 

associated with outputs 0 and 1, respectively. 

The Transition table for Mealy machine is: 

 

  

 

 

 



REGULAR LANGUAGES 

The set of regular languages over an alphabet Ʃ is defined recursively as 

below. Any language belonging to this set is a regular language over Ʃ. 

Definition of set of regular languages 

• Basis clause: Ø, { Ɛ}, {a} for any symbol a ∈ Ʃ, are regular languages. 

• Inductive clause:If Lr and Ls are regular languages, then Lr∪Ls, Lr . Ls,  

    are regular languages. 

• External clause: Nothing is a regular language, unless it is obtained   

   from above two clauses. 

Regular language: Any language represented by regular expression(s) 

is called a regular language. 

Ex: The regular expression a
*
 denotes a language which has { Ɛ, a, aa, 

aaa, …} 

Regular expression 

• Regular expressions are used to denote regular languages. 

• The set of regular expressions over an alphabet Ʃ is defined recursively  

   as below. Any element of that set is a regular expression. 

• Basis clause: Ø,∈, a are regular expression corresponding to languages  

   Ø, {∈}, {a} respectively where a is an element of Ʃ. 

• Inductive clause: If r and s are regular expression corresponding to  

   languages Lr and Ls then (r + s), (rs) and (r
*
) are regular expressions  

   corresponding to the languages Lr ∪ Ls, Lr . Ls and Lr
* 

respectively. 

• External clause: Nothing is a regular expression, unless it is obtained  

   from above two clauses. 

Closure property of regular expressions  

The iteration or closure of a regular expression R, written as R
*
 is also a 

regular expression. 

Ex: Ʃ = {a} then a
*
 denotes the closure of Ʃ. 



a
*
 = { Ɛ, a, aa, aaa, …} 

Conventions on regular expressions 

1. The operation ‘*’ has highest precedence over concatenation,   

    which has precedence over union (+). 

    i.e., RE (a + (b(c
*
))) = a + bc

*
 

2. The concatenation of K r’s, where r is a regular expression is   

    written as r
k
. The language corresponding to r

k
 is . Where Lr  

   is language corresponding to regular expression r i.e., rr = r
2
 

3. r
+
 is a regular expression to represent  

Note: A regular expression is not unique for a language i.e., regular 

language corresponds to more than one regular expression. 

Example 15: Give regular expression for set of strings which either 

have ‘a’ followed by some b’s or all b’s also containing ‘Ɛ’. 

(A) b
*
 + ab

*
    (B) a

*
 + ba

*
 

(C) (Ɛ) + (Ɛ + a) b
+
   (D) b

*
 + ab

*
 + Ɛ 

Solution: (C) 

The regular expression is, r = ab
+
 + b

+
 + Ɛ = b

+
 (a + Ɛ) + Ɛ. 

Identity rules for regular expressions: 

1. Ø+ R = R 

2. Ø. R = R Ø = Ø 

3. Ɛ R = R Ɛ = R 

4. Ø
*
 = Ɛ and Ɛ

*
 = Ɛ 

5. R + R = R 

6. RR
*
 = R

*
 R = R

+
 

7. Ɛ +RR
*
 = R

*
 and Ɛ + R

*
 R = R

*
 

8. (R
*
)
*
 = R

*
 

9. R
*
 R

*
 = R

*
 



10. Ɛ + R
*
 = R

*
 

11. (R + Ɛ)
*
 = R

*
 

12. R
*
( Ɛ + R)

*
 = (Ɛ + R)

*
 R

* 
= R

*
 

13. R
*
 R + R = R

*
 R 

14. (P +Q)R = PQ + QR and R(P + Q) = RP + RQ 

15. (P + Q)
*
 = (P

*
 Q

*
)
*
 = (P

*
 + Q

*
)
*
 

16. (PQ)
*
 P = P (QP)

*
 

17. R is given as, R = Q + RP has unique solution, R = QP
*
. 

This is Arden’s theorem. 

18. (P + Q)
*
 = (P

*
 + Q) = (P + Q

*
) 

Example 16: If r1 and r2 are regular expressions denoting languages L1 

and L2 respectively then which of following is false? 

(A) (r1)| (r2) is regular expression denoting L1 ∪ L2. 

(B) (r1) (r2) is regular expression denoting L1 . L2. 

(C) Ø is not a regular expression. 

(D) {r1}
*
 is regular expression denoting L1

*
. 

Solution: (C) 

 

CONSTRUCTING FA FOR GIVEN RE 

• Relationship between FA and RE. 

 

  

 

 



Identities: 

Basis: 

  

Induction: 

• Union: L(r) = L (r1) +L (r2) i.e., L (M) = L (M1) ∪ L (M2) 

Let M1 = (Q1, Ʃ 1, 𝛿1, q1, {f1}), M2 = (Q2, Ʃ 2, 𝛿2, q2, {f2}) with 

L (M1) = L (r1) and L (M2) = L (r2), then M = (Q1 ∪ Q2 ∪ {q0, 

f0}, Ʃ 1 ∪ Ʃ2, 𝛿, q0, {f0}) 

  

 

• Concatenation: 

L(r) = L (r1) . L (r2) i.e., L (M) = L (M1) . L (M2) 

 

  

 

• Closure: 

L(r) = L(r)
*
 i.e., L (M) = L (M1)

*
 

Let M1 = (Q1, Ʃ 1, 𝛿1, q1, {f1}) then L (M) = (Q1 ∪ {q0, f0}, Ʃ1, 𝛿, q0, 

{f0}) 



 

 

  

 

Example 17: The regular expression generated by the given FA. 

   

  

 

(A) (a +ba
*
) b

*
   (B) (aa

*
b +bb

*
) b

*
 

(C) (b +ab
*
) a

*
   (D) (ab +ba)

*
 

Solution: (B) 

q2 is final state which is obtained with input symbol only ‘b’. So, (C) or 

(D) is not true. 

In (A) →ba
* 

is not defined in given FA. Instead bb
* 

is defined. 

 

PUMPING LEMMA FOR REGULAR SETS 

Theorem Let ‘L’ be an arbitrary regular language. Then there exists a 

positive integer, P with following property: 

Given an arbitrary member, w of L having length at least P (i.e., |w|≥P), 

w can be divided into 3-parts, w =xyz Ǝ 

• |y| ≥1 (the middle part is non-empty) 

• |xy| ≤ P (the first two parts have length atmost P) 



• For each, i ≥0, xy
i
z ∈L (removing or repeating the middle part    

  produces member of L) 

Proof Let L be an arbitrary regular language. Then there is a FA, say M 

that decides L. 

Let P be the number of states of M. 

Let w be an arbitrary member of L, having length ‘n’ with n ≥P. 

Let q0, q1, … qn be states that M on input w. That is, for each i, after 

reading the first i symbols of w, M is at qi. 

q0 is initial state of M. Also, since w ∈L, qn is a final state of M. 

Let x =w1 … wc, y =wc+4 … wd, z =wd+1 … wn. Then: 

• |y| ≥ 1 

• |xy| ≤ P 

• M transitions from q0 to qc on x. 

• M transitions from qc to qc on y. 

• M transitions from qc to qn on z. 

Thus, for every i ≥ 0, M transitions from q0 to qn on xy
i
z and so, xy

i
z is 

a member of L. 

Note: 

• Pumping lemma is used to verify that given language is not regular. 

• Pumping lemma follows pigeon hole principle. 

Example 18: The language, L is defined as: 

L ={w1w2 : w1, w2 ∈{a, b}
*
, |w1| =|w2|}. Is the language regular? 

(A) Regular 

(B) Not regular 

(C) Cannot be determined 

(D) None of these 

Solution: (A) 

Fix pumping length, K =2 



For every proper strings in L, (2n ≥2) 

 

  

 

Split in x, y, z with desired properties. 

 

  

 

Let x = Ɛ, y =first two symbols, z =rest. 

 

  

 

• xy3z: 

 

  

 

• xy
o
z → 

 

  



 

∴For every i ≥0, xy
i
 z ∈L. Hence given language is regular. 

 

CLOSURE PROPERTIES OF REGULAR SETS 

1. Union: If L and M are regular languages, LUM is regular language   

closed under union. 

2. Concatenation and Kleen closure: If L and M are  regular  

languages, L.M is regular language and L
*
 is  also regular. 

     3. Intersection: L ∩ M is regular, if L and M are regular languages. 

     4. Difference: L – M contains strings in ‘L’ but not M, where L and   

         M are regular languages. 

     5. Complementation: The complement of language L is Ʃ 
*
–L. 

Note: Since Ʃ 
*
 is surely regular, the complement of a regular 

language is always regular. Where Ʃ 
*
 is a universal language. 

6. Homomorphism: If L is a regular language, h is  homomorphism 

on its alphabet then h (L) ={h (w) |w is in L} is also a regular 

language. 

 

REGULAR GRAMMAR 

• Grammar: Generative description of a language. 

• Automaton: Analytical description. 

• A grammar is a 4-tuple, G = (V, Ʃ, R, S) where V:alphabet (variable)   

   (non-terminals) 

Ʃ ⊆ V is set of terminal symbols. 

R ⊆ (V
+
 × V

*
) is a finite set of production rules. 

S ∈ V – Ʃ is start symbol. 

Notation 

• Elements of V – Ʃ : A, B, … 

• Elements of Ʃ : a, b … 



• Rules (α , β )∈ R: α →β or  

• Start symbol is written as S. 

• Empty word: Ɛ 

Example 19: The regular expression that describe the language 

generated by grammar, G = ({S, A, B}, {a, b}, S,{S →Aab, A → 

Aab|B, B → a} 

(A) (ab) 
*
 a   (B) aab(ab)

*
 

(C) ab 
*
 aa   (D) (a + ba)

*
 

Solution: (B) 

S →Aab →Aab ab →A ab abab →Bababab 

→aababab → aab(ab)
*
 

Union of two Regular languages: 

If L1 and L2 are two languages then 

L1 ∪ L2 = {w/w ∈ L1 or w ∈ L2} 

The union of two regular languages is also a regular language. 

Let M1 = (Q1, Ʃ, 𝛿1, q1, 𝑓1) 

M2 = (Q2, Ʃ, 𝛿2, q2, 𝑓2) 

M = M1UM2 can be given as 

M = (Q, Ʃ, 𝛿, q0, 𝑓). 

Where Q = {(r1, r2) | r1 ∈ Q1 and r2 ∈ Q2} 

i.e., Q is the Cartesian product of sets Q1 and Q2. 

Ʃ is the alphabet, is the same in M1 and M2. 

Ʃ = Ʃ 1 U Ʃ 2. 

𝛿 is the transition function given as: 

𝛿 (r1, r2), a = (𝛿 1(r1, a) 𝛿 2 (r2, a)). 

q0 is the pair (q1, q2). 



F is the set of pairs in which either member is an accept state of M1 or 

M2. 

F = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2} 

TYPES OF GRAMMARS 

• Type 0:Unrestricted, recursively enumerable languages. 

• Type 1:Context-sensitive grammar. 

• Type 2:Context free grammar. 

• Type 3:Regular grammar. 

Type 0: Recursively enumerable grammar: (Turing Machine) (TM): 

Every production rule is of form: α →β, where α and β are in (V ∪ T)
*
, 

i.e., there can be any strings of terminals and non-terminals (no-

restriction). 

Type1:Context-sensitive Grammar:(Linear bounded automaton) 

(LBA): 

Every production rule is of form, α →β are in (V ∪ T)
*
 and α ≠ Ɛ and | β 

|≥| α | i.e., any strings of terminals and nonterminals and length of string 

that can appear on RHS of production must be greater than or equal to 

length of string that can appear on LHS of production. 

Type2:Context-free grammar: (Push down automaton) (PDA): 

Every production rule is of form, A→α where α  is in (V ∪T)
*
 i.e., LHS 

of rule is single non-terminal and RHS can be any string of terminals 

and non-terminals. 

Type 3: Regular grammar: (Finite automaton) (FA):Every production is 

of form, A→aB or A→a where A and B ∈ V and a ∈ T. That is, LHS of 

rule is non-terminal and RHS can be terminal (or) terminal followed by 

non-terminal. 

 

 

 

 

 



Relationship between types of grammar: 

  

 

• Regular sets are properly contained in CFL (Context Free Languages). 

• The CFL’s not containing empty string Ɛ, are properly contained in  

   CSL. (Context sensitive language). 

• The CSL’s are properly contained in Recursively enumerable  

   languages. 

• RG ⊂ CFG ⊂ CSL ⊂ REG 

Left-linear Grammar: 

All productions have form: A →Bx or A →x 

Right-linear Grammar: 

All productions have the form: A →xB or A →x. 

Note: 

• The regular grammars characterize the regular sets i.e., a language is   

   regular if and only if it has a left-linear grammar or if and only if it has  

   a right-linear grammar. 

• If L has a regular grammar, then L is a regular set. 

• If L is a regular set, then L is generated by some left-linear grammar  

  and by some right-linear grammar. 



Arden’s theorem: Let P and Q be two regular expressions over Ʃ. If P 

does not contain ‘Ɛ’ then the following equation in R, namely R = Q + 

RP has a unique solution given by R = QP
*
. 

Arden’s Theorem to obtain regular expression from 

given transition diagram: The following steps are used to find the RE 

recognized by transition system. 

The following assumptions are made regarding the transition system. 

(i) The transition graph does not have Ɛ -moves 

(ii) It has only one initial state, qo. 

(iii) The states in the transition diagram are qo, q1, q2, … qn. 

(iii) Qi, the regular expression represents the set of strings accepted by 

a  system even though qi is the final state. 

(v) aij denotes the regular expression representing the set of labels of  

edges from qi to qj. When there is no such edge aij = Ø. 

We will get the following set of equations. 

Q1 = Q1 α11 + Q2 α12 + … Qn αn1 + Ɛ 

Q2 = Q1 α12 + Q2 α22 + … Qn αn2 

: 

: 

: 

Qn = Q1 α1n + Q2 α2n + … Qn αnn. 

By Repeatedly applying substitutions and Arden’s theorem, we can 

express Qi in terms of α ij’s. 

For getting the set of strings recognized by the transition system, we 

have to take the union of all Qi’s corresponding to final states. 

Construction of Regular Grammar from FA 

Step I: Associate suitable variables like A, B, C … with states of   

           automata. 



Step II: Obtain the productions of the grammar as: If  (A, a) = B then 

              add production A →aB to list of productions of grammar, if B   

              is a final state, then add either A →a or B → Ɛ, to list of  

              productions of grammar. 

Step III: The variable associated with initial state of automata is start 

               symbol of grammar. 

Example 20: Regular grammar generating language accepted by below 

automata is 

 

  

 

(A)  A→0B|1C| Ɛ 

B→1A 

C→0A 

(B) A→1B|0C| Ɛ 

B→1A 

C→0A 

(C)  A→B|C| Ɛ 

B→1 

C→0 

(D)  A→0A|1B| Ɛ 

B→1C 

C→0A 

Solution: (A) 

 

A→0B, A→1C, B→1A, C→0A 



∴A is final state, A → Ɛ 

 

∴ A →0B|1C| Ɛ  A →0B|1C 

B →1A  (or)  B →1A|1 

C →0A    C →0A|0 

Construction of FA from given regular grammar 

Given a regular grammar, G; a regular expression specifying 

L(G) can be obtained directly as follows: 

• Replace the ‘→’ symbol in productions of grammar by 

‘=’ symbol, to get set of equations. 

• Solve the set of equations obtained above to get the value 

of variable, S, where S is start symbol of grammar, result 

is regular expression specifying L(G). 

Example 21: The Regular grammar and FA for given 

regular expression Ø *1*U (0 Ø)* is ___ 

(A) S→0S|1S|0 

T→1T| Ɛ 

 

  

(B) S→1S| Ɛ 

 

  

 

(C) S→0T|1S| Ɛ  

T→0T|1U| Ɛ 

U→0T|1S 



 

  

 

(D) Cannot be determined 

Solution: (B) 

Ø
*
 1

*
∪ (0Ø)

*
 = Ø

*
.1

*
∪ Ø

*
 = Ɛ.1

*
∪ Ɛ =1

*
. 

  


