
Chapter 1

Finite Automata and Regular Languages

LEARNING OBJECTIVES

Fundamental, Languages, Operations, Finite state machine, NFA

with ∈ -moves, Conversion of NFA to DFA, Minimization of DFA,

Equivalence between NFA and DFA ,Mealy and Moore machines ,

Equivalence of Moore and Mealy machine ,Regular

languages, Constructing FA for given RE, Pumping lemma for regular

sets ,Closure properties of regular sets ,Regular grammar.

FUNDAMENTALS

Alphabet: An alphabet is a finite non-empty set of symbols.

Example: Portion of a calculator: {0, 1, 2, 3 … 9, ‚, =, –, +, ×, (,)}

Note: 1. At least one symbol is necessary.

 2. ‘Ʃ’ denote Alphabet.

String: A string over an alphabet ‘A’ is a finite ordered sequence of

symbols from ‘A’. The length of string is number of symbols in string,

with repetitions counted.

Example: If Ʃ = {0 – 9, ÷, =, –,+, × (,)} then Strings valid: 12+ 34, 90 ×

10, (1+ 2) × (1÷ 3)

 Strings Invalid: sin (45), log (10) etc. These strings are not valid

because sin (), log () are not defined over the alphabet set.

Note: Repetitions are allowed.

Length of |12+ 34| = 5(1, 2,+ , 3, 4)

 • The Empty string denoted by ‘Ɛ ’, is the (unique) string of length

zero.

Note: Empty string, Ɛ ≠ empty set, Ø .

 • If S and T are sets of strings, then ST = {xy|x∈ S and y ∈T} Given an

alphabet A,

 A
o
 = {Ɛ }

 A
n +1

 = A.A
n

...

A
*

= An

LANGUAGES

• A language ‘L’ over 𝚺 is any finite or infinite set of strings over 𝚺.

• The elements in L are strings – finite sequences of symbols.

• A language which does not contain any elements is called ‘empty

language’.

Note: Empty language, { } ≠{Ɛ }, empty string because { } =Ø≠ Ɛ

i.e., Empty language resembles empty set i.e.,Ø .

• A language L over an alphabet A is subset of A
*
 i.e., L⊂ A

*
.

 Example 1: Language (L) for strings that consists of only 0’s or only

1’s and have an odd length over alphabet {0, 1} is

(A) {0, 1, 00, 11, 000, 111 ,...}

(B) {00, 11, 01, 10 ,…}

(C) {000, 101, 110, 111 ,…}

(D) {0, 1, 000, 111, 11111, 00000 ,…}

Solution: (D)

Only 0’s → should have only 0’s. It should not be combination of 0’s

and 1’s.

Only 1’s → should have only 1’s. It should not be combination of 0’s

and 1’s.

Odd length → only odd number of 0’s or odd number of 1’s i.e., length

of string should be odd.

An Empty Languages :An empty language is a language which does

not accept any strings includinge. The Finite automata for empty

language can be represented as

(i.e., One state, non-accepting and no transitions).

A language which only accepts (Ɛ)

E: The language which only accepts ‘Ɛ ’ can be represented as

This machine accepts E – only.

𝚺
*
: The set of all strings over an alphabet will be denoted by 𝚺

*
.

𝚺
+
: This will denote the set 𝚺

*
– { Ɛ }.

Ex: If 𝚺 = {0, 1} then

𝚺
*
 = { Ɛ , 0, 1, 00, 01, 10, 11, 000, 001,… }

𝚺
 +

= {0, 1, 00, 01, 10, 11, 000, 001,}

OPERATIONS

Operations on strings

1.Concatenation: Combines two strings by putting one after other.

Example 2: Two strings are defined as x = java, y = script.

The concatenation (x.y) of two strings results in _______.

(A) scriptjava (B) javascript

(C) jascriptva (D) scrijavapt

Solution: (B)

x.y = java.script = javascript

Note: Concatenation of empty string with any other string gives string

itself.

i.e., x. Ɛ = Ɛ .x = x

2.Substring: If ‘w’ is a string, then ‘v’ is a substring of ‘w’ if there

exists string x and y such that w = xvy.

‘x’ is called ‘prefix’ and y is called suffix of w.

Example 3: String, w = ‘gymnastics’ is defined with prefix, x = ‘gym’

and suffix, y = ‘cs’. The substring of the given string is _______

(A) nasti (B) mnas

(C) gymnastics (D) ics

Solution: (A)

Because, w = xvy

⇒ gymnastics = gymvcs

∴ v = nasti

3.Kleen star operation: Let ‘w’ be a string, w
*
 is set of strings obtained

by applying any number of concatenations of w with itself, including

empty string.

Example: a
*
 = { , a, aa, aaa,…}

4.Reversal: If ‘w’ is a string, then w
R
 is reversal of string spelled

backwards.

Rules:

x = (x
R
)

R

(xz)
R
 = z

R
.x

R

Example 4: A string, x is defined as, x = butter. Then (x
R
)
R

is _______

(A) butter (B) rettub

(C) butret (D) retbut

Solution: (A)

x → butter

x
R
 → rettub

(x
R
)
R
 → butter.

Operations on languages

1.Union: Given some alphabet Ʃ, for any two languages, L1, L2 over

 Ʃ, the union L1∪ L2 of L1 and L2 is the language,

 L1∪ L2 = {w∈ Ʃ *| w∈ L1 or w ∈ L2}

2.Intersection: Given some alphabet Ʃ , for any two languages L1,L2

 over Ʃ the intersection L1 ∩ L2 of L1 and L2 is language,

 L1 ∩ L1 = {w ∈ Ʃ
*
 |w ∈ L1 and w ∈L2}

3.Difference: Given some alphabet Ʃ , for any two languages L1,L2 over

 Ʃ the intersection L1 − L2 of L1 and L2 is language,

 L1 − L1 = {w ∈ Ʃ
*

|w ∈ L1 and w ∉L2}

Note: Difference is also called ‘Relative Complement.’

A special case of difference is obtained when L1 = Ʃ *, in which case.

Complement of language, L is defined as, = {w∈ Σ
*
| w ∉ L}

4.Concatenation: Given an alphabet Ʃ , for any two languages L1, L2

over Σ, the concatenation L1 L2 of L1 and L2 is language

L1L2 = {w ∈ Σ
*
| Ǝ u ∈ L1, Ǝ v ∈L2, w =uv}

Properties:

LØ = Ø = ØL

L {Ɛ} = L = {Ɛ} L

(L1 ∪{Ɛ})L2 = L1L2 ∪L2

L1 (L2 ∪{Ɛ}) = L1L2 ∪L1

L
n
 L = LL

n
 = L

n+1

Note: L1L2 ≠ L2L1

Example 5: Let L1 = {00, 11}, L2 = {01, 10}. Then L1o L2 _______

A. {00, 11, 01, 10}

B. {0001, 0010, 1101, 1110}

C. {0001, 0010, 11, 01, 10}

D. {00, 1101, 1110, 11, 10}

Solution: (B)

L1oL2 = {00, 11} o {01, 10} = {00.01, 00.10, 11.01, 11.10} = {0001,

0010, 1101, 1110}

5.Kleen
*
 closure (L

*
): Given an alphabet Ʃ, for any language L over Ʃ,

the
*
 closure L

*
 of L is language,L

*
= U n≥0 L

n

6.Kleen+ closure (L
+
): The kleen +closure, L

+
 of L is the language,

L
+
=U n≥1L

n

L
*
 = L

0
 ∪ L

1
 ∪ L

2
 ∪ … L

n
 ∪ …

L
+

= L
1
 ∪ L

2
 ∪ L

3
 … ∪ L

n
 ∪ …

Properties:

Ø
*
 = {Ɛ}

L
+
 = L

*
L

(L
*
)
*
 = L

*

L
*
 L

*
 = L

*

FINITE STATE MACHINE (FSM)

• FSM is simplest computational model of limited memory computers.

• FSM is designed to solve decision problems i.e., to decide whether

 given input satisfies certain conditions.

• The next state and output of a FSM is a function of input and of

 current state.

Types of FSM:

1. Melay machine.

2. Moore machine

Finite Automata (FA):

• FA is a state machine that comprehensively captures all possible states

 and transitions that a machine can take while responding to a stream

 (sequence) of input symbols.

• FA is recognizer of ‘regular languages’.

Types of FA

1. Deterministic Finite Automata (DFA):

• DFA machine can exists in only one state at any given time.

• DFA is defined by 5-tuple: {Q, Ʃ, q0, F, 𝛿}, where

Q → Finite number of states (elements)

Ʃ → Finite set of symbols (alphabets)

qo → Start/Initial state

F → Set of final states.

𝛿 → Transition function, which is a mapping between

𝛿: Q × Ʃ → Q.

How to use DFA:

Input: A word w in Ʃ
*

Question: Is w acceptable by DFA?

Steps:

• Start at ‘initial state’, qo.

• For every input symbol in sequence w, do.

• Compute the next state from current state, given the current input

 symbol in w and transition function.

• If after all symbols in ‘w’ are consumed, the current state is one of the

 final states (𝑓) then accept ‘w’;

• Otherwise, reject w.

Transition diagram: State machines are represented by directed graphs

called transition (state) diagrams.

• The vertices denoted by single circle represent the state and arcs

 labeled with input symbol correspond to transition.

• The final states are represented with double circles.

Transition Table: Transition function can be represented by tables.

Example 6: The following finite state machine accepts all those binary

strings in which the numbers of 0’s and 1’s are respectively.

(A) Divisible by 3 and 2 (B) Odd and even

(C) Divisible by 5 and 3 (D) Divisible by 2 and 3

Solution: (C)

Number of 0’s is divisible by 5.

Number of 1’s is divisible by 3.

Note: Minimum number of states for k-divisibility is k-states.

In above example, q0 – q14 → 15 – states.

∴ 5 × 3 = 15

The given binary strings have number of 0’s divisible by 5 and number

of 1’s divisible by 3.

2. Non-deterministic finite Automata (NFA):

• The machine can exist in multiple states at the same time.

• Each transition function maps to a set of states.

• NFA is defined by 5-tuple: {Q, Ʃ, qo, F, }, where

Q → Finite number of states (elements)

Ʃ → Finite set of symbols. (Alphabets)

qo → Start/Initial state

F → Set of final states.

𝛿 → Transition function which is a mapping between

𝛿 = Q ×Ʃ → 2
Q

How to use NFA:

Input: a word w in Ʃ
*

Question: Is w accepted by NFA?

Steps:

• Start at ‘start state’ qo.

• For every input symbol in the sequence, w does.

• Determine all possible next states from current state, given the current

 input symbol in w and transition function.

• If after all symbols in w are consumed, at least one of the current states

 is a final state then accept w.

• Otherwise, reject w.

Example 7: What is the language, L generated by the below NFA, given

strings defined over alphabet, Ʃ = {0, 1}.

(A)Strings that end with ‘0’

(B) Strings that start with ‘0’ and end with ‘0’

(C) Strings that contain ‘01’ as substring

(D) Strings that contain ‘01’ as substring and end with ‘0’

Solution: (D)

String: 0100100

Difference between NFA and DFA

Relation between DFA and NFA

• A language ‘L’ is accepted by a DFA if and only if it is accepted by a

NFA.

• Every DFA is special case of a NFA.

Example 8: Let N𝑓 and D𝑓 denote the classes of languages accepted by

non-deterministic finite automata and deterministic finite automata

respectively. Which one of following is true?

(A) D𝑓 ⊂ N𝑓 (B) D𝑓 ⊃ N𝑓

(C) D𝑓= N𝑓 (D) D𝑓 ∈ N𝑓

Solution: (C)

According to ‘subset construction’, every language accepted by NFA is

also accepted by some DFA.

∴ D𝑓 = N𝑓

NFA WITH ∈ -MOVES

• ∈-transitions in finite automata allows a state to jump to another state

 without consuming any input symbol.

Conversion and Equivalence:

∈-NFA →NFA → DFA

NFA without ∈-moves:

• Two FA, N∈ and N are said to be equivalent, if L(N∈) =L(N) i.e., any

 language described by some N∈, there is an N that accepts the same

language.

• For N∈ = (Q, Z, 𝛿, q0, F) and N = (Q, Ʃ′, 𝛿′, q0, F′), Find

• 𝛿′ (q, a) = ∈-closure (𝛿 (∈-closure(q), a))

• F′ = {F ∪ {q0}}, if ∈-closure (q0) contains a member of F = F,

otherwise.

Note: When transforming N∈ to N, only transitions are required to be

changed and states remains same.

Example 9: Consider following NFA with ∈-moves.

If given NFA is converted to NFA without ∈-moves, which

of following denotes set of final states?

(A) {q0, q1} (B) {q1, q2}

(C) {q1, q2, q3} (D) {q1}

Solution: Let N = (Q, Ʃ
1
, 𝛿

1
, q0, F

1
)

F
1
 = F {q0}

Ɛ -closure (q0) = {q0, q1}

∴ F
1
 = {q1} {q0, q1} = {q0, q1}

Conversion N∈→N:

To compute, 𝛿
1

∈-closure (q0) = {q0, q1}, ∈-closure (q3) = {q3, q1}

𝛿
1
(q0, a) = {q1, q2}, 𝛿

1
(q0, b) = Ø, 𝛿

1
(q2, a) = Ø.

𝛿
1
(q1, a) = {q1, q2}, 𝛿

1
(q1, b) = Ø, 𝛿

1
(q2, b) = {q1, q3}

𝛿
1
(q3, a) = {q1, q2}, 𝛿

1
(q3, b) = Ø

CONVERSION OF NFA TO DFA

Let a NFA be defined as, N = (QN, Ʃ, 𝛿 N, q0, FN)

The equivalent DFA, D = (QD, Ʃ, 𝛿 D, q0, FD) where:

Step I:QD= 2
QN

; i.e., QD is set of all subsets of QN i.e., it is power set of

 QN.

Step II: FD is set of subsets S of QN such that S ∩FN ≠ Ø. i.e., FD is all

 sets of N’s states that include atleast one accepting state of N.

Step III: For each set, S ≤ QN and for each input symbol a in

 Σ : δD (S ,a) = ∪P∈S δN (P , a)

That is, to compute δD(S, a), look at all states P in S, see what states N

goes to starting from P on input a, and take the union of all those states.

Note: For any NFA, N with ‘n’ states, the corresponding DFA, D can

have 2n states.

Example 10: What is the number of final states in DFA

constructed from the given NFA?

(A) 1 (B) 2

(C) 3 (D) 4

Solution:

Hence final states in obtained DFA is ‘4’.

DFA is: Choice (D)

MINIMIZATION OF DFA

Given a DFA, M = (Q, Σ, δ , q0 , F) we construct a reduced

DFA, M′ = (Q′, Σ′, δ ′, q′0 , F′) 0 as follows

1. Remove all inaccessible states. All states that are unreachable

from the initial state are removed.

2. Consider all pairs of states (p, q), If p ∈ F and q ∈ F or vice

versa mark the pair (p, q) as distinguishable.

3. Repeat until no previously unmarked pairs are marked. For all

pairs (p, q) and all a ∈ Σ, compute δ (p, a)= pa and δ (p, q)= qa.

If the pair (pa, qa) is marked as distinguishable mark (p, q) as

distinguishable.

4. Find the sets of all indistinguishable states, say {qi, qj ,… qk },

{qℓ , qm ,… qn }, etc. For each set {qi, qj, …qk} of such

indistinguishable states, create a state labelled ij …k for M.

5. For each transition rule of M of the from δ (qr , q)= qp, find the

sets to which qr and qp belong. If qr ∈ {qi,qj,… qk} and qp∈ {q

ℓ ,q m , q n }, add a rule to δ: δ ′(ij…k, a) = ℓm…n.

Example 11: A DFA with alphabet Ʃ = {a, b} is given below:

Which of the following is valid minimal DFA which accepts same

language as given DFA?

Solution: (B)

Initially, {1, 5}, {2, 3, 4}

Depending on next states and inputs, the partitions of states can be as:

{{1, 5}, {2}, {3}, and {4}}

Since, 1 to 5 have same transition, unite {1, 5}

State 4 is dead state → It has transition only to itself.

Since, {2}, {3} are singletons, they exist.

∴ States in minimized DFA are {1, 2, and 3}

 {1} → {1, 5}

For transitions, since 1 3 , 1 2 in given DFA, in minimized

DFA, transitions are added from 1 3 , 1 2 . Also, since 2

1, 3 1 in given DFA, the minimized DFA, transitions are

added from 2 1 , 3 1 .

EQUIVALENCE BETWEEN NFA AND DFA

There is a DFAD for any NFAN i.e.,

L (D) = L (N).

Construction:

• In DFA or NFA, whenever an arrow is followed, there isa set of

 possible states. This set of states is a subset of Q.

• Track the information about subsets of states that can be reached from

 initial state after following arrows.

• Consider each subset of states of NFA as a state of DFAand every

 subset of states containing a final state as a finalstate of DFA.

Example 12: Which of following is equivalent DFA for the

NFA given below:

Solution: (A)

Equivalence of Finite Automatas:

• Two automatas A and B are said to be equivalent if both accept exactly

 the same set of input strings.

• If two automatas M1 and M2 are equivalent then

(i) If there is a path from the start state of M1 to a final state of M1

labeled a1a2 … ak then there is a path from the start state of M2 to

the final state of M2 labeled a1a2… ak.

(ii) If there is a path from the start state of M2 to a final state M2

labeled b1b2 … bi then there is a path from the start state of M1 to

the final state of M1 labeled b1b2 … bi .

Example:

M2:

In M2, states p1 and p3 are equivalent (as both are reaching

either final or non-final states with same input). After minimizing

M2, we will get

∴ M1 and M2 are equivalent.

Union: The union of two languages L and M is the set of

strings that are in both L and M.

Ex: L = {0, 1}, M = {111}

L U M = {0, 1,111}.

Concatenation: The concatenation of Languages L and M is the set of

strings that can be formed by taking any string in L and concatenating it

with any string in M.

Example: L = {0, 1}, M = { Ɛ, 010}

LM = {0, 1, 0010, 1010}.

Closure, Star or Kleen star of a language L:

Kleen star is denoted as L
*
. It represents the set of strings that can be

formed by taking any number of strings from L with repetition and

concatenating them. It is a Unary operator.

L
0
 is the set; we can make selecting zero strings from L.

L
0
 ={ Ɛ }

L
1
 is the language consisting of selecting one string from L.

L
2
 is the language consisting of concatenations selecting two strings

from L.

…

L
*
is the union of L

0
, L

1
 , …L

∞
.

Ex: L ={0,10}

L
*
 ={0,00,000,10,010, …}

Intersection:

Let two DFAs M1 and M2 accept the languages L1 and L2.

M1 =(Q1, Ʃ, 𝛿1, , F1)

M2=(Q2, Ʃ, 𝛿2, , F2)

The intersection of M1 and M2 can be given as

M =(Q1, Ʃ, 𝛿, q0 F)

Q =Pairs of states, one from M1 and one from M2 i.e.,

Q ={(q1, q2) | q1 ∈ Q1 and q2 ∈ Q2}

Q =Q1 × Q2.

q0=(,)

𝛿 (), x) =(𝛿1 (, x), 𝛿2 (, x))

F ={(q1, q2) | q1∈ F1 and q2 ∈ F2}

Example:

M1: Strings with even number of 1’s.

M2: Strings with odd number of 0’s.

M1 ∩ M2: Strings with even number of 1’s and odd number of 0’s.

Union of M1 and M2:

Difference: The difference of L1 and L2 can be given as

L1 − L2 with M = (Q, Ʃ, 𝛿, q0, F).

Q = Q1 ×Q2

q0= (,)

𝛿 ((,), x) = (𝛿1 (, x), 𝛿2(, x))

F = {(q1, q2) | q1 ∈ F1 and q2 ∉ F2}

Reversing a DFA:

• M is a DFA which recognizes the language L.

• M
R
 will accept the language L

R
.

To construct M
R
:

• Reverse all transitions

• Turn the start state to final state

• Turn the final states to start state.

• Merge states and modify the FA,

such that the resultant contain a single start state.

MEALY AND MOORE MACHINES

Moore Machine

A moore machine is a finite state machine, where outputs are

determined by current state alone.

A Moore machine associates an output symbol with each state and each

time a state is entered, an output is obtained simultaneously. So, first

output always occurs as soon as machine starts.

Moore machine is defined by 6-tuples:

(Q, Ʃ, 𝛿, q0, Δ, 𝜆), where

Q → Finite set of states

Ʃ → Finite set of input symbols

Δ → It is an output alphabet

𝛿 → Transition function, Q × Ʃ → Q (state function)

𝜆 → Output function, Q → Δ (machine function)

q0 → Initial state of machine

Note: The output symbol at a given time depends only on present state

of moore machine.

Example 13: The language generated by the following moore machine

is:

(A) 2’s complement of binary number.

(B) 1’s complement of binary number.

(C) Has a substring 101.

(D) Has a substring 110.

Solution: (B)

Binary number: 1011

1’s complement: 0100

Mealy Machine

• A mealy machine is a FSM, where outputs are determined by current

 state and input.

• It associates an output symbol with each transition and the output

 depends on current input.

• Mealy machine is defined on 6-tuples: (Q, Ʃ, 𝛿, q0, Δ, 𝜆), where

Q – Finite set of states.

Ʃ – Finite set of input symbols.

𝛿 – (Q × Ʃ → Q) is transition function.

q0 → q0 ∈ Q is initial state.

Δ → Finite set of output symbols.

𝜆 → Output function, 𝜆 (Q → Δ)

Note: In Moore machine, for input string of length n, the output

sequence consists of (n + 1) symbols.

In Mealy machine, for input string of length n, the output sequence also

consists of ‘n’ symbols.

Example 14: Let (Me)
2
 mean that given a Mealy machine, an input

string is processed and then output string is immediately fed into the

machine (as input) and reprocessed.

Only this second resultant output is considered as the final output of

(Me)
2
. If final output string is same as original input string then (Me)

2

has an identity property. Consider following machines

Which of above machines have identity property?

(A) (i) only

(B) (i) and (ii) but not (iii)

(C) (i) and (iii) but not (ii)

(D) All have identity property

Solution: (D)

(i) Consider i/p string

(ii)

(iii)

EQUIVALENCE OF MOORE AND MEALY

MACHINE

(a) Mealy machine equivalent to Moore machine:

If M1 = (Q, Ʃ, Δ, 𝛿, 𝜆, q0) is a Moore machine, then there is a Mealy

machine M2 equivalent to M1.

Proof: Let M2 = (Q, Ʃ, Δ, 𝛿, 𝜆1
, q0) and define 𝜆1

 (q, a) to be 𝜆 (𝛿 (q, a))

for all states q and input symbol ‘a’.

Then M1 and M2 enter the same sequence of states on the same input,

and with each transition M2 emits the o/p that M1 associates with the

state entered.

Let us consider Mealy Machine

To convert the Mealy machine to Moore machine,

• We look into the next state column for any state, say qi and determine

 the number of different outputs associated with qi in next column.

• Split qi into several different states, the number of such states being

 equal to the number of different outputs associated with qi.

The pair of states and outputs in the next state column can be rearranged

as:

Moore machine equivalent to Mealy machine

Let M1 = (Q, Ʃ, Δ, 𝛿, 𝜆, q0) be a Mealy machine. Then there is a

machine M2 equivalent to M1

Proof: Let M2 = (QXΔ, Ʃ, Δ, 𝛿1
, 𝜆1

, [q0, b0]), where b0 is an arbitrary 𝜆

selected member of Δ.

That is, the states of M2 are pairs [q, b] consisting of a state of M1 and

output symbol, Define 𝛿1
 ([q, b], a) = [(q, a), 𝜆,(q, a)] and 𝜆1

([q, b]) =b.

The second component of a state [q, b] of M2 is the output made by M1

on some transition into state q.

Only the first components of M2’s states determine the moves made by

M2.

Every induction on ‘n’ shows that if M1 enters states q0, q1 … qn on

inputs a1, a2 …an and emits output b1, b2, …bn then M2 enters states [q0,

b0], [q1, b1] … [qn, bn] and emits outputs b0, b1 … bn.

Let us consider the Moore machine

 To convert Moore into Mealy machine, we must follow the reverse

procedure of converting Mealy machine into Moore machine.

 For every input symbol we form, the pair consisting of the next

state and the corresponding output and reconstruct the table for

Mealy machine.

 For example, the state q3 and q1 in the next state column should be

associated with outputs 0 and 1, respectively.

The Transition table for Mealy machine is:

REGULAR LANGUAGES

The set of regular languages over an alphabet Ʃ is defined recursively as

below. Any language belonging to this set is a regular language over Ʃ.

Definition of set of regular languages

• Basis clause: Ø, { Ɛ}, {a} for any symbol a ∈ Ʃ, are regular languages.

• Inductive clause:If Lr and Ls are regular languages, then Lr∪Ls, Lr . Ls,

 are regular languages.

• External clause: Nothing is a regular language, unless it is obtained

 from above two clauses.

Regular language: Any language represented by regular expression(s)

is called a regular language.

Ex: The regular expression a
*
 denotes a language which has { Ɛ, a, aa,

aaa, …}

Regular expression

• Regular expressions are used to denote regular languages.

• The set of regular expressions over an alphabet Ʃ is defined recursively

 as below. Any element of that set is a regular expression.

• Basis clause: Ø,∈, a are regular expression corresponding to languages

 Ø, {∈}, {a} respectively where a is an element of Ʃ.

• Inductive clause: If r and s are regular expression corresponding to

 languages Lr and Ls then (r + s), (rs) and (r
*
) are regular expressions

 corresponding to the languages Lr ∪ Ls, Lr . Ls and Lr
*

respectively.

• External clause: Nothing is a regular expression, unless it is obtained

 from above two clauses.

Closure property of regular expressions

The iteration or closure of a regular expression R, written as R
*
 is also a

regular expression.

Ex: Ʃ = {a} then a
*
 denotes the closure of Ʃ.

a
*
 = { Ɛ, a, aa, aaa, …}

Conventions on regular expressions

1. The operation ‘*’ has highest precedence over concatenation,

 which has precedence over union (+).

 i.e., RE (a + (b(c
*
))) = a + bc

*

2. The concatenation of K r’s, where r is a regular expression is

 written as r
k
. The language corresponding to r

k
 is . Where Lr

 is language corresponding to regular expression r i.e., rr = r
2

3. r
+
 is a regular expression to represent

Note: A regular expression is not unique for a language i.e., regular

language corresponds to more than one regular expression.

Example 15: Give regular expression for set of strings which either

have ‘a’ followed by some b’s or all b’s also containing ‘Ɛ’.

(A) b
*
 + ab

*
 (B) a

*
 + ba

*

(C) (Ɛ) + (Ɛ + a) b
+
 (D) b

*
 + ab

*
 + Ɛ

Solution: (C)

The regular expression is, r = ab
+
 + b

+
 + Ɛ = b

+
 (a + Ɛ) + Ɛ.

Identity rules for regular expressions:

1. Ø+ R = R

2. Ø. R = R Ø = Ø

3. Ɛ R = R Ɛ = R

4. Ø
*
 = Ɛ and Ɛ

*
 = Ɛ

5. R + R = R

6. RR
*
 = R

*
 R = R

+

7. Ɛ +RR
*
 = R

*
 and Ɛ + R

*
 R = R

*

8. (R
*
)
*
 = R

*

9. R
*
 R

*
 = R

*

10. Ɛ + R
*
 = R

*

11. (R + Ɛ)
*
 = R

*

12. R
*
(Ɛ + R)

*
 = (Ɛ + R)

*
 R

*
= R

*

13. R
*
 R + R = R

*
 R

14. (P +Q)R = PQ + QR and R(P + Q) = RP + RQ

15. (P + Q)
*
 = (P

*
 Q

*
)
*
 = (P

*
 + Q

*
)
*

16. (PQ)
*
 P = P (QP)

*

17. R is given as, R = Q + RP has unique solution, R = QP
*
.

This is Arden’s theorem.

18. (P + Q)
*
 = (P

*
 + Q) = (P + Q

*
)

Example 16: If r1 and r2 are regular expressions denoting languages L1

and L2 respectively then which of following is false?

(A) (r1)| (r2) is regular expression denoting L1 ∪ L2.

(B) (r1) (r2) is regular expression denoting L1 . L2.

(C) Ø is not a regular expression.

(D) {r1}
*
 is regular expression denoting L1

*
.

Solution: (C)

CONSTRUCTING FA FOR GIVEN RE

• Relationship between FA and RE.

Identities:

Basis:

Induction:

• Union: L(r) = L (r1) +L (r2) i.e., L (M) = L (M1) ∪ L (M2)

Let M1 = (Q1, Ʃ 1, 𝛿1, q1, {f1}), M2 = (Q2, Ʃ 2, 𝛿2, q2, {f2}) with

L (M1) = L (r1) and L (M2) = L (r2), then M = (Q1 ∪ Q2 ∪ {q0,

f0}, Ʃ 1 ∪ Ʃ2, 𝛿, q0, {f0})

• Concatenation:

L(r) = L (r1) . L (r2) i.e., L (M) = L (M1) . L (M2)

• Closure:

L(r) = L(r)
*
 i.e., L (M) = L (M1)

*

Let M1 = (Q1, Ʃ 1, 𝛿1, q1, {f1}) then L (M) = (Q1 ∪ {q0, f0}, Ʃ1, 𝛿, q0,

{f0})

Example 17: The regular expression generated by the given FA.

(A) (a +ba
*
) b

*
 (B) (aa

*
b +bb

*
) b

*

(C) (b +ab
*
) a

*
 (D) (ab +ba)

*

Solution: (B)

q2 is final state which is obtained with input symbol only ‘b’. So, (C) or

(D) is not true.

In (A) →ba
*

is not defined in given FA. Instead bb
*

is defined.

PUMPING LEMMA FOR REGULAR SETS

Theorem Let ‘L’ be an arbitrary regular language. Then there exists a

positive integer, P with following property:

Given an arbitrary member, w of L having length at least P (i.e., |w|≥P),

w can be divided into 3-parts, w =xyz Ǝ

• |y| ≥1 (the middle part is non-empty)

• |xy| ≤ P (the first two parts have length atmost P)

• For each, i ≥0, xy
i
z ∈L (removing or repeating the middle part

 produces member of L)

Proof Let L be an arbitrary regular language. Then there is a FA, say M

that decides L.

Let P be the number of states of M.

Let w be an arbitrary member of L, having length ‘n’ with n ≥P.

Let q0, q1, … qn be states that M on input w. That is, for each i, after

reading the first i symbols of w, M is at qi.

q0 is initial state of M. Also, since w ∈L, qn is a final state of M.

Let x =w1 … wc, y =wc+4 … wd, z =wd+1 … wn. Then:

• |y| ≥ 1

• |xy| ≤ P

• M transitions from q0 to qc on x.

• M transitions from qc to qc on y.

• M transitions from qc to qn on z.

Thus, for every i ≥ 0, M transitions from q0 to qn on xy
i
z and so, xy

i
z is

a member of L.

Note:

• Pumping lemma is used to verify that given language is not regular.

• Pumping lemma follows pigeon hole principle.

Example 18: The language, L is defined as:

L ={w1w2 : w1, w2 ∈{a, b}
*
, |w1| =|w2|}. Is the language regular?

(A) Regular

(B) Not regular

(C) Cannot be determined

(D) None of these

Solution: (A)

Fix pumping length, K =2

For every proper strings in L, (2n ≥2)

Split in x, y, z with desired properties.

Let x = Ɛ, y =first two symbols, z =rest.

• xy3z:

• xy
o
z →

∴For every i ≥0, xy
i
 z ∈L. Hence given language is regular.

CLOSURE PROPERTIES OF REGULAR SETS

1. Union: If L and M are regular languages, LUM is regular language

closed under union.

2. Concatenation and Kleen closure: If L and M are regular

languages, L.M is regular language and L
*
 is also regular.

 3. Intersection: L ∩ M is regular, if L and M are regular languages.

 4. Difference: L – M contains strings in ‘L’ but not M, where L and

 M are regular languages.

 5. Complementation: The complement of language L is Ʃ
*
–L.

Note: Since Ʃ
*
 is surely regular, the complement of a regular

language is always regular. Where Ʃ
*
 is a universal language.

6. Homomorphism: If L is a regular language, h is homomorphism

on its alphabet then h (L) ={h (w) |w is in L} is also a regular

language.

REGULAR GRAMMAR

• Grammar: Generative description of a language.

• Automaton: Analytical description.

• A grammar is a 4-tuple, G = (V, Ʃ, R, S) where V:alphabet (variable)

 (non-terminals)

Ʃ ⊆ V is set of terminal symbols.

R ⊆ (V
+
 × V

*
) is a finite set of production rules.

S ∈ V – Ʃ is start symbol.

Notation

• Elements of V – Ʃ : A, B, …

• Elements of Ʃ : a, b …

• Rules (α , β)∈ R: α →β or

• Start symbol is written as S.

• Empty word: Ɛ

Example 19: The regular expression that describe the language

generated by grammar, G = ({S, A, B}, {a, b}, S,{S →Aab, A →

Aab|B, B → a}

(A) (ab)
*
 a (B) aab(ab)

*

(C) ab
*
 aa (D) (a + ba)

*

Solution: (B)

S →Aab →Aab ab →A ab abab →Bababab

→aababab → aab(ab)
*

Union of two Regular languages:

If L1 and L2 are two languages then

L1 ∪ L2 = {w/w ∈ L1 or w ∈ L2}

The union of two regular languages is also a regular language.

Let M1 = (Q1, Ʃ, 𝛿1, q1, 𝑓1)

M2 = (Q2, Ʃ, 𝛿2, q2, 𝑓2)

M = M1UM2 can be given as

M = (Q, Ʃ, 𝛿, q0, 𝑓).

Where Q = {(r1, r2) | r1 ∈ Q1 and r2 ∈ Q2}

i.e., Q is the Cartesian product of sets Q1 and Q2.

Ʃ is the alphabet, is the same in M1 and M2.

Ʃ = Ʃ 1 U Ʃ 2.

𝛿 is the transition function given as:

𝛿 (r1, r2), a = (𝛿 1(r1, a) 𝛿 2 (r2, a)).

q0 is the pair (q1, q2).

F is the set of pairs in which either member is an accept state of M1 or

M2.

F = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2}

TYPES OF GRAMMARS

• Type 0:Unrestricted, recursively enumerable languages.

• Type 1:Context-sensitive grammar.

• Type 2:Context free grammar.

• Type 3:Regular grammar.

Type 0: Recursively enumerable grammar: (Turing Machine) (TM):

Every production rule is of form: α →β, where α and β are in (V ∪ T)
*
,

i.e., there can be any strings of terminals and non-terminals (no-

restriction).

Type1:Context-sensitive Grammar:(Linear bounded automaton)

(LBA):

Every production rule is of form, α →β are in (V ∪ T)
*
 and α ≠ Ɛ and | β

|≥| α | i.e., any strings of terminals and nonterminals and length of string

that can appear on RHS of production must be greater than or equal to

length of string that can appear on LHS of production.

Type2:Context-free grammar: (Push down automaton) (PDA):

Every production rule is of form, A→α where α is in (V ∪T)
*
 i.e., LHS

of rule is single non-terminal and RHS can be any string of terminals

and non-terminals.

Type 3: Regular grammar: (Finite automaton) (FA):Every production is

of form, A→aB or A→a where A and B ∈ V and a ∈ T. That is, LHS of

rule is non-terminal and RHS can be terminal (or) terminal followed by

non-terminal.

Relationship between types of grammar:

• Regular sets are properly contained in CFL (Context Free Languages).

• The CFL’s not containing empty string Ɛ, are properly contained in

 CSL. (Context sensitive language).

• The CSL’s are properly contained in Recursively enumerable

 languages.

• RG ⊂ CFG ⊂ CSL ⊂ REG

Left-linear Grammar:

All productions have form: A →Bx or A →x

Right-linear Grammar:

All productions have the form: A →xB or A →x.

Note:

• The regular grammars characterize the regular sets i.e., a language is

 regular if and only if it has a left-linear grammar or if and only if it has

 a right-linear grammar.

• If L has a regular grammar, then L is a regular set.

• If L is a regular set, then L is generated by some left-linear grammar

 and by some right-linear grammar.

Arden’s theorem: Let P and Q be two regular expressions over Ʃ. If P

does not contain ‘Ɛ’ then the following equation in R, namely R = Q +

RP has a unique solution given by R = QP
*
.

Arden’s Theorem to obtain regular expression from

given transition diagram: The following steps are used to find the RE

recognized by transition system.

The following assumptions are made regarding the transition system.

(i) The transition graph does not have Ɛ -moves

(ii) It has only one initial state, qo.

(iii) The states in the transition diagram are qo, q1, q2, … qn.

(iii) Qi, the regular expression represents the set of strings accepted by

a system even though qi is the final state.

(v) aij denotes the regular expression representing the set of labels of

edges from qi to qj. When there is no such edge aij = Ø.

We will get the following set of equations.

Q1 = Q1 α11 + Q2 α12 + … Qn αn1 + Ɛ

Q2 = Q1 α12 + Q2 α22 + … Qn αn2

:

:

:

Qn = Q1 α1n + Q2 α2n + … Qn αnn.

By Repeatedly applying substitutions and Arden’s theorem, we can

express Qi in terms of α ij’s.

For getting the set of strings recognized by the transition system, we

have to take the union of all Qi’s corresponding to final states.

Construction of Regular Grammar from FA

Step I: Associate suitable variables like A, B, C … with states of

 automata.

Step II: Obtain the productions of the grammar as: If (A, a) = B then

 add production A →aB to list of productions of grammar, if B

 is a final state, then add either A →a or B → Ɛ, to list of

 productions of grammar.

Step III: The variable associated with initial state of automata is start

 symbol of grammar.

Example 20: Regular grammar generating language accepted by below

automata is

(A) A→0B|1C| Ɛ

B→1A

C→0A

(B) A→1B|0C| Ɛ

B→1A

C→0A

(C) A→B|C| Ɛ

B→1

C→0

(D) A→0A|1B| Ɛ

B→1C

C→0A

Solution: (A)

A→0B, A→1C, B→1A, C→0A

∴A is final state, A → Ɛ

∴ A →0B|1C| Ɛ A →0B|1C

B →1A (or) B →1A|1

C →0A C →0A|0

Construction of FA from given regular grammar

Given a regular grammar, G; a regular expression specifying

L(G) can be obtained directly as follows:

• Replace the ‘→’ symbol in productions of grammar by

‘=’ symbol, to get set of equations.

• Solve the set of equations obtained above to get the value

of variable, S, where S is start symbol of grammar, result

is regular expression specifying L(G).

Example 21: The Regular grammar and FA for given

regular expression Ø *1*U (0 Ø)* is ___

(A) S→0S|1S|0

T→1T| Ɛ

(B) S→1S| Ɛ

(C) S→0T|1S| Ɛ

T→0T|1U| Ɛ

U→0T|1S

(D) Cannot be determined

Solution: (B)

Ø
*
 1

*
∪ (0Ø)

*
 = Ø

*
.1

*
∪ Ø

*
 = Ɛ.1

*
∪ Ɛ =1

*
.

