
LIMITS 

Limits are used to define continuity, derivatives and 

integrals.

Consider a function f(x). Now, if x approaches a value c,  

and if for any number a > 0, we find a number b > 0 
such that ⏐f(x) − l⏐ < a whenever 0 < ⏐x  − c⏐ < b, then 
l is called the limit of function f(x).

Limits are denoted as

lim ( )

x c

f x l

→
=

For example, if we have a function f x
x

x

( ) =

2
4

2

−
−

, its 

limit does not exist for x = 2 since f(1) = ∞. However, as 

x moves closer or approaches the value 2, f(x) approaches 

the limit 4.

Left-Hand and Right-Hand Limits

If the values of a function f(x) at x = c can be made as 

close as desired to the number l
1
 at points closed to and 

on the left of c, then l
1
 is called left-hand limit.

It is denoted by

lim ( )

x c

f x l

→ −
=

1

If the values of a function f(x) at x = c can be made as 

close as desired to the number l
2
 at points on the right of 

and close to c, then l
2
 is called right-hand limit.

It is denoted by

lim ( )

x c

f x l

→ +
=

2

For example, let us calculate the left-hand and right-

hand limits of the following function:

 

f x

x

x

x

x

( )

,

,

=

=

| − |
−

≠
1

1

1

0 1

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 at x = 1

L.H.L. of f(x) at x = 1

= lim ( )

x

f x

→1
−

= lim ( )

h

f h

→0

1 −

= =lim lim

h h

h

h

h

h→ →0 0

1 1

1 1

| | | |− −
− −

−
−

= = =lim lim

h h

h

h→ →
( )

0 0

1 1

−
− −
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R.H.L. of f(x) at x = 1

=
+

lim ( )

x

f x

→1

= +lim ( )

h

f h

→0

1

=
+

+

=lim lim

h h

h

h

h

h→ →0 0

1 1

1 1

| | | |−
−

= =lim

h→0

1 1

PROPERTIES OF LIMITS

Suppose we have lim ( ) lim ( )

x c x c

f x a g x b

→ →
= =,  and if a and b  

exist, some of the important properties of limits are:

 1. lim ( ) ( ) lim ( ) lim ( )

x c x c x c

f x g x f x g x a b

→ → →
± ± ±( ) = =

 2. lim ( ( ) ( )) lim ( ) lim ( )

x c x c x c

f x g x f x g x a b

→ → →
⋅ ⋅ ⋅= =

 3. lim

( )

( )

lim ( )

lim ( )

,

x c

x c

x c

f x

g x

f x

g x

a

b→
→

→
! " = = where b ≠ 0

 4. lim ( ) lim ( ),

x c x c

kf x k f x

→ →
= where k is a constant

 5. lim ( ) lim ( )

x c x c

f x f x a

→ →
| | | | | |= =

 6. lim ( ( )) ( )

x c

b
f x g x a

→
=

 7. If lim ( ) ,

x c

f x

→
±∞= then lim

( )x c f x→

1
0=

Some of the useful results of limits are given as follows:

 1. lim
sin

x

x

x→0

1=

 2. lim
tan

x

x

x→0

1=

 3. lim cos

x

x

→0

1=

 4. lim( ) lim
/

x

x

x

x
x

x

e

→ →∞0

1
1 1

1
+ = + =! "

 5. lim

log( )

x

x

x→0

1

1

+

=

 6. lim

( )

log , ( )

x

x
a

x

a a

→0

1

0

−
>= if  

 7. lim

x

n n

nx a

x a

na

→0

1−
−

−
=

 8. lim
log

,

x
m

x

x→∞
= 0  if (m > 0)

L’Hospital’s Rule

If lim ( ) lim ( )

x c x c

f x g x

→ →
= = 0  or ± ∞, lim

( )

( )x c

f x

g x→

′
′

 exists and 

g x′( ) ≠ 0 for all x, then

lim

( )

( )

lim

( )

( )x c x c

f x

g x

f x

g x→ →
=

′
′

CONTINUITY AND DISCONTINUITY

A function f(x) at any point x = c is continuous if

lim ( ) ( )

x c

f x f c

→
=

and                lim ( ) lim ( ) ( )

x c x c

f x f x f c

→ → +−
= =

A function f(x) is continuous for an open interval (a, b) 

if it is continuous at every point on the interval (a, b).

A function f(x) is continuous on a closed interval  

[a, b] if

 1. f is continuous for (a, b)

 2. lim ( ) ( )

x a

f x f a

→ +

=

 3. lim ( ) ( )

x b

f x f b

→ −
=

If the conditions for continuity are not satisfied for a 

function f(x) for a point or an interval, then the function 

is said to be discontinuous.

DIFFERENTIABILITY

Consider a real-valued function f(x) defined on an open 

interval (a, b). The function is said to be differentiable 

for x = c, if

lim

( ) ( )

h

f c h f c

h→0

+ −
 exists for every c∈(a, b)

A function is always continuous at a point if the func-

tion is differentiable at the same point. However, the 

converse is not always true.

MEAN VALUE THEOREMS

Rolle’s Theorem

Consider a real-valued function defined in the closed 

interval [a, b], such that
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DIFFERENTIATION    75

 1. It is continuous on the closed interval [a, b].

 2. It is differentiable on the open interval (a, b).

 3. f(a) = f(b).

Then, according to Rolle’s theorem, there exists a real 

number c a b∈ ( , )  such that f c′( ) .= 0

Lagrange’s Mean Value Theorem

Consider a function f(x) defined in the closed interval  

[a, b], such that

 1. It is continuous on the closed interval [a, b].

 2. It is differentiable on the closed interval (a, b).

Then, according to Lagrange’s mean value theorem, 

there exists a real number c a b∈ ( , ), such that

f c

f b f a

b a

′( ) ( ) ( )

=

−
−

Cauchy’s Mean Value Theorem

Consider two functions f(x) and g(x), such that

 1. f (x) and g(x) both are continuous in [a, b].

 2. f ′(x) and g ′(x) both exist in (a, b).

Then there exists a point c a b∈ ( , ) such that

f c

g c

f b f a

g b g a

′
′
( )

( )

( ) ( )

( ) ( )

=

−
−

Taylor’s Theorem

If f(x) is a continuous function such that f x f x f x
n′ ′′( ), ( ), , ( )… −1

 

f x f x f x
n′ ′′( ), ( ), , ( )… −1

 are all continuous in [a, a + h] and 

f x
n
( ) exists in (a, a + h) where h = b − a, then accord-

ing to Taylor’s theorem,

f a h f a hf a
h

f a
h

n

f a

h

n

f a

n

n

n

n

( ) ( ) ( )

!

( )

!

( )

!

+ = + + + +

+

′ ′′
2 1

1

2 1

!
−

−

−( )

( ))

Maclaurin’s Theorem

If the Taylor’s series obtained in Section 2.5.4 is centered 

at 0, then the series we obtain is called the Maclaurin’s 

series. According to Maclaurin’s theorem,

f h f hf
h

f
h

n

f

h

n

f

n

n

n

n

( ) ( ) ( )

!

( )

!

( )

!

= + + + +

+

0 0

2

0

1

0

0

2 1

1′ ′′ !
−

−

−( )

( )

FUNDAMENTAL THEOREM  
OF CALCULUS

There are two parts of the fundamental theorem of 

calculus that are used widely. It links the concept of 

the derivative of the function with the concept of the 

integral.

According to the first part of the fundamental theo-

rem of calculus or the first fundamental theorem of cal-

culus, if f is continuous on the closed interval [a, b] and 

F is the indefinite integral of f on [a, b], then

f x dx F b F a

a

b

( ) ( ) ( )∫ = −

According to the second part of the fundamental theo-

rem of calculus or the second fundamental theorem of 

calculus, if f is a continuous real-valued function defined 

on a closed interval [a, b] and F is a function defined for 

all x in [a, b], by

F x f t dt

a

x

( ) ( )∫=

then F is continuous on [a, b], differentiable on the open 

interval (a, b) and F x f x′( ) = ( )  for all x in (a, b).

DIFFERENTIATION

Some of the important properties of differentiation are:

 1. 
d

dx

f x g x
d

dx

f x
d

dx

g x( ( ) ( )) ( ) ( )+ = +

 2. 
d

dx

f x g x
d

dx

f x
d

dx

g x( ( ) ( )) ( ) ( )− −=

 3. 
d

dx

f x g x f x
d

dx

g x
d

dx

f x g x( ( ) ( )) ( ) ( ( )) ( ( )) ( )⋅ ⋅ ⋅= +

 4. 
d

dx

f x

g x

d

dx

f x g x f x
d

dx

g x

g x
! "( )

( )

( ) ( ) ( ) ( )

( ( ))

=

⋅ −

2

Some of the derivatives of commonly used functions are 

given as follows:

 1. 
d

dx

x nx
n n
=

−1

 2. 
d

dx

x

x

ln =
1

 3. 
d

dx

x e

x
a a

log log= ⋅ ! "1
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 4. 
d

dx

e e
x x
=

 5. 
d

dx

a a a
x x

e
= log

 6. 
d

dx

x xsin cos=

 7. 
d

dx

x xcos sin= −

 8. 
d

dx

x xtan sec=
2

 9. 
d

dx

x x xsec sec tan=

 10. 
d

dx

x x xcosec cosec cot= −

 11. 
d

dx

x xcot cosec= − 2

 12. 
d

dx

x xsin h co s h=

 13. 
d

dx

x xco s h sin h=

 14. 
d

dx

x

x

sin
−

−

1

2

1

1

=

 15. 
d

dx

x

x

cos
− −

−

1

2

1

1

=

 16. 
d

dx

x

x

tan
−1

2

1

1

=

+

 17. 
d

dx

x

x x

cosec
− −

−

1

2

1

1

=

 18. 

d

dx

x

x x

sec
− −

−

1

2

1

1

=

 19. 

d

dx

x

x

cot
−1

2

1

1

=

+

APPLICATIONS OF DERIVATIVES

Increasing and Decreasing Functions

Any function f(x) is said to be increasing on an interval 

(a, b) if

x
1
 ≤ x

2
 ⇒ f(x

1
) ≤ f(x

2
) for all values of x

1
, x

2
 ∈ (a, b)

A function f(x) is said to be strictly increasing on an 

interval (a, b) if

x
1
 < x

2
 ⇒ f(x

1
) < f(x

2
) for all values of x

1
, x

2
 ∈ (a, b)

A function f(x) is said to be decreasing on an interval 

(a, b) if

x
1
 ≤ x

2
 ⇒ f(x

1
) ≥ f(x

2
) for all values of x

1
, x

2
 ∈ (a, b)

A function f(x) is said to be strictly decreasing on an 

interval (a, b) if

x x
1 2

<  ⇒ f(x
1
) > f(x

2
) for all values of x

1
, x

2
 ∈ (a, b)

A monotonic function is any function f(x) which is either 

increasing or decreasing on an interval (a, b).

Some important conditions for increasing and decreas-

ing functions are:

 1. Consider f(x) to be continuous on [a, b] and differ-

entiable on (a, b). Now,

(a)  If f(x) is strictly increasing on (a, b), then 

′f x( )> 0  for all x ∈ (a, b).
(b)  If f(x) is strictly decreasing on (a, b), then 

′f x( )< 0  for all x ∈ (a, b).

 2. Consider f(x) to be a differentiable real function 

defined on an interval (a, b). Now,

(a)  If ′f x( )> 0  for all x ∈ (a, b), then f(x) is 
increasing on (a, b).

(b)  If ′f x( )< 0  for all x ∈ (a, b), then f(x) is 
decreasing on (a, b).

For example, let us find the intervals for which f(x) = 

x
4
 − 2x2 is increasing or decreasing.

f(x) = x
4
 − 2x2

′f x x x x x( ) ( )= =4 4 4 1
3 2− −

For f(x) to be increasing, ′f x( )> 0

∴          4x (x2 −1) > 0
⇒ x (x

2
 −1) > 0

⇒ x(x +1)(x −1) > 0

−¥ ¥
− −+ +

−1 10

⇒ −1 < x < 0 or x > 1
∴ x ∈ (−1, 0) ∪ (1, ∞)

For f(x) to be decreasing, ′f x( )< 0

⇒ − <

⇒ − <
⇒ − + <

4 1 0

1 0

1 1 0

2

2

x x

x x

x x x

( )

( )

( )( )

−¥ ¥
− −+ +

−1 10

⇒ x < −1 or 0 < x < 1
∴ x ∈ (−∞, −1) ∪ (0, 1)
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Maxima and Minima

Suppose f(x) is a real-valued function defined at an inter-

nal (a, b). Then f(x) is said to have maximum value, if 

there exists a point y in (a, b) such that

 f(x) = f(y) for all x ∈ (a, b)

Suppose f(x) is a real-valued function defined at the 

interval (a, b). Then f(x) is said to have minimum value, 

if there exists a point y in (a, b) such that

 f(x) ≥ f(y) for all x ∈ (a, b)

Local maxima and local minima of any function can be 

calculated as:

Consider that f(x) be defined in (a, b) and y ∈ (a, b). 
Now,

 1. If ′f y( ) = 0  and ′f x( )  changes sign from positive 

to negative as `x’ increases through `y’, then x = y 

is a point of local maximum value of f(x).

 2. If ′f y( ) = 0  and ′f x( )  changes sign from negative 

to positive as `x’ increases through `y’, then x = y 

is a point of local minimum value of f(x).

For example,

 1. f(x) = x
3
 − 6x2 + 12x

  Find all points of local maxima and local minima.

y = f(x) = x
3
 − 6x2 + 12x

dy

dx

x x x= + =3 12 12 3 2
2 2− −( )

  For a local maximum or local minimum, we have

dy

dx

x x= = =0 3 2 0 2
2⇒ ⇒( )−

  We observe that dy/dx does not change sign as 

increased through x = 2. Hence, x = 2 is neither a 

point of local maximum nor local minimum.

 2. Find all points of local maxima and minima of the 

function,

f(x) = x
3
 − 6x2 + 9x

Now, ′f x x x x x( ) ( )= + = +3 12 9 3 4 3
2 2− −

For a local maximum or local minimum, we have

′ ⇒ ⇒f x x x x( ) ( ) ,= + = =0 3 4 3 0 1 3
2 −

The change in signs of ′f x( )  are shown in the fol-

lowing figure.

3

+ +−
1

′f x( )
 
changes sign from positive to negative as `x’ 

increases through 1.

Therefore, x = 1 is a point of local maximum.

 Also, ′f x( )  changes sign from negative to positive as 

`x’ increases through 3.

Therefore, x = 3 is a point of local minimum.

Some important properties of maximum and minima are 

given as follows:

 1. If f(x) is continuous in its domain, then at least one 

maxima and minima lie between two equal values 

of x.

 2. Maxima and minima occur alternately, i.e. no two 

maxima or minima can occur together.

For example, let us find all points of maxima and minima 

for the following points:

f(x) = 2x
3
 − 21x2 + 36x

Now, ′f x x x( ) = +6 42 36
2 −

For local maxima or minima,

′f x( ) = 0

∴ 6x2 − 42x + 36 = 0

⇒ (x − 1)(x − 6) = 0

⇒ x = 1, 6

Now, to test for maxima and minima,

′′f x x( ) = 12 42−
At x = 1,

′′f ( ) ,1 3 0 0= − <  hence x = 1 is a point of local 

maximum.

At x = 6,

′′f ( )6 72 42= −

= 30 > 0, hence x = 6 is a point of local minimum.

Maximum and minimum values in a closed interval [a, b] 

can be calculated using the following steps:

 1. Calculate ′f x( ).

 2. Put ′f x( )  = 0 and find value(s) of x. Let c
1
, c

2
, ..., 

c
n
 be values of x.

 3. Take the maximum and minimum values out of 

the values f(a), f(c
1
), f(c

2
), …, f(c

n
), f(b). The 

 maximum and minimum values obtained are the 

absolute maximum and absolute minimum values 

of the function, respectively.

For example, let us find the points of maxima and 

minima for f(x) = 2x
3
 − 24x + 107 in the interval [0, 3].

′f x x( ) = 6 24
2 −

Now, ′f x( ) = 0

⇒ 6x
2
 − 24 = 0 ⇒ x

2 24

6

4= =

∴ x = ± 2
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In the above equation, the term 
∂
∂
u

t

 is called total dif-

ferential coefficient of u with respect to t while 
∂
∂
u

x

 and 

∂
∂
u

y

 are partial derivatives of u. Some of the important 

results from the above relation are given as follows:

 1. If u = f(x, y) and y = f(x), then

∂
∂

∂
∂

∂
∂

⋅
∂
∂

u

x

u

x

u

y

y

x

= +

 2. If u = f(x, y) and x = f
1
(t
1
, t

2
) and y = f

2
(t
1
, t

2
), 

then

∂
∂

∂
∂

⋅
∂
∂

∂
∂

⋅
∂
∂

u

t

u

x

x

t

u

y

y

t
1 1 1

= +

and
 

∂
∂

∂
∂

⋅
∂
∂

∂
∂

⋅
∂
∂

u

t

u

x

x

t

u

y

y

t
2 2 2

= +

 

INTEGRATION

We have already discussed differentiation in the previous 

sections of this chapter. In this section, we discuss the 

other main operation of calculus, integration.

Given a function f of a real variable x and an interval 

[a, b] of the real line, the definite integral f x dx

a

b

( )∫  is 

defined as the area of the region in the xy-plane that is 

bounded by the graph of f, the x-axis and the vertical 

lines x = a and x = b.

METHODS OF INTEGRATION

Integration, unlike differentiation, is not straightforward. 

Some of the integrals can be solved directly from the 

table, however, in most of the calculations we need to 

apply one or the other techniques of integration. In this 

section, we discuss those techniques in order to make the 

integration problems easier to solve.

Integration Using Table

Some of the common integration problems can be solved 

by directly referring the tables and computing the 

results. Table 1 shows the result of some of the common 

integrals we use.

But, x = −2 /∈ [0, 3]

∴ x = 2 is the only stationary point.

f(0) = 107

f(2) = 2(2)
3
 − 24(2) + 107

= 16 − 48 + 107 = 75

f(3) = 2(3)
3
 − 24(3) + 107 = 89

The maximum value of f(x) is 107 at x = 0.

The minimum value of f(x) is 75 at x = 2.

Therefore, the points of maxima and minima are  

0 and 2, respectively.

PARTIAL DERIVATIVES

Partial differentiation is used to find the partial deriva-

tive of a function of more than one independent variable.

The partial derivatives of f(x, y) with respect to x and 

y are defined by

∂
∂ →

f

x

f x ay f x y

aa

=

+

lim

( ) ( , )

0

−

∂
∂ →

f

x

f x y b f x y

bb

=

+

lim

( , ) ( , )

0

−

and the above limits exist.

∂ ∂f x
 
is simply the ordinary derivative of f with 

respect to x keeping y constant, while ∂ ∂f x  is the ordi-

nary derivative of f with respect to y keeping x constant.

Similarly, second-order partial derivatives can be cal-

culated by

∂
∂

∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

∂
∂

∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

∂
∂

∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

∂
∂x

f

x x

f

y y

f

x

, , ,

yy

f

y

∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
 and is, respec-

tively, denoted by 
∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

2

2

2 2 2

2

f

x

f

x y

f

y x

f

y

, , , .

A homogenous function is an expression in which 

every term is of the same degree. Thus, a homogeneous 

function of x and y of degree n can be represented as

a
0
x
n
 + a

1
x
n − 1 

y + a
1
x
n −2 

y
2
 + !  + a

n
y
n

Euler’s theorem on homogeneous function f(x, y) of 

degree `n’ is given by

x
f

x

y
f

y

nf
∂
∂

∂
∂

+ =

If u = f(x, y) where x = g
1
(t) and y = g

2
(t), then

∂
∂

∂
∂

⋅
∂
∂

∂
∂

⋅
∂
∂

u

t

u

x

x

t

u

y

y

t

= +
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Integration Result

e bxdx
ax
sin∫ e a bx b bx

a b

C

ax
sin cos−( )

2 2
+

+

e bxdx
ax
cos∫ e a bx b bx

a b

C

ax
cos sin+

+

+

( )
2 2

x nxdx
2
sin∫  

1
2

2

3

2 2

n

n x x nx

nx nx C

( +

+ )+

− cosn cos

sin

x nxdx
2
cos∫

1
2

2

3

2 2

n

n x x nx

nx nx C

( sinn sin

cos )

−

+ +

Integration Using Substitution

There are occasions when it is possible to perform inte-

gration using a substitution to solve a complex piece 

of integration. This has the effect of changing the vari-

able, the integrand and even the limits of integration (for 

 definite integrals).

To integrate a differential f x dx( )  which is not 

in the table, we first take a function u u x= ( )  so 
that the given differential can be rewritten as a differ-

ential g u du( )  which does appear in the table. Then, if 

g u du G u C( ) ( )∫ = + ,  we know that

f x dx G u x C( ) ( ( )) .∫ = +

Integration by Parts

Sometimes we can recognize the differential to be inte-

grated as a product of a function which is easily differen-

tiated and a differential which is easily integrated.

Integration by parts is a technique for performing inte-

gration (definite and indefinite) by expanding the differ-

ential of a product of function d uv( )  and expressing the 
original integral in terms of a known integral vdu.∫
Using the product rule for differentiation, we have

d uv udv vdu( )= +

Integrating both sides, we get

d uv uv udv vdu( )∫ ∫ ∫= = +

Rearranging the above equation, we get

udv uv vdu∫ ∫= −

Table 1 |  Table of common integrals
Integration Result

1

ax b

dx

+
∫

 

1

a

ax b Cln + +  where  

C is a constant

1

2

ax b

dx

+( )∫ −
1

a ax b

C

+

+

( )

1

ax b

dx
n

+( )∫ −
− −

1

1
1

a n ax b

C
n( )( )+

+

1

2 2
a x

dx

+
∫ 1 1

a

x

a

Ctan
− ! "+

′( )
( )∫

f x

f x

dx ln f x C( ) +
 

sin
2
xdx∫ x

x x C

2

1

2

− sin cos +

 

sin
3
xdx∫ −cos cosx x C+ +

1

3

3

sin
n
xdx∫ −

−−

−

1 11

2

n

x x
n

n

xdx C

n

n

sin cos

sin

+

+∫

cos
2
xdx∫ x

x x C

2

1

2

+ +sin cos

cos
3
xdx∫ sin sinx x C−

1

3

3
+

cos
n
xdx∫

1 11

2

n

x x
n

n

xdx C

n

n

cos sin

cos

−

−

−
+

+∫

cos
n
xdx∫ tan

tan

−
−

−
−

1

2

1

x

n

xdx C
n∫ +

dx

x a
2 2−∫

 

1

2a

x a

x a

Cln
−
+

+

dx

x a
2 2±

∫ ln x x a C+ +
2 2±

x nxdxsin∫
 

1

2
n

nx nx nx Csin cos−( )+

x nxdxcos∫
1

2
n

nx nx nx Ccos sin+ +( )

Table 1 |  Continued

(Continued )
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 1. The value of definite integrals remains the same 

with change of variables of integration provided 

the limits of integration remain the same.

f x dx f y dy

a

b

a

b

( ) ( )⋅ ⋅∫ ∫=

 2. f x dx f x dx

a

b

b

a

( ) ( )⋅ ⋅∫ ∫=−

 3. f x dx f x dx f x dx

a

b

a

c

c

b

( ) ( ) ( )⋅ ⋅ ⋅∫ ∫ ∫= +  if a < c < b

 4. f x dx f x dx f a x dx

a a a

( ) ( ) ( )⋅ ⋅ ⋅∫ ∫ ∫= +

0

2

0 0

2 −

 5. f x dx f a x dx

a a

( ) ( )⋅ ⋅∫ ∫=
0 0

−

 6. f x dx f x dx

a

a a

( ) ( )⋅ ⋅
−
∫ ∫=2

0

, if the function is even.

  

f x dx

a

a

( ) ⋅∫ =

−

0, if the function is odd.

 7. f x dx n f x dx

na a

( ) ( )⋅ ⋅∫ ∫
0 0

= if f(x) = f(x + a)

IMPROPER INTEGRALS

An improper integral is a definite integral that has either 

or both limits infinite or an integrand that approaches 

infinity at one or more points in the range of integration. 

Improper integrals cannot be computed using a normal 

Riemann integral.

Such an integral is often written symbolically like 

a standard definite integral, perhaps with infinity as a 

limit of integration.

lim , lim

b

a

b

a

a

b

f x dx f x dx

→∞ →−∞
( ) ( )∫ ∫

Figure 1 shows the graph of improper integral
dx

x1
2

0
+

∞

∫ .

y

x

Figure 1 |  An improper integral of the first kind.

Integration by Partial Fraction

If the integrand is in the form of an algebraic fraction 

and the integral cannot be evaluated by simple methods, 

the fraction needs to be expressed in partial fractions 

before integration takes place.

The point of the partial fractions expansion is that 

integration of a rational function can be reduced to the 

following formulae, once we have determined the roots of 

the polynomial in the denominator. The formula which 

come handy while working with partial fractions are 

given as follows:

1

x a

dx x a C

−
−∫ ( )= +ln

1 1

2 2

1

a x

dx

a

x

a

C

+

= +∫ tan
− ! "

x

a x

dx a x C
2 2

2 21

2+

= + +∫ ( )ln

Integration Using Trigonometric Substitution

Trigonometric substitution is used to simplify certain 

integrals containing radical expressions. Depending on 

the function we need to integrate, we substitute one of 

the following expressions to simplify the integration:

 (a) For a x
2 2− , use x a= sinq .

 (b) For a x
2 2
+ , use x a= tanq .

 (c) For x a
2 2− , use x a= secq .

DEFINITE INTEGRALS

If a function f(x) is defined in the interval [a, b], then the 

definite integral of the function is given by

f x dx F x F b F a
a

b

a

b

( ) [ ( )] ( ) ( )⋅∫ = = −

where F(x) is an integral of f(x), a is called the lower 

limit and b is the upper limit of the integral.

Geometrically, a definite integral represents the area 

bounded by curve y = f(x), x-axis and the lines x = a 

and x = b.

Some of the important properties of definite integrals 

are given as follows:
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Differentiating both sides, we get

dx t dt= −
−

−1

1

1

g
g g

( )
( )⎡⎣ ⎤⎦/

t b x= − −( )1 g

⇒ ( ) ( )∫ ∫ ( ) ( )
( )

f x dx t f b t dt

a

b b a

= =
1

1

1 1 1

0

1

−
−− −

− −

g
g g g

g

/ /

DOUBLE INTEGRATION

Suppose we have a function f(x, y) defined in a closed 

area Q of xy plane. Now, we can divide Q into n sub-

regions ∆Q
k
 of area ∆A

k
, k = 1, 2, …, n. Let (a

k
, b

k
) 

be any arbitrary point of ∆Q
k
. Hence, the sum can be 

given as

f a b A
k k k

k

n

( , ) ∆∑
= 1

Now, let us consider

lim ( , )

n
k k k

k

n

f a b A

→∞
∆∑

= 1

where limit is taken such that `n’ increases indefinitely 

and the largest linear dimension of each ∆Q
k
 approaches 

zero.

If the limit exists, then the double integral of f(x, y) 

over region Q is denoted by

 f x y dA

Q

( , )∫∫

Some of the important properties of double integrals are:

 1. When x
1
, x

2
 are functions of y and y

1
, y

2
 are con-

stants, then f(x, y) is integrated with respect to x 

keeping y constant within the limits x
1
, x

2
 and the 

resulting expression is integrated with respect to y 

between the limits y
1
, y

2.

f x y dxdy f x y dxdy

Q x

x

y

y

( , ) ( , )∫∫ ∫∫=

1

2

1

2

 2. When y
1
, y

2
 are functions of x and x

1
, x

2
 are con-

stants, f(x, y) is first integrated with respect to y, 

keeping x constant and between the limits y
1
, y

2
 

and the resulting expression is integrated with 

respect to x within the limits x
1
, x

2
.

f x y dxdy f x y dydx

Q y

y

x

x

( , ) ( , )∫∫ ∫∫=

1

2

1

2

The integral, x dx
−2

1

∞

∫  is an example of improper 

integral. This can be solved as follows:

x dx

y

x dx x dx

y

y

y

y

y

−

− −

−

−

2

1

2

1

2

1

1
1

1
1

1

∫

∫ ∫⇒
∞

→∞ →∞

=

= = =lim lim ! "
Improper integrals of the generalized form f x dx

a

b

( )∫  

with one of the limits being infinite and the other being 

non-zero may also be expressed as finite integrals over 

transformed functions. Let

t

x

=
1

Differentiating both sides, we get

dt
dx

x

= −
2

dx x dt
dt

t

= =− −2

2

Substituting the value of dx in the generalized form,  

we get

f x dx

t

f

t

dt

t

f

t

dt

a

b

a

b

b

a

( )∫ ∫ ∫= =−
1 1 1 1

2

1

1

2

1

1

! " ! "
/

/

/

/

Now, considering that f(x) diverges as x a−( )g  for 
g ∈ [ ]0 1, ,  let

x t a= +
1 1/ −g( )

Differentiating both sides, we get

dx t dt t dt= =

=

1

1

1

1

1

1

1 1 1 1 1 1

− −

−

− − − − −

g g

g

g g g

( ) ( )

(

( )⎡⎣ ⎤⎦ ( )⎡⎣ ⎤⎦ ( )/ /

))
( )

t dt
g g/ 1−

t x a= − −( )1 g

⇒ ( ) ( )∫ ∫ ( ) ( )
( )

f x dx t f t a dt

a

b b a

= = +
1

1

1 1 1

0

1

−
− −

− −

g
g g g

g

/ /

Now, considering that f(x) diverges as x b+( )g  for 
g ∈ [ ]0 1, ,  let

x b t= − −1 1/ g( )
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methods of integration to calculate the area of curves, 

length of the curves and the volume of revolution.

Area of Curve

Area bounded by the Cartesian curve y = f(x), the x-axis 

and the ordinates x = a, x = b is ydx

a

b

∫ .

As shown in Fig. 2, area bounded by the polar curve 

r f= q( )  and the radii vectors q a b= ,  is 
1

2

2
r d

a

b

q∫ .

O

y

x

A

B

r   = f(θ )

θ 
=
 β

θ =
 α

Figure 2 |  Polar curve from A to B given by r f= q( ).

Length of Curve

Consider Fig. 3. The length of the arc of the curve  

y = f(x) between the points where x = a and y = b is 

1

2

+ ! "dy

dx

dx

a

b ⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥∫ .

y

B

B′

A

A′
O a

b

x

Figure 3 |  Curve between A to B given by y = f (x). 

 3. When x
1
, x

2
, y

1
 and y

2
 are constants, then

f x y dxdy f x y dxdy f x y dydx

Q x

x

y

y

y

y

x

x

( , ) ( , ) ( , )∫∫ ∫∫ ∫∫= =

1

2

1

2

1

2

1

2

CHANGE OF ORDER OF INTEGRATION

As already discussed, if limits are constant

f x y dxdy f x y dydx

x

x

y

y

y

y

x

x

( , ) ( , )

1

2

1

2

1

2

1

2

∫∫ ∫∫=

Hence, in a double integral, the order of integration 

does not change the final result provided the limits are 

changed accordingly.

However, if the limits are variable, the change of order 

of integration changes the limits of integration.

TRIPLE INTEGRALS

Suppose we have a function f(x, y, z) defined in a closed 

three-dimensional region Q. Now, we can divide Q into n 

sub-regions ∆Q
k
 of ∆V

k
, k = 1, 2, …, n. Let (a

k
, b
k
, c
k
) 

be any point of ∆Q
k
.
.

Hence, the sum can be given as

f a b c V
k k k k

k

n

( , , ) ∆∑
=1

Now, let us consider

lim ( , , )

n
k k k k

k

n

f a b c V

→∞
∆∑

=1

where limit is taken such that n increases indefinitely and 

the largest linear dimensions of each ∆Q
k
 approaches 

zero.

If the limit exists, then the triple integral of f(x, y, z) 

over region Q is denoted by

f x y z dV

Q

( , , )∫∫∫

The limit of f(x, y, z) is continuous in Q.

APPLICATIONS OF INTEGRALS

Integration is used in a wide variety of calculations rang-

ing from the most fundamental to advance physical and 

mathematical calculations. In this section, we discuss the 
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 (b) For q p
=

2

,

 

(about the line OY)

2

3

3p q q
a

b

r dcos∫

O

y

x

A

B

r =  (θ)

θ 
=
 β

θ  =
 α

θ =

θ =  0

2

π

Figure 5 |  Polar curve from A to B given by r f= q( )
for q a=  and q b= .

FOURIER SERIES

Fourier series is a way to represent a wave-like function as 

a combination of sine and cosine waves. It decomposes any 

periodic function into the sum of a set of simple oscillating 

functions (sines and cosines). The Fourier series for the 

function f(x) in the interval a a p< <x + 2  is given by

f x

a

a nx b nx
n

n

n

n

( ) cos sin= + +

= =

0

1 1
2

∞ ∞

∑ ∑
where

a f x dx

a f x nxdx

b f x nxdx

n

n

0

2

2

1

1

1

=

=

=

p

p

p

a

a p

a

a p

a

a

( )

( )cos

( )sin

+

+

+

∫

∫
22p

∫
The values of a

0
, a
n
 and b

n
 are known as Euler’s formulae.

Conditions for Fourier Expansion

Fourier expansion can be performed on any function f(x) 

if it fulfills the Dirichlet conditions. The Dirichlet condi-

tions are given as follows:

 1. f(x) should be periodic, single-valued and finite.

 2. f(x) should have a finite number of discontinuities 

in any one period.

 3. f(x) should have a finite number of maxima and 

minima.

The length of the arc of the polar curve r f= q( )

between the points where q a b= ,  is r
dr

d

d
2

2

+ ! "q
q

a

b ⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥∫ .

The length of the arc of the curve x f t y g t= =( ) ( ),  

between the points where t = a and t = b is

! " ! "dx

dt

dy

dt

dt

a

b 2 2

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥∫ .

Volumes of Revolution

The volume of the solid generated by the revolution about 

the x-axis, of the area bounded by the curve y f x= ( ),  

the x-axis and the ordinates x = a, b is py dx

a

b

2
.∫

Similarly, the volume of the solid generated by the 

revolution about the y-axis, of the area bounded by the 

curve x f y= ( ), the y-axis and the abscissae y = a, b 

is p x dy

a

b

2
.∫

Consider Fig. 4. The volume of the solid generated by 

the revolution about any axis ′ ′A B  of the area bounded 

by the curve AB, the axis and the two perpendiculars on 

the axes AA′  and BB′  is p CD OD

OA

OB

( ) ( )
′

′

∫ 2

d .  

O

A

A

C

D

B

B

x

y

′

′

Figure 4 |  Volume of solid generation by revolution of 
the curve AB about any axis ′ ′A B .

Consider the polar curve shown in Fig. 5. The volume of 

the solid generated by the revolution of the area bounded 

by the curve r f= q( )  and the radii vectors q a b= ,  

is given as follows:

 (a) For q = 0, (about the line OX)

2

3

3p q q
a

b

r dsin∫
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Fourier Series Expansion of Even and Odd 
Functions

We already know that a function f(x) is said to be 

even if f x f x−( ) ( )=  and f(x) is said to be even if 

f x f x− −( ) ( )= .

Now, a periodic function f(x) defined in (−c, c) can be 
represented by the Fourier series

f x

a

a
n x

c

b
n x

c
n

n

n

n

( ) cos sin= + +

= =

0

1 1
2

p p∞ ∞

∑ ∑
where

a

c

f x dx

a

c

f x
n x

c

dx

b

c

f x
n x

c

dx

c

c

n
c

c

n
c

c

0

1

1

1

=

=

=

( )

( )cos

( )sin

−

−

−

∫

∫
p

p
∫∫

Case 1:

When f(x) is an even function,

a

c

f x dx

c

f x dx

a

c

f x
n x

c

dx

c

f x

c

c c

n
c

c

0
0

1 2

1 2

= =

= =

( ) ( )

( )cos ( )co

−

−

∫ ∫

∫
p

ss
n x

c

dx

c p
0

∫

 However, since f x
n x

c

( )sin
p

 is even, b

c

f x
n x

c

dx
n

c

c

= =
1

0( )sin .
p

−∫
 

b

c

f x
n x

c

dx
n

c

c

= =
1

0( )sin .
p

−∫
Thus, if a periodic function f(x) is even, its Fourier 

expansion contains only cosine terms, a
0
 and a

n
.

Case 2:

When f(x) is an odd function,

a

c

f x dx

c

c

0

1
0= =( )

−∫

a

c

f x
n x

c

dx
n

c

c

= =
1

0( )cos
p

−∫
However,

b

c

f x
n x

c

dx

c

f x
n x

c

dx
n

c

c c

= =
1 2

0

( )sin ( )sin .
p p

−∫ ∫
Thus, if a periodic function f(x) is odd, its Fourier expan-

sion contains only sine terms and b
n
.

Half Range Series

Sometimes, it is required to obtain a Fourier expansion 

of a function f(x) for the range (0, c), which is half the 

period of the Fourier series. The Fourier expansion of 

Fourier Expansion of Discontinuous  
Function

While deriving the values of a
0
, a

n
, b
n
, we assumed f(x) 

to be continuous. However, a function may be expressed 

as a Fourier transform even if the function has a finite 

number of points of finite discontinuity.

Let us say that we have a function f(x) in the interval

a a p< < +x 2  and f(x) is defined by

f x x x c

x c x

( )=
+

f a

f a p
1

2
2

( ),

( ),

< <

< <

where c is the point of discontinuity.

Now, we can define the Euler’s formulae as follows:

a x dx x dx

a x nxdx

c

c

n

c

0 1 2

2

1

1

1

= +

= +

+

p
f f

p
f

a

a p

a

( ) ( )

( )cos

∫ ∫

∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ff

p
f f

a p

a

2

2

1 2

1

( )cos

( )sin ( )sin

x nxdx

b x nxdx x nx

c

n

c

+

= +

∫

∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ddx

c

a p+
∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

At x = c, there is a finite jump in the graph of func-

tion. Both the limits, left-hand limit (i.e. f(c − 0)) and 
right-hand limit (i.e. f(c + 0)), exist and are different. 

At such a point, Fourier series gives the value of f(x) as 

the arithmetic mean of these two limits. Hence, at x = c,

f x f c f c( ) = + +
1

2

0 0−( ) ( )⎡⎣ ⎤⎦

Change of Interval

Till now, we have talked about functions having peri-

ods of 2 p .  However, often the period of the function 
required to be expanded is some other interval (say 2c). 

Then, the Fourier expansion is given as follows:

f x

a

a

n x

c

b

n x

c
n

n

n

n

( ) cos sin= + +

= =

0

1 1
2

p p∞ ∞

∑ ∑

where

a

c

f x dx

a

c

f x
n x

c

dx

b

c

f x
n x

c

d

c

n

c

n

0

2

2

1

1

1

=

=

=

+

+

( )

( )cos

( )sin

a

a

a

a p

p

∫

∫
xx

c

a

a+2
∫
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b

a

c

B

C

A

Figure 6 |  Triangle law of vector addition.

! ! !
c a b= +

According to parallelogram law of vector addition, as 

shown in Fig. 7,

B C

AO

c

a

b

Figure 7 |  Parallelogram law of vector addition.

! ! !
c a b= +

If we have two vectors represented by adjacent sides of 

parallelogram, then the sum of the two vectors in magni-

tude and direction is given by the diagonal of the paral-

lelogram. This is known as parallelogram law of vector 

addition.

Some important properties of vector addition are:

 1. If we have two vectors 
!
a
 
and 

!
b

! ! ! !
a b b a+ = +

 2. If we have three vectors 
!
a , 

!
b
 
and 

!
c

! ! ! ! ! !
a b c a b c+ + = + +( ) ( )

Multiplication of Vectors

 1. Multiplication of a vector with scalar: 

Consider a vector 
!
a
 
and a scalar quantity k. Then

⏐k !
a ⏐ = ⏐k⏐⏐ !

a ⏐

 2. Multiplication of a vector with another 

vector using dot product: Dot product or 

scalar product of two vectors is given by

! ! ! !
a b a b⋅ = cosq

such a function of half the period, therefore, consists 

of sine or cosine terms only.

If f(x) is required to be expanded as a sine series in 

0 < x < c, then we extend the function reflecting it in the 
origin, so that f x f x( ) ( ).= − −  The extended function is 

odd in (−c, c) and the expansion can be given as

f x b
n x

c
n

n

( ) sin=

=

p

1

∞

∑

where b

c

f x
n x

c

dx
n

c

=
2

0

( )sin
p

∫

If f(x) is required to be expanded as a cosine series 

in 0 < x < c, we extend the function reflecting it in the 
y-axis, so that f x f x( ) ( ).= −  The extended function is 

even in (−c, c) and the expansion can be given as

f x

a

a
n x

c
n

n

( ) cos= +

=

0

1
2

p∞

∑
where

a

c

f x dx

a

c

f x
n x

c

dx

c

n

c

0
0

0

2

2

=

=

( )

( )cos

∫

∫
p

VECTORS

Vector is any quantity that has magnitude as well as 

direction. If we have two points A and B, then vector 

between A and B is denoted byAB

! "!!
.

Position vector is a vector of any points, A, with 

respect to the origin, O. If A is given by the coordinates 

x, y and z.

AP x y z

! "!!
= + +

2 2 2

 1. Zero vector is a vector whose initial and final points 

are same. Zero vectors are denoted by 0

!
. They are 

also called null vectors.

 2. Unit vector is a vector whose magnitude is unity or 

one. It is in the direction of given vector A

!"
 and is 

denoted byA
!
.

 3. Equal vectors are those which have the same magni-

tude and direction regardless of their initial points.

Addition of Vectors

According to triangle law of vector addition, as shown 

in Fig. 6,
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If A(x) = A
1
(x)i + A

2
(x)j + A

3
(x)k, then

dA

dx

dA

dx

i

dA

dx

j

dA

dx

k= + +
1 2 3

If A(x, y, z) = A
1
(x, y, z)i + A

2
(x, y, z)j + A

3
(x, y, z)k,  

then

dA
dA

dx

dx
dA

dy

dy
dA

dz

dz= + +

d

dy

A B A
dB

dy

dA

dy

B( )⋅ = +

d

dz

A B A
dB

dz

dA

dz

B( )× × ×= +

A unit vector perpendicular to two given vectors 
!
a  and !

b

 

is given by

! ! !

! !c
a b

a b

=
×
×| |

Gradient of a Scalar Field

If we have a scalar function a(x, y, z), then the gradi-

ent of this scalar function is a vector function which is 

defined by

grad 
!
a a

f

x

i
f

y

j
f

z

k= = + +∇
∂
∂

∂
∂

∂
∂

The gradient is basically defined as a vector of the same 

magnitude and direction as that of the maximum space 

rate of change of 
!
a.

Divergence of a Vector

If we have a differentiable vector 

!
A (x, y, z), then diver-

gence of vector 

!
A  is given by

div

! !
A A

A

x

A

y

A

z

x y z
= = + +∇

∂
∂

∂

∂
∂
∂

where A
x
, A

y
 and A

z
 are the components of vector 

!
A.

Curl of a Vector

The curl of a continuously differentiable vector 

!
A  is 

given by

curl 

! !
A A i

x

j

y

k

z

A i A j A k
x y z

= = + + + +∇
∂

∂
∂

∂
∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟×( )

=

i j k

x y z

A A A
x y z

∂
∂

∂
∂

∂
∂

= + +

∂
∂

∂

∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

∂
∂

∂
∂

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

∂

∂
∂A

y

A

z

i

A

z

A

x

j

A

x

z y x z y− − −
AA

y

k
x

∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

where 
!
a  = magnitude of vector 

!
a , 

!
b  = magnitude 

of vector 

!
b  and q = angle between !

a and 

!
b , 0 ≤ q ≤ p .

The result of dot product of two vectors is a scalar. 

Dot product is zero when both the vectors are perpendic-

ular to each other. Dot product is maximum when both 

the vectors are in the same direction and is minimum 

when both the vectors are in the opposite direction.

Multiplication of Vectors Using Cross Product

The cross or vector product of two vectors is given by

!
a ×

!
b  = ⏐ !

a ⏐⏐
!
b ⏐ sinq n! ,

where ⏐ !
a ⏐ = magnitude of vector !

a

⏐
!
b ⏐ = magnitude of vector 

!
b

q = angle between !
a
 
and 

!
b , 0 ≤ q ≤ p

n!
 
=  Unit vector perpendicular to both 

!
a
 
and 

!
b .

The result of 
!
a ×

!
b  is always a vector.

Cross product is zero if the vectors are in the same 

direction or in the opposite direction (i.e. q = 0 or 180°). 
Cross product is maximum if the angle between the two 

vectors is 90°, and it is minimum if the angle between 
the two vectors is 270°.

Some important laws of dot product are:

 1. A ⋅B = B ⋅A
 2. A ⋅B + C = A ⋅B + A ⋅C
 3. k(A ⋅B) = (kA)⋅B = A ⋅(kB)
 4. i  ⋅ i = j  ⋅ j = k  ⋅ k = 1, i  ⋅ j = j  ⋅ k = k  ⋅ i = 0

Some important laws of cross product are:

 1. A × B = −B × A
 2. A × (B + C) = A × B + A × C
 3. m(A × B) = (ma) × B = A × (mB)
 4. i × i = j × j = k × k = 0, i × j = k, j × k = i, k × 

i = j

 5. If A = A
1
i + A

2
j + A

3
k and B = B

1
i + B

2
j + B

3
k, 

then

A B

i j k

A A A

B B B

× =
1 2 3

1 2 3

Derivatives of Vector Functions

The derivative of vector A(x) is defined as

dA

dx

A x x A x

xx

=

+

lim

( ) ( )

∆ →

∆
∆0

−

if the above limits exists.
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The volume of a parallelepiped whose sides are given by 

the vectors a, b and c, as shown in Fig. 8, can be calcu-

lated by the absolute value of the scalar triple product.

V a b c
parallelepiped

= ⋅( )×

a × b

c

b

a

Figure 8 |  Parallelepiped with sides given by the  
vectors a, b and c.

Vector Triple Product

The vector triple product of any three vectors is defined 

as the cross product of one vector with the cross product 

of the other two vectors.

Hence, if we have three vectors a, b and c, then the 

vector triple product is given by

a b c b a c c a b× × −( ) ⋅( ) ⋅( )=

LINE INTEGRALS

Let c be a curve from points A(a
1
, b
1
) and B(a

2
, b
2
) on the 

xy plane. Let P(x, y) and Q(x, y) be single-valued func-

tions defined at all points of c. Now, c is divided into n 

parts and (n − 1) points are chosen as (x
1
, y
1
), (x

2
, y
2
), …,  

(x
n−1, yn−1). Let us define ∆xk = xk − xk − 1 and ∆yk = 

y
k
 − y

k − 1, k = 1, 2, …, n where (a
1
, b

1
) ≡ (x

0
, y

0
) and 

(a
2
, b

2
) ≡ (x

n
, y
n
).

Let us say that points (a
k
, b

k
) are chosen so that they 

lie on the curve between points (x
k−1, yk−1) and (xk, yk).

Now, consider the sum,

{ }P x Q y
k k k

k

n

k k k
( , ) ( , )a b a b∆ ∆∑ +

=1

The limit of the sum as n → ∞ is taken in such a way 

that all the quantities ∆x
k
 and ∆y

k
 approach zero, and 

if such limit exists, it is called a line integral along the 

curve C and is denoted by

[ ( , ) ( , ) ]P x y dx Q x y dy

c

+∫

where A
x
, A

y
 and A

z
 are the components of vector

!
A.

Thus, the curl of a vector 

!
A  is defined as a vector 

function of space obtained by taking the vector product 

of 

!
A .

Some important points of divergence and curl are:

 1. ∇ ⋅ ∇
!
A  = ∇2

A = 
∂
∂

∂
∂

∂
∂

2

2

2

2

2

2

! ! !
A

x

A

y

A

z

+ +

 2. ∇ × ∇
!
A  = 0

 3. ∇ ⋅ ∇ × 
!
A  = 0

 4. ∇ × (∇ × 
!
A ) = ∇(∇ ⋅ 

!
A ) × ∇2

!
A

 5. ∇ (∇ ⋅ 
!
A ) = ∇ × (∇ ×

!
A ) + ∇2

!
A

 6. ∇ (
!
A  + 

!
B ) = ∇ ⋅ 

!
A  + ∇ ⋅ 

!
B

 7. ∇ × (
!
A  + 

!
B ) = ∇ ×

!
A  + ∇ ×

!
B

 8. ∇ ⋅ (
!
A  × 

!
B ) = 

!
B ⋅ (∇ ×

!
A ) − 

!
A ⋅ (∇ ×

!
B )

 9. ∇ × (
!
A  × 

!
B ) = (B  ⋅ ∇) A − B (∇⋅A) − (A∇)  

B + A (∇B)

Directional Derivative

The directional derivative of a multivariate differentiate 

function f(x, y, z) is the rate at which the function changes 

at a point (x
0
, y

0
, z
0
) in the direction of a vector v.

The directional derivative of a scalar function, 

f x f x x x
n

( )= ( , , , )
1 2

…  along a vector v v v
n

=
1
, ,…( ) is 

a function defined by the limit

∇ ( )
→v

h

f x

f x hv f x

h

=

+

lim

( ) ( )

0

! −

If the function f is differentiable at x, then the directional 

derivative exists alone any vector v,

∇ ( ) ∇ ( ) ⋅
v
f x f x v= !

where ∇ on the right-hand side of the equation is the 

gradient and v! is the unit vector given by v
v

v

! = .

The directional derivative is also often written as 

follows:

d

dv

v v

x

v

y

v

z
x y z

= = + +! ⋅ ∇
∂

∂
∂

∂
∂
∂

Scalar Triple Product

The scalar triple product of three vectors is defined as 

the dot product of one of the vectors with the cross prod-

uct of the other two vectors.

Thus, the scalar product of three vectors a, b and c 

is defined as

a b c a b c b c a c a b, ,[ ] ⋅( ) ⋅( ) ⋅( )= = =× × ×
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C

C′

∆Ck

∆A
k 
=  ∆xk ∆yk

Figure 10 |  Surface integrals.

STOKES’ THEOREM

Let S be an open, two-sided surface bounded by a simple 

closed curve C. Also, if 

!
V is a single-valued, continuous 

function, then according to Stokes’ theorem, “The line 

integral of the tangential component of a vector 

!
V taken 

around a simple closed curve C is equal to the surface 

integral of the normal component of the curl of 

!
V  taken 

over any surface S having C as the boundary.”

It is denoted by

A dr A nds

sc

⋅ ∇ ⋅∫∫∫ = ( )×

GREEN’S THEOREM

Let S be a surface bounded by a simple closed curve C. 

Let f
1
(x, y) and f

2
(x, y) be continuous functions and 

∂
∂
f

x

1

and 
∂
∂
f

y

2  be continuous partial derivatives in S, then 

according to Green’s theorem,

∂
∂

∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ∫∫∫

f

x

f

y

dxdy f dx f dy

cs

1 2

2 1
− = +( )!

GAUSS DIVERGENCE THEOREM

Let S be a closed surface bounding a region of volume V.  

Assuming the outward drawn normal to the surface 

as positive normal and considering a, b and g as the 
angles which this normal makes with x, y and z axes, 

respectively.

The limit exists if P and Q are continuous at all points 

of C. To understand better, refer to Fig. 9.

A(α1, β1)

x

y

a
2

a
1

C

B(a2, b2)

(x1, y1)

(xk, yk)

(x
k + 1, yk + 1)

(αk  + 1, βk  + 1)

Figure 9 |  Line integral.

In the same way, a line integral along a curve C in the 

three-dimensional space is given by

[ ]A dx A dy A dz

c

1 2 3
+ +∫

where A
1,
 A

2
 and A

3
 are functions of x, y and z, 

respectively.

SURFACE INTEGRALS

Consider C to be a two-sided surface having a pro-

jection C ′ on the xy plane. The equation for C is z =  
f(x, y), where f is a continuous single-valued function for 

all values of x and y.

Now, divide C ′ into n sub-regions of area ∆A
k
 where 

k = 0, 1, 2, …, n and join a vertical column on each 

of the corresponding sub-regions to intersect C in an 

area ∆C
p
.

Suppose g(x, y, z) is single valued and continuous for 

all values of C. Now, consider the sum

g c
k k k p

k

n

( , , )a b g ∆∑
=1

where (a
k
, b

k
, g
k
) is any arbitrary point of ∆C

k
. If the 

limit of this sum, n→∞ is in such a way that each 

∆ →C
k

0 exists, the resulting limit is called the surface 

integral of g(x, y, z) over C.

The surface integral is denoted by

g x y z ds

C

( , , ) ⋅∫∫
Figure 10 graphically represents surface integrals.
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In vector form, with A = A
1
i + A

2
j + A

3
k and 

n i j k! = + +cos cos cos ,a b g

∇ ⋅ = ⋅∫∫∫∫∫ AdV A ndS

sv

!

Divergence theorem states that the surface integral of 

the normal components of a vector 

!
A  taken over a 

closed surface is equal to the integral of the divergence 

of 

!
A  taken over the volume enclosed by the surface.

Also, if A
1
, A

2
 and A

3
 are continuous and have con-

tinuous partial derivatives in the region, then

∂
∂

∂
∂

∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ∫∫∫∫∫

A

x

A

y

A

z

dV A A

A

sv

1 2 3

1 2

3

+ + = +

+

( cos

co

cos a b

ss )g dS

⇒ 

∂
∂

∂
∂

∂
∂

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ∫∫∫∫∫

A

x

A

y

A

z

dV A dydz A dzdx

A dx

sv

1 2 3

1 2

3

+ + = +

+

(

ddy)

SOLVED EXAMPLES 

 1. What is the value of lim

sin

x

x

x→

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

4

3
?

Solution: We have

lim

sin

x

x

x→

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

4

3

=

=

=

lim

sin

lim

sin

4

3

0

4

3

0

4

3

4

3

4

3

4

3

4

3

4

3

4

x

x

x

x

x

x

→

→

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

33

1
4

3

× =

 2. What is the value of lim

x

x x x

x x→0

3 2

2

6 11 6

6 8

− −
−
+

+

?

Solution: When x
x x x

x x

→ 2
6 11 6

6 8

0

0

3 2

2
,

− −
−
+

+

=

Hence, we apply L’Hospital’s rule,

lim

( ) ( )

( )x

x x

x→2

2 2
3 12 11

2 6

3 2 12 2 11

2 2 6

12 24 11

2

1

2

−
−

−
−

−
−

−
−

+
=

+

=
+

= =
11

2

 3. What is the value of lim
sin

cosx

x x

x x x→∞

+

−
?

Solution: We have

lim
sin

cos

lim

sin

cos

lim
sin

li
x x

x
x x

x x x

x

x

x

x

x

x

→∞ →∞
→∞+

=

+

+

=

+
−

−1

1

1

1 mm
cos

x

x

x→∞

=

+

=
1 0

1 0

1
−

 4. What is the value of lim
cos

x

x

x→0

1 2−
?

Solution: We have

lim
cos

x

x

x→0

1 2−

=

= =

lim

sin

lim
sin

sin lim
sin

x

x x

x

x

x

x

x
x

x

→

→ →

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⋅

⎛
⎝
⎜

0

2

0 0

2

2 2⎜⎜⎜
⎞
⎠
⎟⎟⎟( )→
lim sin

( )( )

x

x

0

2 1 0 0= =

 5. If a function is given by

f x

x

x

x x

x

( )

sin
cos ,

,

=

+

=

≠ 0

2 0

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

Find out whether or not f(x) is continuous at x = 0.

Solution: We have

L.H.L. at x = 0

= = =

=

lim ( ) lim ( ) lim ( )

lim

sin( )

cos(

x h h

h

f x f h f h

h

h

→ → →

→
+

0 0 0

0

0− −

−
−

−hh)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= + =1 1 2

R.H.L. at x = 0

= = + =

= +

lim ( ) lim ( ) lim ( )

lim

sin

cos

x h h

h

f x f h f h

h

h

h

→ → →

→

⎡

⎣
⎢
⎢

⎤

⎦

0 0 0

0

0

⎥⎥
⎥
= + =1 1 2
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Solution: Since f(x) is continuous at x = 3,

lim ( ) ( )

x

f x f

→3

3=

   

lim ( )

lim

lim

( )( )

( )

lim (

x

x

x

x

f x

x

x

x x

x

x

→

→

→

→

3

3

2

3

3

9

3

3 3

3

=

=

+

=

l

l

l

−
−
−

−
++ =

+ =

=

3

3 3

6

) l

l
l

 9. Discuss the differentiability of the function 

f x
x x

x x
( )

,

,
=

− <
−
1 2

2 3 2

if

if ≥
⎧
⎨
⎪⎪
⎩⎪⎪

Solution: At x = 2

(L.H.D. at x = 2) = lim

( ) ( )

x

f x f

x→2

2

2
−

−
−

=

= = =

lim

( ) ( )

lim lim

x

x x

x

x

x

x

→

→ →

2

2 2

1 4 3

2

2

2

1 1

− − −
−

−
−

(R.H.D. at x = 2) =
+

lim

( ) ( )

x

f x f

x→2

2

2

−
−

=

= = =

lim

( ) ( )

lim

( )

lim

x

x x

x

x

x

x

→

→ →

2

2 2

2 3 4 3

2

2 2

2

2 2

− − −
−

−
−

Therefore, L.H.D. R.H.D.≠

Hence, f(x) is not differentiable at x = 2.

 10. Discuss the differentiability of f x x x( ) =  at x = 0.

Solution: We have

f x x x
x x

x x

( )
,

,

= =

2

2

0

0

≥⎧
⎨
⎪⎪

⎩⎪⎪− <

(L.H.D. at x = 0) = lim

( ) ( )

x

f x f

x→0

0

0
−

−
−

= = =lim lim( )

x x

x

x

x

→ →0

2

0

0

0

0
− −

−
−

(R.H.D. at x = 0) =
+

lim

( ) ( )

x

f x f

x→0

0

0

−
−

= = =lim lim

x x

x

x

x

→ →0

2

0

0

0

0
−
−

Also, we know that f (0) = 2. Thus, lim ( ) lim ( ) ( )

x x

f x f x f

→ →0 0

0
−

= =
+

 

lim ( ) lim ( ) ( )

x x

f x f x f

→ →0 0

0
−

= =
+

.

Hence, f(x) is continuous at x = 0.

 6. Discuss the continuity of the function f(x) at  

x = 1/2, where

f x

x

x

x

x

x

( )

,

,

,

= =

1 2 0 1 2

1 1 2

3 2 1 2 1

/ /

/

/ /

−

−

<

<

≤

≤

⎧

⎨
⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

Solution: We have

LHL at x = 1/2

= lim ( ) lim ( )

x x

f x x

→ →1 2 1 2

1 2

/ /

/
−

−=

= =− −1 2 1 2 0/ /

RHL at x = 1/2

= =
+

lim ( ) lim ( )

x x

f x x

→ →1 2 1 2

3 2

/ /

/ −

= =3 2 1 2 1/ − /

Since, lim ( ) lim ( )

x x

f x f x

→ →1

2

1

2

−
≠

+

Hence, f(x) not continuous at x =
1

2

.

 7. Discuss the continuity of f(x) = 2x − ⏐x⏐ at x = 0.

Solution: We have

   

f x x x
x x x

x x x
( )

,

( ),
= =2

2 0

2 0
− −

− − <| |
if

if

≥⎧
⎨
⎪⎪
⎩⎪⎪

⇒ f x
x x

x x
( )

,

,
=

if

if

≥⎧
⎨
⎪⎪
⎩⎪⎪

0

3 0<

Now,

L.H.L. at x = 0

= = = =lim ( ) lim

x x

f x x

→ →0 0

3 3 0 0
− −

×

R.H.L. at x = 0

= = =
+ +

lim ( ) lim

x x

f x x

→ →0 0

0

and f(0) = 0

= = =
+

lim ( ) lim ( ) ( )

x x

f x xf x f

→ →0 0

0
−

So, f(x) is continuous at x = 0.

 8. For what value of l  is the function f(x) continuous 
at x = 3?

f x

x

x

x

x

( )
,

,

=

=

2
9

3

3

3

−
−

≠

l

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪
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(R.H.D. at x = 0) =
+

lim

x

f x f

x→0

0

0

( ) ( )−
−

= = =lim lim

x x

x

x→ →0 0

0
1 1

−

( ) ( )L.H.D. at  R.H.D. at x x= =0 0≠

Hence, f(x) is not differentiable at x = 0 1 1∈ ( , ).−

Thus, Rolle’s theorem is not applicable.

 13. Verify Rolle’s theorem for the function 

f x x x( ) sin cos= + −1 on [ , ].0 2p /

Solution: As sin x and cos x are continuous and 

differentiable everywhere, f x x x( ) sin cos= + −1 
is continuous on [ , ]0 2p /  and differentiable on 

( , ).0 2p /

Now, f( ) sin cos0 0 0 1 0 1 1= + = +− −

=

= + = +

=

0

2 2 2 1 1 0 1

0

f( ) sin cosp p p/ / / − −

∴ f f( ) ( )0 2= p/

Thus, f(x) satisfies all the conditions of Rolle’s  

theorem. Therefore, Rolle’s theorem is applicable, 

i.e. there exists c ∈ ( , )0 2p  such that ′f c( ) .= 0

Now,

f x x x f x x x( ) sin cos ( ) cos sin= + =− −1 ⇒ ′

Also, ′f x( ) = 0

∴ ′f x x x( ) cos sin= =− 0

⇒
⇒
⇒

sin cos

tan

x x

x

x

=

=

=

1

4p

Thus, c = p p4 0 2∈ ( , )  such that ′f c( ) .= 0

 14. Verify Lagrange’s mean value theorem for 

f x x x( ) ( )= − 2  on [ , ].1 3

Solution: We have

f x x x x x( ) ( )= =− −2 2
2

We know that a polynomial function is continuous 

and differentiable everywhere. So, f(x) is continu-

ous on [ , ]1 3  and differentiable on ( , ).1 3

Hence, f x( )
 
satisfies both the conditions of 

Langrage’s mean value theorem on [1, 3], and 

hence there exists at least one real number 

c ∈ ( , )1 3  such that

′f c

f f

( )

( ) ( )

=

3 1

3 1

−
−

Therefore, (L.H.D. at x = 0) = (R.H.D. at x = 0)

Hence, f(x) is differentiable at x = 0.

 11. Discuss the applicability of Rolle’s theorem for the 

function f x x x( ) = +
2

5 6−  on the interval [2, 3].

Solution: We know that

   (i) f(x) is continuous on [2, 3]

 (ii) f(x) is differentiable on [2, 3] 

 

[

]

∵ a polynomial function is 

differentiable everywhere

(iii) f( ) ( ) ( )2 2 5 2 6 0
2

= + =−

f( ) ( ) ( )3 3 5 3 6 0
2

= + =−

Thus, f f( ) ( ).2 3=

Hence, Rolle’s theorem is applicable. Therefore, 

there exists a value c ∈ ( , )2 3  such that ′f c( ) = 0.

We have

f x x x f x x

f x x x

( ) ( )

( ) .

= + =

= = =

2
5 6 2 5

2 5 0 2 5

− −
−

⇒ ′
′ ⇒

Thus, c = 2 5 2 3. ( , )∈  such that ′f c( ) .= 0

Hence, Rolle’s theorem is verified.

 12. Discuss the applicability of Rolle’s theorem for 

f x x( ) =  on [ , ]−1 1 .

Solution: We have

f x
x x

x x
( )

,

,
=

− − <when 

when 0

1 0

6

≤
≤ ≤

⎧
⎨
⎪⎪
⎩⎪⎪

Function f(x) is continuous and differentiable at all 

points x < 0  and x > 0 , since it is a polynomial 

function.

However, we have to check for continuity and dif-

ferentiability at x = 0.

Now, lim ( ) lim( )

x x

f x x

→ →0 0

0
−

−= =

lim ( ) lim

( )

x x

f x x

f

→ →0 0

0

0 0

+

= =

=

∴ lim ( ) lim ( ) ( )

x x

f x f x f

→ →0 0

0
−

= =
+

Thus, f(x) is continuous at x = 0 and hence con-

tinuous on [ , ].−1 1

Checking for differentiability,

(L.H.D. at x = 0) = lim

x

f x f

x→0

0

0
−

−
−

( ) ( )

= = =lim lim

x x

x

x→ →
( )

0 0

0

0

1 1
− −

−
− −
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Now, after substituting the value, we get

y =
+ +

tan
tan

tan

−1
2

1 1q
q

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

=
+

=

+

tan
sec

tan

tan
cos

sin

cos

− −1 11

1
1q

q
q

q
q

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥⎥
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣

⎢
⎢

=
+

=tan
cos

sin

tan

cos

sin cos

− −1 1

2

1
2

2

2

2 2

q
q

q

q q⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
= =tan cot tan tan

− − −1 1

2 2 2

q p q⎢⎢
⎢

⎤

⎦
⎥
⎥

= =
p q p
2 2 2

1

2

1− − −
tan x

Differentiating with respect to x, we get

dy

dx x x

=

+

=

+

0
1

2

1

1

1

2 1
2 2

−
−

⋅
( )

 17. Differentiate the function f x
e x

x

x

( )
sin

log

=
+

+1

Solution: We have

f x
e x

x

f x

x
d

dx

e x e x
d

dx

x

x x

( )
sin

log

( )

( log ) ( sin ) ( sin ) (

=
+

+

=

+ + +

1

1

′
− 11

1

1 0
1

2

+

+

=

+ + + +

log )

( log )

( log )( ) ( sin )

(

x

x

x e x e x

x

x x
cos −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

11

1

1

2

2

+

=

+ +
+

+

log )

( log )( cos )
sin

( log )

x

x e x
e x

x

x

x

x

−

 18. Differentiate the function f x x
x

x

( ) .=

Solution: Let y x
x

x

= , then

y ex x
x

= ⋅ log

On differentiating both sides with respect to x, we get

dy

dx

e
d

dx

x x

dy

dx

x
d

dx

e x

dy

dx

x

x x x

x x x

x

x

x

x

=

=

=

log

log

( log )

( log )

⋅

⇒ ⋅

⇒ !!
"

log ( log )

(log )

log

log

x e
d

dx

x x

e
d

dx

x

x x

x x

⋅

⋅+

Now, f x x x( ) =
2

2−

⇒ ′f x x( ) = 2 2−

f f

f x

f f

( ) ( )

( )

( ) ( )

3 9 6 3 1 1 2 1

3 1

3 1

= = = =

=

− − −
−
−

and

′

⇒ 2 2

3 1

3 1

x−
− −

−
=

( )

⇒ 2 2 2 2x x− = =⇒

Thus, c = 2 1 3∈ ( , )  such that ′f c

f f

( )

( ) ( )

.=

3 1

3 1

−
−

Hence, Lagrange’s mean value theorem is verified 

for f x( )  on [1, 3].

 15. Verify Lagrange’s mean value theorem for 

f x x x( ) sin sin= +2 2  on [ , ].0 p

Solution: sinx  and sin 2x  are continuous and 

differentiable everywhere, therefore f(x) is continu-

ous on [ , ]0 p  and differentiable on ( , )0 p .

Thus, f(x) satisfies both the conditions of Lagrange’s 

mean value theorem.

There exists at least one c ∈ ( , )0 p  such that 

′f c

f f

( )

( ) ( )

=

p
p

−
−

0

0

f x x x

f x x x

( ) sin sin

( ) cos cos

= +

= +

2 2

2 2 2′

f(0) and f( ) sin sinp p p= + =2 2 0

∴ ′f x

f f

( )

( ) ( )

=

p
p

−
−

0

0

⇒

⇒
⇒
⇒

2 2 2
0 0

0

2 2 2 0

2 0

2

cos cos

cos cos

cos cos

cos co

x x

x x

x x

x

+ =

+ =

+ =

=

−
−

−

p

ss

cos cos( )

x

x x

x x

x x

⇒
⇒
⇒ ⇒

2

2

3 3

=

=

= =

p
p
p p

−
−

/

Thus, c = p p/3 0∈( , ) such that ′f c

f f

( )

( ) ( )

.=

p
p

−
−

0

0

Hence, Lagrange’s mean value theorem is verified.

 16. Differentiate the function f x
x

x

( ) tan=
+ +−1

2
1 1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
.

Solution: Let y
x

x

=
+ +

tan
−1

2
1 1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
, put 

x = tanq, i.e. q = tan
−1

x .
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When n = 1,

a x xdx xdx

x

b f x
n

1

0 0

0

1 1

2

2

1

2

2

2

0

1

= =

= =

=

p p

p

p

p p

p

sin cos sin

cos

( )si

∫ ∫

−

nn

sin sin

cos c

nxdx

dx x nxdx

n x

−

−

− −

p

p

p

p

p

p

∫

∫ ∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= +

=

1
0

1

2

1

0

0

oos

sin sin

n x dx

n x

n

n x

n

n

+

=

1

1

2

1

1

1

1

0 1

0

0

⎡
⎣⎢

⎤
⎦⎥

=
+

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫
p

p

p
−

−
− ≠(( )

When n = 1,

b x xdx

x dx

x
x

1

0

0

1

1

2

1 2

1

2

2

2

=

=

=

p

p

p

p

p

sin sin

cos

sin

∫

∫ ( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−
⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
0

1

2

p
=

Hence, 

 

f x
x x x

x

( )
cos cos cos

sin

= + + +

+

1 2 2

2 1

4

4 1

6

6 1

1

2

2 2 2p p
−

− − −
!

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
(1)

Putting x =
p
2

 in Eq. (1), we get 1
1 2 1

1 3

1

3 5

1

5 7

1

2

= + + +

p p
− − −

⋅ ⋅ ⋅
∞

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟!

1
1 2 1

1 3

1

3 5

1

5 7

1

2

= + + +

p p
− − −

⋅ ⋅ ⋅
∞

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟!

Hence, 
1

1 3

1

3 5

1

5 7

1

4

2

⋅ ⋅ ⋅
∞ ( )− − −+ =! p .

 20. Prove that the function f x x x x( ) = +
3 2

6 12 9− −  

is strictly increasing on R.

Solution: We have

f x x x x x R( ) ,= +
3 2

6 1 2 9− − ∈

Differentiating with respect to x, we get

′

≥ ≥ ∈

f x x x x x

x x x R

( ) ( )

( ) ( ( )

= + = +

=

3 12 12 3 4 4

3 2 3 2 0

2 2

2 2

− −

− −∵ for all ))

⇒ ′ ∈f x x R( )> 0 for all 

⇒ f(x) is strictly increasing function for all x R∈ .

dy

dx

e
d

dx

x x

dy

dx

x
d

dx

e x

dy

dx

x

x x x

x x x

x

x

x

x

=

=

=

log

log

( log )

( log )

⋅

⇒ ⋅

⇒ !!
"

log ( log )

(log )

log

log

x e
d

dx

x x

e
d

dx

x

x x

x x

⋅

⋅+

= +

=

x x e
d

dx

x x e

x

x x x x

x x x x x

x x

x

x

log ⋅ ⋅
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⋅ ⋅

log log
( log )

log

1

1

xx

x x

x

x x x x
x

x

x

x x

x
x

+ +

= + +

log

( log ) log

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ⋅

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⋅
⎡

⎣
⎢
⎢

1

1

⎢⎢

⎤

⎦
⎥
⎥
⎥

⋅ ⋅
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= + +x x x x

x

x x
x

( log ) log1
1

 19. If f x

x

x x

( )
≤ ≤

≤ ≤
⎧
⎨
⎪⎪
⎩⎪⎪

=

0 0

0

,

sin ,

− p
p

, prove that f x
x nx

n
n

( )
sin cos

.= +

=

1

2

2 2

4 1
2

1
p p

−
−

∞

∑

f x
x nx

n
n

( )
sin cos

.= +

=

1

2

2 2

4 1
2

1
p p

−
−

∞

∑  Hence, show that 

1

1 3

1

3 5

1

5 7

1

4

2

⋅ ⋅ ⋅
∞ ( )− − − −+ =! p .

Solution: Let

f x

a

a nx b nx
n

n

n

n

( )
∞ ∞

∑ ∑= + +

= =

0

1 1
2

cos sin

Then,

a f x dx dx xdx

a f x
n

0

0

0

1 1
0

2

1

= = + =

=

p p p

p

p

p

p

p
( ) sin

( )cos

− −∫ ∫ ∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

nnxdx

dx x nxdx

n x

−

−

p

p

p

p

p

p

∫

∫ ∫=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) −

1
0

1

2

1

0

0

+

= +

sin cos

sin sinn

cos cos

n x dx

n x

n

n x

n

−

−
−

−

1

1

2

1

1

1

1

0

0

( )⎡⎣ ⎤⎦

+( ) ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫
p

p

p
=

+

+

=
11

2

1

1

1

1

1

1

1

1

1

1

2

1

p
p p

p

−
−

−

−
−

≠

cos cos( )n

n

n

n

n n

n

+

+

+

+

+

=

( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )

−− − − −
−

1

1

1 1

1

0

1 1( )
−

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

−n n

n n

n

+

+

=

( )

,

when is odd

andd when  is even−
−
2

1
2p ( )

,

n

n
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Solution: We have

f x x x( ) = +
3

′f x x( ) = +3 1
3

For a maximum or minimum, we have

f x x x
i′( ) = + = =0 3 1 0

3

2⇒ ⇒ ±

This gives the imaginary values of x, hence f x′( )≠ 0  

for any real value of x.

Hence, f(x) does not have a maximum or minimum.

 24. Find the absolute maximum and minimum values 

of f x x x( ) sin cos= +
1

2

2  in 0

2

, .
p⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Solution: We have

f x x x( ) sin cos ,= +
1

2

2 0

2

in 
p⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Differentiating with respect to x, we get

f x x x′( ) cos sin= − 2

For absolute maximum and absolute minimum,

f x

x x x

x x

x x

x

′( )
cos sin cos

cos ( sin )

cos sin

=

=

=

= =

=

0

2 0

1 2 0

0
1

4

⇒
⇒

⇒

−
−

or

pp p
2 6

or

Now, f
p p p
6 6

1

2 3

1

2

1

4

3

4

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = + = + =sin cos

f

f

p p p
2 2

1

2

1
1

2

1

2

0 0
1

2

0 0
1

2

1

2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = + = =

= + = + =

sin cos

( ) sin cos

−

The absolute maximum value = 3 4/ .

The absolute minimum value = 1 2/ .

 25. Derive the Taylor’s series expansion of 
sinx

x− p
 at 

x = p .

Solution: The Taylor’s series expansion of f x( )  

around x = p  is

f x f
x

f x

x

f( ) ( ) ( )

( )

( )= + + +p p p p− −
1 2

2

′ ′′ !

 21. Find the intervals in which the function f(x) =

f x x
x

( ) =
4

3

3

−  is decreasing.

Solution: We have

f x x
x

( ) =
4

3

3

−

⇒ f x x x x x′( ) ( )= =4 4 1
3 2 2− −

For f(x) to be decreasing, we have ′f x( )< 0

x x

x x

x x

x

2

2

4 1 0

4 1 0 0

4 1
1

4

1

4

( )

( ) ( )

,

− <

< >

< <

−

⇒ −

⇒ ⇒

⇒ ∈ ∞
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

∵

Hence, f(x) is decreasing on −∞
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟, .
1

4

 22. Find the points of local maxima and the corre-

sponding maximum values of the function,

f x x x x( ) = +2 21 36
3 2−

Solution: We have

f x x x x

f x x x

( )

( )

= +

= +

2 21 36

6 42 36

3 2

2

−

−′

For local maximum, we have ′f x( ) = 0

⇒ ⇒
⇒

6 4 2 3 6 0 1 6 0

1 6

2
x x x x

x

− − −+ = =

=

( )( )

,

Thus, x = 1 and x = 6 are the possible points of 

local maxima or minima.

Now, f x x′′( ) = 12 42−

At x = 1, we have

f ′′( )1 12 42 30 0= =− − <

Hence, x = 1 is a point of local maximum.

The local maximum value is f( )1 2 21 36 20 3= + =− − −
f( )1 2 21 36 20 3= + =− − −

At x= 6, we have

f ′′( ) ( )6 12 6 42 30 0= =− >

Hence, x = 6 is a point of local maximum.

 23. Find the points of local maxima or minima for the 

function,

f x x x( ) = +
3
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′

′ ′

′ ′ ′

f h
h

h

f h h h

f h

( )
sec

tanh

cosec

( ) cot

( )

= =

=

=

2

2 2

4 2 2

8

−

− −

cosec

[coosec cosec

cosec cosec

2 2 5 2

16 2 2 5

2 3

3 3

h h h

f h h h

cot ]

( ) [ cot

+

= +′ ′ ′ ′ − 22 2h hcot ]

′ ′ ′ ′ ′f h h h h

h

( ) cot= +

+ +

32 2 3 2 2

5 2 15

2
[cosec2h cot cosec

cosec co

4 3

5
ssec

3
2 2

2
h hcot ]

Now, substituting the value of h = p/4 ,  we get
f

f

f

f

f

f

( )

( )

( )

( )

( )

( )

p
p
p
p
p
p

4 0

4 2

4 0

4 8

4 0

4 16

=

=

=

=

=

=

′
′′

′′′
′′′′

′′′′′ 00

Putting these values in Eq. (1), we have

f x h x
x x x

x
x x x

( )

!

( )

! !

( )

!

+ = + + +

+ = + + +

0 2

2

0

3

8

4

0

5

160 2
4

3

4

3

2 3 4

5

3 5

− × ×

× !!

 28. Evaluate 

2

1
2 4

x

x x

dx

− −
∫

Solution: Let x t
2
=

Then, d x dt x dx dt dx
dt

x

( )
2

2

2

= = =⇒ ⋅ ⇒

Therefore, 

f x
x

x x

dx
dt

t t

dt

t t

( )

( )

= =

=

+

2

1 1

1

2 4 2

2

− − − −

− −

∫ ∫

∫

=

+ +

=

+

dt

t t

dt

t

− − −

− −

2

2

1

4

1

4

1

1

2

5

4

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥

∫

⎥⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟

∫

∫=

+

=

+

dt

t

dt

t5 4
1

2

5

2

1

2

2 2

/ − − ⎟⎟⎟

∫
2

f x

t

t

( ) sin

/

/

sin

=

+

+

=
+

+

−

−

1

1

1 2

5 2

2 1

5

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

C

C

Substituting t x=
2
,

f x
x

( ) =
+

+sin C
−1

2
2 1

5

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

Now, f
x

xx

( ) lim
sinp

pp
= =

→ −
0

0

Hence, we apply L’Hospital’s rule,

lim
cos

x

x

→p 1

1= −

Similarly by using L’Hospital’s rule, we can show that

′
′′
f

f

( )

( )

p
p
=

=

0

1 6−

So, the expansion is f x x( ) ( )( )= + +− − −1 1 6
2

/ p !

Thus, f x

x

( )

(

= +− −
−

1

3

2p
!

)

 26. Expand e
xsin
 by Maclaurin’s series up to the term 

containing x
4
.

Solution: We have

f x e

f x e x f x x

f x f x x f x

x

x

( )

( ) cos ( ) cos

( ) ( )cos ( )si

sin

sin

=

=

=

′ ⋅ ⋅
′′ ′ − nn ( )

( ) ( )cos ( )sin

( )cos , ( )

x f

f x f x x f x x

f x x f

′′
′′′ ′′ ′

′′′

0 1

2

0

=

=

=

−
− 00

3

3

′′′′ ′′′ ′
′ ⋅

′′′′

f x f x x f x x

f x x f x x

( ) ( )cos ( )sin

( )cos ( )sin ,

= −
−

ff ( )0 0=

and so on.

Substituting the values of f f( ), ( ), .0 0′ etc  in the 

Maclaurin’s series, we get

e x
x x x

x
x x

x(sin )

! !

( )

!

= + + + + +

= + + +

1 1
1

2

0

3

3

4

1

2 8

2 3 4

2 4

⋅
⋅ ⋅ ⋅ −

−

!

!

 27. Expand lo g tan[( ) ]p/4 + x  in ascending power of x 

till x
5
.

Solution: Using Taylor’s theorem, we know that

f x h f h xf h
x

f h

x
f h

( ) ( ) ( )

!

( )

!

( ) ( )

+ = + +

+ +

′ ′ ′

′ ′ ′

2

3

2

3

1!

If f x h x( ) log tan[ ( )]+ = + p/4

then f x x f h h( ) log tan ( log tan( ) ( )= =and ) 2

Differentiating Eq. (2) successively with respect to 

h, we get

′

′ ′

′ ′ ′

f h
h

h

f h h h

f h

( )
sec

tanh

cosec

( ) cot

( )

= =

=

=

2

2 2

4 2 2

8

−

− −

cosec

[coosec cosec

cosec cosec

2 2 5 2

16 2 2 5

2 3

3 3

h h h

f h h h

cot ]

( ) [ cot

+

= +′ ′ ′ ′ − 22 2h hcot ]
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 29. Find the Fourier series expansion of f x x x( ) = 2
2−  

in (0, 3) and hence deduce that 
1

1

1

2

1

3

1

4 12
2 2 2 2

− −+ + + =! ∞
p
.

1

1

1

2

1

3

1

4 12
2 2 2 2

− −+ + + =! ∞
p
.

Solution: The required series is of the form,

2

2

2 0

1 1

x x

a

a
n x

l

b
n x

l
n

n

n

n

− = + +

= =

cos sin
p p∞ ∞

∑ ∑  

where l = 3/2.

Then

a

l

x x dx x
x

a

l

x x
n x

l

dx

l

n

l

0

2

0

2

2

3

0

3

2

0

2

1
2

2

3 3

0

1
2

2

= = =

=

=

( )

( )cos

− −

−

∫

∫
p

33

2
2

3

2

3

2
2

2 3

2 2

2

2

0

3

2

( )cos

( )
sin

cos

[

x x
n x

dx

x x
n x

n

x

n

−

−

− −
−

p

p
p

∫

( )

=

/

pp
p

p
p

p

x

n

n x

n

n

/

/

/

/

3

2 3

2

2 3

2 3

2

3

9

4

2 6 2

2

3

0

3

2 2

( )

( )
( )

( )

+

=

−
−

−

sin

. cos

]

nn

n

b

l

x x
n x

l

dx

x x
n x

n

l

p
p

p

p

− −

−

−

2
9

1
2

2

3

2
2

2 2

2

0

2

2

⎡⎣ ⎤⎦

∫

=

=

=

( )sin

( )sin

33

2

3

2

2 3

2 3

2 2

2 3

2 3

0

3

2

2

dx

x x

n x

n

x

n x

n

∫

( )
( )

= [( )

cos

sin

−
−

− −
−

p
p

p
p

/

/

/

/

++

=

−

− −

2

2 3

2 3

2

3

6
2

27

4

2 1

3

0

3

2 2 3 3

( )
( )

− (

cos

cos cos

]
n x

n

n

n

n

n

p
p

p
p

p
p

/

/

))
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

=
3

np

Substituting the values of a a b
n n0

, ,  in Eq. (1), we get

2
9 2

3

3 2

3

2

2 2

1 1

x x

n

n x

n

n x

n n

− −= +

= =
p

p
p

p
cos sin

∞ ∞

∑ ∑

 30. If f x

x

x x

( )
≤ ≤

≤ ≤
⎧
⎨
⎪⎪
⎩⎪⎪

=

0 0

0

,

sin ,

− p
p

, prove that f x
x nx

n
n

( )
sin cos

.= +

=

1

2

2 2

4 1
2

1
p p

−
−

∞

∑

f x
x nx

n
n

( )
sin cos

.= +

=

1

2

2 2

4 1
2

1
p p

−
−

∞

∑  
Hence, show that

 

1

1 3

1

3 5

1

5 7

1

4

2

⋅
−

⋅ ⋅
∞ ( )+ =− − −! p

 

1

1 3

1

3 5

1

5 7

1

4

2

⋅
−

⋅ ⋅
∞ ( )+ =− − −! p

Solution: Let 

f x

a

a nx b nx
n

n

n

n

( )
∞ ∞

∑ ∑= + +

= =

0

1 1
2

cos sin

Then,

a f x dx dx xdx

a f x
n

0

0

0

1 1
0

2

1

= = + =

=

p p p

p

p

p

p

p
( ) sin

( )cos

− −∫ ∫ ∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

nnxdx dx

x nxdx

n x n

− −

− −

p

p

p

p
p

p

∫ ∫

∫
( ) ( )

=

+

= +

1
0

1

2

1 1

0

0

[

]sin cos

sin sin xx dx

n x

n

n x

n

n

⎡⎣ ⎤⎦

−
( ) ( )

(

∫
0

0

1

2

1

1

1

1

1

2

1

p

p

p

p

=

+

+

+

=

+

[ ]

[

cos cos

cos

−
−

−
))

( )

( )

p p

p

n

n

n

n n

n

n

n n

+

+

+

+

=

+

+

1

1

1

1

1

1

1

1

1

2

1 1

1

1
1

cos( )

( )

]

−
−

−
−

≠

− −
−

− −11

2

1

1

0

2

1

−
−

−
−

n

n

n

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

( )

= ,

,

when  is odd

and whe

p
nn  is even.n

When n = 1,

a x xdx xdx

x

b f x
n

1

0 0

0

1 1

2

2

1

2

2

2

0

1

= =

= =

=

p p

p

p

p p

p

sin cos sin

cos

( )si

∫ ∫

−

nn sin sin

cos c

nxdx dx x nxdx

n x

− −

− −

p

p

p

p

p

p

∫ ∫ ∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= +

=

1
0

1

2

1

0

0

oos

sin sin

n x dx

n x

n

n x

n

n

+

=
+

+

=

1

1

2

1

1

1

1

0 1

0

0

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫
p

p

p
−

−
− ≠(( )
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a x xdx xdx

x

b f x
n

1

0 0

0

1 1

2

2

1

2

2

2

0

1

= =

= =

=

p p

p

p

p p

p

sin cos sin

cos

( )si

∫ ∫

−

nn sin sin

cos c

nxdx dx x nxdx

n x

− −

− −

p

p

p

p

p

p

∫ ∫ ∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= +

=

1
0

1

2

1

0

0

oos

sin sin

n x dx

n x

n

n x

n

n

+

=
+

+

=

1

1

2

1

1

1

1

0 1

0

0

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫
p

p

p
−

−
− ≠(( )

When n = 1,

b x xdx x dx

x
x

1

0 0

1 1

2

1 2

1

2

2

2

= =

=

p p

p

p p
sin sin cos

sin

∫ ∫ ( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−
⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
0

1

2

p
=

Hence,  f x
x x x

x( )
cos cos cos

sin= + + + +
1 2 2

2 1

4

4 1

6

6 1

1

2
2 2 2p p

−
− − −

!
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ 

                     f x
x x x

x( )
cos cos cos

sin= + + + +
1 2 2

2 1

4

4 1

6

6 1

1

2
2 2 2p p

−
− − −

!
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  (1)

Putting x =
p
2

 in Eq. (1), we get 1
1 2 1

1 3

1

3 5

1

5 7

1

2

= + + +

p p
− − −! "⋅ ⋅ ⋅

∞!

1
1 2 1

1 3

1

3 5

1

5 7

1

2

= + + +

p p
− − −! "⋅ ⋅ ⋅

∞!

Hence, 
1

1 3

1

3 5

1

5 7

1

4

2

⋅ ⋅ ⋅
∞ ( )− − −+ =! p

 31. Evaluate x dxsin .
−1∫

Solution: We have

f x x x dx

x
x

x

x
dx

x
x

x

( ) sin

sin

sin

=

=

= +

−

−

−

−
−

−

1

1

2

2

2

2

1

2

2

1

1
2

2

1

2

∫

∫

⋅

⋅ ⋅ ⋅

⋅
11

2

1

2

1 1

1

2

1

2

1

1

2

2

1

2

2

2

1

2

−

− −

−

−

−

−

−

x

dx
x

x

x

x

dx

x
x

x

x

∫

∫

⋅ ⋅

⋅

⋅

=

+

= +

sin

sin

22

2

2

1 2

2

1

1

2

1

2

1
1

1

⋅
⎡

⎣

⎢
⎢
⎢

⋅
⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢

∫

∫

∫ ∫

dx

x

dx

x
x x dx

x

dx

−
−

− −
−

−
= +sin

⎢⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= + +

+

=

x
x x x x

x

2

1 2 1

1

2

1

2

1

2

1
1

2

1

2

sin sin

sin

( )− −

−

−

− C

xx x x x x
2 1 2 11

4

1
1

4

sin sin
− −− −+ +C

 32. Evaluate 
x

x a x

dx

a

+ −
0

∫ .

Solution: Let

f x
x

x a x

dx

a

( ) =

+ −
0

∫  (1)

Since, f x dx f a x dx

a a

( ) ( )

0 0

∫ ∫⋅ = −

f x
a x

a x x

dx

a

( ) =

+

−
−

⋅∫
0

 (2)

Adding Eqs. (1) and (2), we get

2

2

2

2

0

0

f x
x a x

x a x

dx

f x dx

f x a

f x
a

a

a

( )

( )

( )

( )

=
+

+

=

=

=

−
−

⋅∫

∫

 33. Change the order of integration in 
x dxdy

x y
y

aa

⋅
∫∫ 2 2

0
+

 

and evaluate the same.

Solution: From the limit of integration, it is clear 

that region of integration is bounded by x = y, x = a,  

y = 0 and y = a. Hence, region of integration can 

be formed as follows:

O B(a, 0)

A(a, a)

y = a

x  =   ax     = y

y-axis

x-axis

Hence, it is clear that region of integration is given 

by ∆OAB  and divided into horizontal strips. For 
changing the order of integration, we divide the 

region into vertical strips.

Now, the new limits become 0 to x for y and 0 to 

a for x.

⇒

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫∫ ∫∫

∫

x

x y

dxdy
x

x y

dy dx

x

x

y

x

y

aa xa

a x

2 2

0

2 2

00

0

1

0

1

+

=

+

= tan
−

ddx

= = =
p p p
4 4 4

0

0
dx x

a
a

a∫ [ ]
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2 2

2

3

2

3

4

3

4

3

4

2

y e
y

e dy y e dy

y e

y y y

y

+ = +

= +

− −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ⋅

⎛

∫ ∫

⎝⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟
3

4

4 3 4 3
12

27

4

21

4

= + = +e e e e− − −

Therefore, L.H.S. = R.H.S. Hence proved.

 36. Evaluate e dxdy
x y

R

2 3+ ⋅∫∫  over the triangle 

bounded by x y= =0 0,  and x y+ = 1.

Solution: The region R of integration is ∆AOB. 
Here, x varies from 0 to 1 and y varies from x-axis 

up to the line x y+ = 1,
 
i.e. from 0 to 1− x.

y 

x 

B 
O

A(0, 1) 

(1, 0) 

y = 0

y = 1 − xx = 0

The region R can be expressed as follows:

0 1 0 1≤ ≤ ≤ ≤x y xand −

Therefore, e dxdy e dydx
x y

R

x y

x

2 3 2 3

0

1

0

1

+ +
=⋅ ⋅∫∫ ∫∫

−

= =

=

+1

3

1

3

1

3

1

2

2 3

0

1

0

1

3 2

0

1

3

⋅
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⋅ ⋅∫ ∫e dx e e dx

e

x y

x

x x

x

−
−

−

−

− −

( )

ee e e e

e e e

x2

0

1

2 2 3

2 2

1

3

1

2

1

2

1

3

1
1

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= +

= +

− − −

− − − −( ) ( 11

1

6

1 2 1
1

6

1 2 1

1

6

2 2

)

( ) ( ) ( )( )

(

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥= + =

=

− − − − − −

−

e e e e e e

e 11 1 2 1
1

6

1 2 1
2

)( )( ) ( ) ( )e e e e− −+ = +

 37. Expand f x

x x

x x

( )

,

,

=

1

4

0
1

2

3

4

1

2

1

− < <

− < <

if 

if 

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

 as the Fourier 

series of sine terms.

 34. Find the area of the triangle whose vertices are 

A(3, −1, 2), B(1, −1, −3) and C(4, −3, 1).

Solution: Let 
! ! !
a b c, ,  be the positive vectors of 

points A(3, −1, 2), B(1, −1, −3) and C(4, −3, 1), 
respectively.

Then, 
! " " "

! " " "a i j k b i j k= − + = − −3 2 3,  and 
! " " "
c i j k= +4 3−

! " " "
c i j k= +4 3− . 

We have

Area of triangle =
1

2

AB AC

! "!! ! "!!
×

Now, AB b a i j k i j k i k

! "!! " " # # # # # # # #
= = + =− − − − − −3 3 2 2 5( )

 

AB b a i j k i j k i k

! "!! " " # # # # # # # #
= = + =− − − − − −3 3 2 2 5( )

AC c a i j k i j k i j k

! "!! " " # # # # # # # # #
= = + + =− − − − − −4 3 3 2 2( )

AB AC

i j k

i j k

! "!! ! "!! # # #

# # #

× − −
− −

− − −

−

=

= + +

=

2 0 5

1 2 1

0 10 2 5 4 0

1

( ) ( ) ( )

00 7 4i j k
# # #− +

AB AC

! "!! ! "!!
× − −= + + =( ) ( ) ( )10 7 4 165

2 2 2

Area of ∆ABC AB AC= =
1

2

1

2

165

! "!! ! "!!
×

 35. Prove that ( ) ( )xy e dy dx xy e dx dy
y y

+ = +⋅ ⋅∫ ∫∫∫
3

4

1

2

3

4

1

2

Solution: We have

L.H.S. = + = +

= +

( )xy e dy dx
xy

e dx

x e

y y⋅
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

∫ ∫∫
3

4 2
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2

3

4

1

2

4

2

8
9

−
22

7

2

7

4

3

1

2

4 3

1

2

2 4 3

x e dx

x e e dx x e e

−

− −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅

∫

∫= + = +( )xx

e e e e

e e

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
1

2

4 3 4 3

4 3

7 2
7

4

21

4

= +

= +

( ) ( )− − − −

−

Now, R.H.S. = ( )xy e dx dy
x y

e x dy
y y

+ = +

1

2

3

4 2

3

4

1

2

2
∫∫ ∫⋅ ⋅

⎡

⎣
⎢
⎢
⎢

⎤

⎦
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⎥
⎥

⋅

( )xy e dx dy
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y y

+ = +
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2

3

4 2
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4

1

2
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∫∫ ∫⋅ ⋅
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⎢
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⎢

⎤
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⎥
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