
CHAPTER 6

COMPILER DESIGN

Syllabus: Compiler design: Lexical analysis, Parsing, Syntax-directed translation, Runtime environments, Intermediate

and target code generation, Basics of code optimization.

6.1 INTRODUCTION

Computer understands programs written in machine

language. Building program in machine language is

a tedious and an error-prone task for human. So the

programs are written in high-level languages which are

easily understood by human. A compiler is a program

that converts high-level program into low-level machine

language that is understood by machine. This subject

deals with how a compiler is designed and organized.

While writing a compiler, the compilation process is

divided into various phases. These phases operate in

sequence; each phase takes input from the previous

phase and provides output to the next phase.

6.2 COMPILERS AND INTERPRETERS

6.2.1 Compiler

A compiler is a special program that reads statements

written in a language (called source language) and then

converts them into another language (called target lan-

guage). In other words, a compiler is a program which

translates statements written in high-level language (i.e.

Java, C#, Visual Basic) into machine-level language

(Fig. 6.1). In the process of translation, a compiler also

checks for errors if any.

Chapter 6.indd 287 4/9/2015 9:59:32 AM

288 CHAPTER 6: COMPILER DESIGN

6.2.3.1 Lexical Analyzer

Lexical analyzer reads the source program character by

character at a time and unites them into a stream of tokens.

Token is a group of character which represents keywords,

operators and identifiers. Character sequence formed by

tokens is called “lexeme”. Lexical analyzer is also known

as lexer, tokenizer or scanner. If a lexical analyzer gets an

invalid token, then it will generate an error. The lexical

analyzer assigns an id to each token according to their

occurrence. It makes entries of each identifier into the

symbol table. As a lexical analyzer cannot enter all infor-

mation regarding an identifier such as type and scope, the

remaining information is inserted by the other phases of

the compiler into the symbol table. For detail explanation

about lexical analyzer, refer to Section 6.3.

 1. Symbol table: A symbol table is a data structure

which stores identifier information related to its

declaration and appearance in a program such as

identifier id, type, scope, value and sometimes loca-

tion. Link list and hashing are the common tech-

niques which are used to construct symbol tables.

Example 6.1

Statement written in a source program is

A = B + C *25;

Tokens generated by lexical analyzer

A → Identifier

= → Assignment operator

B → Identifier

+ → Add operator

C → Identifier

* → Multiplication operator

25 → Constant

6.2.3.2 Syntax Analyzer or Parser

A syntax analyzer is the second and important phase

of a compiler. It receives the tokens from the output

of a lexical analyzer as an input. Parser performs two

functions:

 1. A parser checks that the input tokens from a lexi-

cal analyzer are valid or not according to the speci-

fied grammar of source language.

 2. It generates a parse tree according to the given

grammar to the source language. The grammar of

source language is given below:

 S → id = P

 P → P + T/T

 T → T *Q/Q

 Q → id/Integer constant

High level language (HLL)

Compiler

Run OutputInput Low level language

Figure 6.1 | Compiler.

6.2.2 Interpreter

An interpreter takes a single instruction as input and con-

verts it into machine-level language and shows errors in the

statement if any (Fig. 6.2). It requires less memory than a

compiler, and execution of conditional control statements

are slower. Debugging is easier in an interpreter.

High level language

Interpreter RunInput Output

Figure 6.2 | Interpreter.

6.2.3 Phases of a Compiler

A compiler takes a source program written in high-level

language as input and produces an equivalent set of

machine instruction as output. The compiler process is

complex, so it is divided into six sub-processes which are

also known as phases of a compiler. The following are

different phases of a compiler (Fig. 6.3):

 1. Lexical analyzer

 2. Syntax analyzer

 3. Semantic analyzer

 4. Intermediate code generator

 5. Code optimization

 6. Target code

Lexical analyzer

Syntax analyzer

Semantic analyzer

Code optimization

Target code

Output

Intermediate code

generator

Input

Figure 6.3 | Phases of a compiler.

Chapter 6.indd 288 4/9/2015 9:59:33 AM

6.2 COMPILERS AND INTERPRETERS 289

Example 6.2

Parse tree of a given problem A = B + C *25.

S

P

TP

T T Q

Q Q 25

=

+

∗

(B)id

(A)id

(C)id

Parse tree of A = B + C *25

6.2.3.3 Semantic Analyzer

When the parse tree is generated by a syntax analyzer

and passed as an input to the semantic analyzer, then

the semantic analyzer computes the additional informa-

tion related to the recognized tokens, such as operator,

operand, expression or statement, and inserts that infor-

mation into the symbol table. The information stored in

the symbol table is frequently used by the other phases

of the compiler. During the semantic analysis, the type

of identifier is checked. In our example, let all identifiers

be float, and 25 be treated as an integer constant. If

required, the semantic analyzer will perform an implicit-

type conversion, and if it is not possible, then it will

throw an error. This can be easily understood by the

example given in Fig. 6.4.

Semantic analyzer

S

P Float

Float
Type

mismatch,

implicit

conversion

takes place

Float

Float

Float

Float

Float

Float

Integer

Integer

Float

Float

P T

TT Q

Q Q 25

id

id id

=

∗

+

Figure 6.4 | Semantic analyzer of A = B + C *25.

So, here in our example, implicit conversion took place.

Implicit-type casting is also known as coercion.

6.2.3.4 Intermediate Code Generator

The intermediate code generator phase takes a tree as an

input produced by a semantic analyzer and produces an

intermediate code. The intermediate code thus generated

has mainly two properties: it should be easy to produce

and easy to translate into target program. An intermedi-

ate code can be represented in variety of forms. One of

the forms is the three-address form, which is very similar

to the assembly language in which every memory loca-

tion acts like a register. The intermediate code of our

example is

Source code:

A B C= + * 25

Intermediate code:

T C

T B T

A T

1

2 1

2

25=

= +

=

*

6.2.3.5 Code Optimization

The code optimization phase is to reduce the size of the

code and improve the performance of the code gener-

ated by an intermediate code phase. The most impor-

tant part of optimized code is to minimize the amount

of time taken by the code to execute and less common

is to minimize the amount of memory used by the code.

Optimized code of our example is

Intermediate code:

T C

T B T

A T

1

2 1

2

25=

= +

=

*

Optimized code:

T C

A B T

1

1

25=

= +

*

6.2.3.6 Target Code

The target code is the final phase of the compiler which

normally converts the input obtained from the code opti-

mization phase into the target code (machine code or

assembly code). The target code of our example is as

follows:

 MOV R
1
, C

 MUL R
1
, 25

 MOV R
2
, B

 ADD R
2
, R

1

 STORE A, R
2

This is the final output of the compiler.

Chapter 6.indd 289 4/9/2015 9:59:35 AM

290 CHAPTER 6: COMPILER DESIGN

consist of identifiers, operators and operand. A lexical

analyzer also stores the name and id of identifiers in the

symbol table (Fig. 6.6).

Parser

get token()

send token()

Error

handler

Symbol

table

Lexical

analyzer

Figure 6.6 | Lexical analyzer.

6.3.1 Functions of a Lexical Analyzer

A lexical analyzer has the following functions.

 1. Lexical analyzer divides the given source code or

program into some meaning full words called tokens.

 2. It eliminates the comment lines.

 3. It finds integer and floating point constant.

 4. It eliminates white-space character such as blank

space and tab.

 5. It helps in giving error message by providing row

and column numbers.

 6. It identifies identifier, keywords, operators and

constants.

6.3.2 Implementation of a Lexical Analyzer

Method of implementing a lexical analyzer or scan-

ner is regular expression and finite automaton. Some

background information related to regular expression

and finite automaton are given in the following sec-

tions which will help to understand how a scanner

works.

6.3.2.1 Regular Expression Review

 1. Symbol: Letters, digits and special symbols are

examples of a symbol.

 2. Alphabet: A finite set of symbols through which

we build large structures. An alphabet is denoted

by Σ, for example, Σ = {0, 1}.

 3. String: A finite set of symbol made up of alpha-

bets, for example, a, b are alphabets and aaab, abba

are the strings.

 4. Empty string: A string which has zero symbols,

and represented by e.

6.2.4 Grouping of Phases

Phases deal with the logical organization of a compiler.

In an implementation, activities from more than one

phase are often grouped together. Basically, phases are

grouped into two parts. The first part is known as the

front end, which consists of initial four phases (lexical

analyzer, syntax analyzer, semantic analyzer and inter-

mediate code) along with symbol table operations and

error handling. The second part, also known as back end,

consists of the last two phases (code optimization and

target code). The back end also includes error handling

and symbol table operation (Fig. 6.5).

Lexical

Syntax

Semantic

Intermediate

 code

Back end

Front end

Code optimization

Target code

Figure 6.5 | Grouping of compiler phases.

6.2.4.1 Compiler Construction Tools

The compiler writers use software tools such as debug-

gers, version managers, profilers and so on. The follow-

ing is a list of some useful compiler construction tools:

 1. Parser generators: These produce syntax ana-

lyzer from context-free grammar as input.

 2. Scanner generators: These automatically pro-

duce lexical analyzer from a specification based on

regular expressions.

 3. Syntax-directed translation engines: These

produce collection of routines from parse tree, gen-

erating the intermediate code.

 4. Automatic code generators: These take col-

lection of rules that define the translation of

each operation of the intermediate language into

machine language for the target machine.

 5. Data-flow engines: Data flow analysis is req-

uired to perform good code optimization and data

flow engines facilitates the gathering of informa-

tion about how values are transmitted from one

part of a program to another part of that program.

6.3 LEXICAL ANALYZER

Lexical analyzer is the starting phase of a compiler. It

reads the source program character by character at a

time and unites them into a stream of tokens. Tokens

Chapter 6.indd 290 4/9/2015 9:59:35 AM

6.4 PARSER 291

a lexical analyzer when called by the parser to get

query for the next token. The positions are shown by

the circles called states which are connected by edges.

Here is a finite automaton which recognizes an integer

(Fig. 6.7).

Not

digit

Not

digit

Digit

DigitStart

Figure 6.7 | Finite automata for recognizing an integer.

Problem 6.1: Consider the following C program, find

the number of tokens.

float average(int a, int b)
{
float c;
c = (a + b)/2;
return c;
}

Solution: Every token individual has been under-

lined. Counting the number of underlines, we have

the number of tokens as 27.

float average (int a , int b)
{
float c ;
c = (a + b) / 2 ;
return c ;
}

Problem 6.2: Find the number of tokens in the fol-

lowing C statement.

printf(“k = %d”, i);

Solution: The number of tokens is 7.

printf(“k = %d”, i);

6.4 PARSER

A parser is a part of a compiler. It takes sequence of

tokens from the lexical analyzer as an input and then

builds a data structure in the form of a parse tree

(Fig. 6.8). A parser’s main purpose is to determine if

 5. Formal language: A set of all possible strings

which can be generated from given alphabets, and

represented by Σ*.

 6. Regular expression: The rules that define

the set of words that are valid tokens in a

formal language. These rules are made by three

operators:

�· Alternation x|y (x or y)

�· Repetition x* (x is repeated 0 or more times)

�· Concatenation xy

6.3.2.2 Finite Automata Review

Once we have all type of tokens defined by regular

expression, we can create a finite automaton for recog-

nizing them. A finite automaton has the following:

 1. A finite set of states, one of which is the start state

or initial state, and some (maybe none) of which

are final states.

 2. An alphabet Σ of possible input symbols.

 3. A finite set of transitions that specifies for each

state and for each symbol of the input alphabet,

which defines that for an input symbol which will

be the next state to go.

Example 6.3

q
0

q
2

q
1

q
3

b

a

a

a

b

b

a,b

where q
0
 is the initial state and q

3
 is the final state. The

given finite automaton accepts a language which has a

string starting with `a’ and ending with `b’.

6.3.2.3 Recognition of Tokens

In this section, we will explain how a token is rec-

ognized by a lexical analyzer. A lexical analyzer uses

finite automaton to recognize a token. Transition dia-

gram is shown below which consists of stages and arcs.

Arcs show the transition from one state to another

state. Transition diagram describes the working of

Chapter 6.indd 291 4/9/2015 9:59:37 AM

292 CHAPTER 6: COMPILER DESIGN

6.4.2 Derivation Tree or Parse Tree

The string generated by a CFG G = (V
n
, T, S, P) is rep-

resented by a hierarchical structure called tree. A deriva-

tion tree or parse tree for a CFG is a tree that satisfies

the following condition:

 1. If A → a
1
, a

2
, a

3
, …, a

n
 is a production in G,

then A becomes the father of nodes, labelled a
1
, a

2
,

a
3
, …, a

n
.

 2. The root has label S (starting symbol).

 3. Every vertex (or node) has a label.

 4. Internal nodes should be labels with variables only.

 5. The leaves nodes are labelled with e or terminal symbol.

 6. The collection of leaves from left to right yields the

string w.

Problem 6.4: Consider the grammar S → S +

S |S *S |a|b. Construct a derivation (or parse) tree for

the string w = a + b *b.

Solution:

S

S S

S S
*

bb

a

+

6.4.2.1 Leftmost Derivation Tree

A derivation tree is called a leftmost derivation (LMD)

tree if the ordering of decomposed variable is from left to

right. Thus, for generating string w = aab from grammar:

S → AB (production 1)

A → aaA (production 2)

A → e (production 3)

B → bB (production 4)

B → e (production 5)

LMD:

S → AB (by production 1)

S → aaAB (by production 2)

S → aaB (by production 3)

S → aabB (by production 4)

S → aab (by production 5)

the input data may be derived from the start symbol

of the grammar. Depending upon the method how

the parse tree is derived, we have two types of parsers—

top-down parser and bottom-up parser (discussed

shortly).

Grammar

V→T

Parse

tree

Parser

Source

program

Error

handler

Figure 6.8 | Parser.

6.4.1 Context-Free Grammar

A grammar G = (V
n
, T, S, P) is said to be a context-free

grammar (CFG) if the production P = {u → v} of G are

of the form u → v and satisfy the following conditions:

 1. u → v, where v V T∈ ∪() * , and V stands for vari-

able and T for terminal

 2. u → v, where u ∈ V
n

 3. u v≤ (length of u is less than v)

 4. Only single variable is allowed in left side (means u

has single variable only)

As we know that a CFG has no context either left or right,

this is the reason why it is also known as context-free.

Problem 6.3: Consider a grammar G = (V
n
, T, S, P)

having production S → aSa|bSb|x. Check the produc-

tion and find the language generated.

Solution:

Let P
1
: S → aSa

P
2
: S → bSb

P
3
: S → x

(a, b, x) are terminals and S is a variable. As all the pro-

duction are of the form A → a, where a ∈ ∪() *V Sn

and A ∈ V
n
, hence G is a CFG. And it will produce

context-free language.

Language generated: L G wxw w a b
R

() : ()*= +{ }∈

Chapter 6.indd 292 4/9/2015 9:59:38 AM

6.4 PARSER 293

6.4.3.1 Removal of Ambiguity

 1. Removal of left recursion: A production of

grammar G = (V
n
, T, S, P) is said to be left recur-

sive grammar if it has one of the productions in the

given form:

 A → Aa, where A is a variable and a ∈ (V
n
 ∪ S)*

Elimination of left recursion: Let the variable A

have left recursive problem as following:

A → Aa
1
|Aa

2
|Aa

3
|…|Aa

n
|b

1
|b

2
|b

3
|…|b

m

where b
1
, b

2
, …, b

m
 do not begin with A. Then we

replace A production by:

{A → b
1
A′|b

2
A′|b

3
A′|…|b

n
A′|}

where A′ → a
1
A′|a

2
A′|a

3
A′|…|a

n
A′|e

Example 6.4

Let grammar S → S + S |S *S |a|b|c
To eliminate left recursion, the grammar S is replaced by

S ′ → +SS ′|*SS ′|e
S → aS ′|bS ′|cS ′

 2. Removal of left factoring: In grammar G, two

or more productions of variable A are said to have

left factoring if the productions are in the form:

A → ab
1
|ab

2
|ab

3
…|ab

m

where {b
1
|b

2
|b

3
…|b

m
} ∈ (V

n
 ∪ S)* and does not

start with a. All these production have common

left factor a.

Elimination of left factoring: Let variable A have

(left factoring) production as follows:

A → ab
1
|ab

2
|ab

3
…|ab

m
|γ

1
|γ

2
|γ

3
|…|γ

m

where γ
1
, γ

2
, γ

3
, …, γ

m
 and {b

1
, b

2
, b

3
…b

m
} do not

contain a as a prefix, then we replace this produc-

tion by

A → aA′|γ
1
|γ

2
|γ

3
|…|γ

m

A′ → b
1
|b

2
|b

3
…|b

m

Example 6.5

Let grammar A → abc|abd|abe
To remove left factoring, we have

A → abA′
A′ → c|d|e

6.4.4 Top-Down Parser

In top-down parser, parse tree construction starts from

the root and proceeds to the leaf. Top-down parser uses

6.4.2.2 Rightmost Derivation Tree

A derivation tree is called rightmost derivation tree

(RMD) if the ordering of decomposed variable is from

right to left. Thus, for generating string w = aab from

the above grammar:

RMD:

S → AB (by production 1)

S → AbB (by production 4)

S → Ab (by production 5)

S → aaAb (by production 2)

S → aab (by production 3)

Left to right

S

BA

A

e e

aa Bb

6.4.3 Ambiguous Grammar

A grammar G is called ambiguous if for some string

w ∈ L(G), there exist two or more derivation tree (two

or more LMD or two or more RMD tree). Let us consider

a CFG grammar having production:

S → S + S |S *S |a|b, for string w = a + a *a have more

than one LMD tree.

S

S +

+

S

S

S S

S S
S Sa

a a
a a

a

*

*

Note: A language (L) is called ambiguous if and only

if every grammar which generates it is ambiguous. The

only known ambiguous language is {an
b
m
c
n} ∪ {an

b
m
c
m}.

Left recursion and left factoring is the major cause for

a grammar to be ambiguous. But presence of these in

a grammar does not mean that grammar is ambiguous;

and similarly absence of these does not mean that the

grammar is unambiguous.

Chapter 6.indd 293 4/9/2015 9:59:39 AM

294 CHAPTER 6: COMPILER DESIGN

Problem with Recursive Descent Parser

 1. Recursion is used to generate parse tree.

 2. More time is wasted in backtracking.

 3. Recursive descent parser can enter into an infinite

loop if the given grammar contains left recursion.

 4. Time complexity of RDP is O(2
n
).

6.4.4.2 Top-Down Parser without

Backtracking

A predictive parser is a special class of recursive decent

parser. The goal of predictive parsing is to construct

a top-down parser that does not require backtracking.

Predictive parsing technique can only be used for class

of LL(k) grammars, where k is some integer. In LL(k)

grammar, by seeing k tokens a recursive decent parser

decides which production should be examined so that

the LL(k) grammars are able to exclude all grammars

that are ambiguous and having left recursion (Fig. 6.9).

Input

Parsing table

Output

Stack

$

LL() Action

table

LL() Parser

LL() Goto

table

Figure 6.9 | Predictive parser.

6.4.4.3 Algorithm of Predictive Parser

Let x be the top of stack and `a’ be the look-ahead

symbol. Then

 1. If (x = = a = = $), then successful complete.

 2. If (x = = a = = $), then pop the stack element and

increment input pointer.

 3. If (x is a variable), then see the LL(1) action pars-

ing table M.

If M[x
1
, a] = x → uvw, then replace x by uvw in the

reverse order.

 4. If M[x
1
, a] = blank, then parsing error.

LMD for constructing the parse tree. When a variable

contains more than one choice, choosing the correct

 production is always going to be difficult. In top-down

parsing, no left recursion and no left factoring exist.

Problem 6.5: String w = abbcde, grammar G is given

below:

S→aABe

A→Abc/b

B→D

Draw a parse tree for the production of a string w

with the help of grammar G.

Solution:

S

A

A

B e

b

b

c d

a

Parse tree for string w = abbcde.

Top-down parsing can be performed by the following

two methods:

 1. Top-down parsing with backtracking

 2. Top-down parsing without backtracking

6.4.4.1 Top-Down Parsing with

Backtracking

One of the most straightforward forms of parsing is recur-

sive descent parsing (RDP). This is a top-down process in

which the parser attempts to verify that the syntax of the

input stream is correct as it is read from left to right. The

pseudocode of recursive descent parser is given as follows:

RDP(S)
{
Choose a production S→x1,x2,x3,x4
for(i=1 to n)
{
if(xi is variable)
RDP(i)
else if(xi==lookahead)
increment i/p pointer
else
error(choose another production)
}
}

Problem 6.6: Draw a top-down predictive parser

using the following parser table.

Grammar of given language

S → (L)/a

L → SL′
L′ → e/,SL′

String w = (a, a, a)

Chapter 6.indd 294 4/9/2015 9:59:40 AM

6.4 PARSER 295

6.4.4.4 LL(1) Parsing Table Construction

 1. First set: First(A) gives a set of all terminals that

may begin in a string derived from A. To get first

of A, start finding all strings generated by that

variable in a language and then pick the first ele-

ment of every string.

Rules:

�· If S → ab/cd/ef then

First(S) = {a, c, e}
�· If S → ab then

First(S) = {a}
First(e) = (e)
First(a) = {a}, where `a’ is terminal

�· If S → AB

A → a

B → b

then First(s) = {a}
�· If S → aS/b then

First(S) = {a, b}
�· If S → AB

A → a/c/d/e
B → b

then First(S) = {a, c, d, b}
 2. Follow set: Follow(A) gives a set of all terminals

that may follow immediately to the right of A. e
can never be a part of any follow set.

Rules:

�· If S is the starting symbol, then $ is also one of

the element of Follow(S).

�· If S → aBCDE, then

Follow(C) = First(DE) = First(D)

�· If S → AB or S → ABC and C → e, then

Follow(B) = Follow(S)

Problem 6.7: Find the first and the follow sets for the

given grammar:

E → TE ′
E ′ → e/ + TE ′
T → FT ′
T ′ → e/*FT ′
F → id/(E)

Solution:

Variable First() Follow()

E id, ($,)

E ′ +, e $,)

T id, (+, $,)

T ′ *, e +, $,)

F id, (*, +, $,)

Parsing Table

A , () $

S S → a S → (L)

L L → SL′ L → SL′

L′ L′ →, SL′ L′ → e

Solution:

S. No. Input Stack Production

1. (a, a, a)$ $S

$)L(

S → (L)

2. a, a, a)$ $)L

$)L′S
$)L′a

L → SL′
S → a

3. , a, a)$
$)L′
$)L′S,

L′ →, SL′

4. a, a)$
$)L′S
$)L′a

S → a

5. , a)$
$)L′S, L′ →,SL′

6. a)$
$)L′S
$)L′a

S → a

7.) $
$)L′
$)

L′ → e

8. $ $

By following these steps we can generate a parse tree

for the string w = (a, a, a).

S

C L

a

a

a ¨

,

,

L

L

L′

S

S

S

J

Parse tree for the string w = (a, a, a).

Chapter 6.indd 295 4/9/2015 9:59:40 AM

296 CHAPTER 6: COMPILER DESIGN

Number of cells in parsing table = {V *(T + 1)}
So, table entries = {5*(5 + 1)} = 30

Parsing table constructed with the help of the first

and follow sets of given grammar:

Id + * () $

E E → TE ′ E → TE ′

E ′ E ′ → +TE ′ E ′ → e E ′ → e

T T → FT ′ T → FT ′

T ′ T ′ → e T ′ → *FT ′ T′ → e T ′ → e

F F → id F → (E)

How to Check a Given Grammar (G) Is LL(1) or Not?

The following are two ways to identify that a given

grammar is LL(1) or not:

 1. By constructing parsing table, if parsing table does

not have more than one production entry in any of

the cell then only it is LL(1).

 2. By checking the following two conditions:

�· If a given grammar G does not contain null(e)
production:

Let grammar G be

A → a
1
/a

2
/a

3

Then a
1
, a

2
, a

3
 should be pair wise disjoint.

That is,

First(a
1
) ∩ First(a

2
) = ∅

First(a
2
) ∩ First(a

3
) = ∅

First(a
3
) ∩ First(a

1
) = ∅

�· If grammar G contains null(e) production:

Let grammar G be

A → a
1
/a

2
/e

Find First(a
1
), First(a

2
) and Follow(A), they

should be pair wise disjoint.

First(a
1
) ∩ Follow(A) = ∅

First(a
2
) ∩ Follow(A) = ∅

Problem 6.10: Check whether the following grammar

is LL(1) or not.

S → E/a

E → a

Problem 6.8: Find the first and the follow sets for the

given grammar:

S → (L)/a

L → SL′
L′ → e/,SL′

Solution:

Variable First() Follow()

S (, a ,,), $

L (, a)

L′ ,, e)

6.4.4.5 Algorithm for Constructing a

Parsing Table

If a grammar G is given, the steps to construct a parsing

table is as follows:

For each production A → a, do the following

 1. Add A → a under M[A, b], where b ∈ First(a).

 2. If First(a) contains e, then add A → a under

M[A, c], where c ∈ Follow(A).

Number of parsing table entries = {V *(T + 1)}, where

V is the number of variables in the given grammar and T

is the number of terminals in the given grammar.

Problem 6.9: Construct the parsing table from the

following grammar:

E → TE ′
E′ → e/ + TE ′

T → FT ′
T′ → e/*FT ′
F → id/(E)

Solution:

The first and the follow sets for the given grammar

are as follows:

Variable First() Follow()

E id, ($,)

E ′ +, e $,)

T id, (+, $,)

T ′ *, e +, $,)

F id, (*, +, $,)

Chapter 6.indd 296 4/9/2015 9:59:41 AM

6.4 PARSER 297

Draw a parse tree for reduction of a string w with the

help of the grammar G.

Solution: The parse tree for reduction of the string

w = abbcde.

S

a

a

a

a

A

A

A b

b b

c

c

B

d

d

d

e

e

e

e

6.4.5.1 Classification of Bottom-Up Parser

The bottom up parser is classified as shown in Fig. 6.10.

Bottom-up parser

LR Parser

Unambigious

 grammar

Operator precedence

 parser

Operator grammar

LR(0) SLR(1) CLR(1) LALR(1)

Figure 6.10 | Classification of bottom-up parser.

LR Parser

In computer science, an LR parser is a type of bottom-

up parser that efficiently handles context-free languages in

guaranteed linear time. An LR parser reads input from left

to right and produces an RMD. The canonical LR (CLR),

look-ahead LR (LALR) and simple LR (SLR) parsers are

common variants of LR parsers. For all types of LR parsers,

parsing algorithm is same but parsing tables are different.

LR Parsing Algorithm

Let S be the state on top of the stack and ̀ a’ be the look-

ahead symbol, then

 1. If action [S, a] = S
i
, then shift `a’ and `i’, and also

increment the i/p pointer.

 2. If action [S, a] = r
j
 and r

j
 is a → b, then pop 2|b |

symbols and replace by a. If S
m−1

 is the state below

a, then push Goto [S
m−1

, a].

Solution: In the given grammar there is no null pro-

duction, so

First(S) = a

First(E) = a

According to the given condition 1, First(S) ∩

First(A) ≠ ∅. So the given grammar is not LL(1).

Problem 6.11: Check the following grammar is LL(1)

or not.

S → aABb

A → a/e
B → d/e

Solution: In the given grammar there is null pro-

duction, so find first and follow of those productions

which have null production.

First

Follow
No common element

()

() ,

A a

A d b

=

=

⎧
⎨
⎩

⎫
⎬
⎭

First

Follow

No common element

()

()

B d

B b

=

=

⎧
⎨
⎩

⎫
⎬
⎭

Important Points

 1. Every regular grammar need not be LL(1) because

that grammar may contain left factoring.

 2. Any ambiguous grammar cannot be LL(1).

 3. If any grammar contains left factoring, then it

cannot be LL(1) grammar.

 4. If a given grammar contains left recursion, then it

cannot be LL(1) grammar.

6.4.5 Bottom-Up Parser

In bottom-up parser, parse tree construction starts from

children and proceeds to root. Bottom-up parser uses

RMD for constructing the parse tree. A substring which

will give reduction of string is called handle.

The difficulty with bottom-up parser is identifying the

right handle which will give one required variable so that

we will go to start symbol.

Problem 6.12: String w = abbcde, grammar G is

given below:

S → aABe

A → Abc/b

B → D

Chapter 6.indd 297 4/9/2015 9:59:42 AM

298 CHAPTER 6: COMPILER DESIGN

Problem 6.13: Consider the following grammar and

construct the LR parsing table.

S → AA (production number 1)

 A → aA (production number 2)

 A → b (production number 3)

Solution:

Step 1: Construct the augmented grammar.

S′ → S

S → AA

A → aA

A → b

Step 2: Find closure.

S

A
A

b

A

a

b

b

a

a

S′ → .S

S′ → S.

S → A.A
S → AA.

A →aA.

A → aA

A → a.A
A → aA
A → .b

A → .b

A → b.

I1

I0

I2

I3

I4

I5

I6

S → .A
A → .aA
A → .b

Step 3: Construct DFA.

I
1

I
0

I2

I
3

I
4

I
6

I
5

S

A

a a

a

A

Ab b

b

Step 4: Construct LR(0) parsing table.

�! S
i
 denotes the shift move in the above DFA, where

`i’ denotes the state number.

�! r
i
 represents reduction move in the above DFA,

where `i’ denotes the production number.

Action Goto

State A b $ S A

I
0

S
3

S
4

1 2

I
1

Accepted

I
2

S
3

S
4

5

I
3

S
3

S
4

6

I
4

r
3

r
3

r
3

I
5

r
1

r
1

r
1

I
6

r
2

r
2

r
2

 3. If action [S, a] = accepted, then successful parsing.

 4. If action [S, a] = blank, then parsing error.

Stack Operations

 1. Shift: Shifts the next input symbol onto the top

of the stack.

 2. Reduce: Replaces a set of grammar symbol or

handle on the top of the stack with the LHS of a

production rule.

 3. Accept: Declares successful completion of the

parsing.

LR(0) Parser

 1. LR(0) parsing table construction: For con-

structing LR(0) parsing table we have to follow the

given steps:

�· Construct augmented grammar.

Let given grammar G be

S → AA

A → aA/b

Augmented grammar G′ will be

S ′ → S

S → AA

A → aA/b

S ′ → S is called the augmented production.

�· Find closure {I
0
 = closure (S ′ → •S)}.

To find closure of a production I, follow these

steps:

�" In closure of I, add I also to closure (I).

�" If I is A → B • CD and C → EF is in the given

grammar G, then add C → •EF to closure (I).

�" Repeat these steps for every newly added

LR(0) item.

This can be understood clearly by the given exam-

ple; it uses the above grammar to find closure.

Closure (S ′ → •S) = {S ′ → •S |S → •AA|A → •aA|
 A → •b}
Closure (S → •AA) = {S → •AA|A → •aA|A → •b}
Closure (A → •aA) = {A → •aA}
�· Using I

0
 construct deterministic finite automata

(DFA).

�· Reduce DFA into LR(0) parsing table.

�· Find Goto (I, X).

Goto (I, X) function is used to fill the second

part of the parsing table, which have entries

related to move after X.

Example 6.6

Consider the above grammar for the Goto function.

�! Goto (S′ → •S, S) = S′ → S.

�! Goto (S′ → •AA, A) = S → S•|A → •aA|A → •b

�! Goto (A → •aA, a) = A → a•A|A → •aA|A → •b

Chapter 6.indd 298 4/9/2015 9:59:43 AM

6.4 PARSER 299

Important Points

 1. If there are two reductions on any state of DFA,

then in table entry we have to put both in that cell.

In that situation parser will not be able to decide

for which reduction it has to parse, so this problem

is called reduce-reduce (R-R) problem.

 2. If in any state one production is reduced and

another is shifted then also parser is not able to

parse it. This problem is called shift-reduce (S-R)

problem.

 3. Due to DFA no shift-shift (S-S) problem occurred.

 4. For conflict, there should be two productions and

at least one of them should be reduced.

 5. Goto section does not participate in conflict.

Problem 6.15: Check if the following grammar is

LR(0) or not.

E → T + E …….(production number 1)

E → T …….........(production number 2)

T → id ……........(production number 3)

Solution:

Step 1: Construct an augmented grammar.

E′ → E

E → T + E

E → T

T → id

Step 2: Find closure.

I1

I2

I0

I7id

E

E

E ′ → .E
E ′ → E.

E → .T+E E → T.+E

E → T+.E

E → T+E.E → .T+E

E → .T E → T. E → .T
T → .id T → .id

T → id.

T

T

id

I4

I5

+

Step 3: Construct DFA.

I
0

I
2

I
3

I
1

I
4 I

5

E

E

T

id

+

id

T

Problem 6.14: Check whether the following grammar

is LR(0) or not.

S → (L) (production number 1)

S → a (production number 2)

L → L, S (production number 3)

L → S (production number 4)

Solution:

Step 1: Construct the augmented grammar.

S ′ → S

S → (L)

S → a

L → L, S

L → S

Step 2: Find closure (I
0
 = S′ → S).

L→ L,S.

I1

I2

I
3

I4

I5

I6

I7 I8

I0
S

S

L

(

a

a

a

S′ → .S
S → .(L)

S→ (.L)

S→ (L.)

S→ S.

S→ .(L)

S→ (L).

L → S.
S→ .a

S→ .a

S → .(L)

L → .L,S L → L.,S

L → L,.SL → .SS→ .a

S → a.

(

(

,

)

Step 3: Construct DFA.

I
0

I
1

I
2

I
4

I
6

I
7

I
8

I
5

I
3

a

a

a

S

S

L

S

(

(

,

)

Step 4: Construct LR parsing table.

Action Goto

State A () , $ S L

I
0

S
3

S
2

1

I
1

Accepted

I
2

S
3

S
2

5 4

I
3

r
2

r
2

r
2

r
2

r
2

I
4

S
6

S
7

I
5

r
4

r
4

r
4

r
4

r
4

I
6

r
1

r
1

r
1

r
1

r
1

I
7

S
3

S
2

8

I
8

r
3

r
3

r
3

r
3

r
3

The given grammar is LR(0) because there are no

multiple entries in the same cell.

Chapter 6.indd 299 4/9/2015 9:59:44 AM

300 CHAPTER 6: COMPILER DESIGN

�· Also add I to closure(I).

�· Repeat above steps for every newly added items.

 2. Goto function of CLR:

Goto(I, X)

�· Add I to Goto(I, X) and also move dot(•) after X.

�· Apply closure to the result obtained in the pre-

vious step.

Problem 6.16: Construct parsing table for the follow-

ing grammar and also check that the given grammar

is CLR(1) or not?

S → AA

A → aA

A → b

Solution:

Step 1: Construct an augmented grammar.

S′ → S

S → AA

A → aA

A → b

Step 2: Find closure.

I1

I1

I5

I2

I7

I6

I8

I9

I3

I4

S′ → S,$

S′ → S . ,$

S → .AA,$

S′ → A. A,$

S′ → AA.,$

A → a.A,$

A → aA.,$A→ a.A,$
A → .aA,$
A → .b,$

A→ b. , $
A → .b,$

A → .aA,a/b,
A → .b,a/b,

A → a.A,a/b
A → .aA,a/b

A → aA.,a/b

A → .b , a/b

A′ → b ., a/b

S

A

A

A

A
a

a

a
a

b

b

b

b

Step 3: Construct DFA.

I
0

I
1

I
5

I9

I
7

I
8

I
2

I
3

I
4

S

A

A

A

A

a

a
a

b

b

b b

I
6

Step 4: Construct parsing table.

Action Goto

State A B $ S A

I
0

S
3

S
4

1 2

I
1

Accepted

Step 4: Construct LR() parsing table.

Action Goto

+ Id $ E T

I
0

S
3

1 2

I
1

Accepted

I
2

S
4
/r

2
r
2

r
2

I
3

r
3

r
3

r
3

I
4

S
3

5 2

I
5

r
1

r
1

r
1

The given grammar is not LR(0) because there are

multiple entries (S
4
/r

2
) in the same cell. This conflict

is called as SR (shift-reduce) conflict.

SLR(1) Parser

SLR(1) parser is one of the variants of LR parser. An SLR

parser is efficient at finding the single correct bottom-

up parser in a single scan without backtracking. SLR(1)

parser table has only one difference from LR(0) pars-

ing table, reduction entries are made only in the specific

location. Let production E → T be reduced, then entry

of the reduced production will be in those column which

comes in Follow(T). If there are multiple entries in the

same cell, then the given grammar will not be SLR(1).

From Problem 6.15, we will construct parse table

only for SLR(1) (Table 6.1). State 2 has shift and reduce

entry, but we have to find that where we have to put the

reduce entry. The production which is reduced is E → T,

so we will put r
2
 at places which come in Follow(T).

Follow (T) = {+, $}

Table 6.1 | Parsing table for SLR(1)

Action Goto

+ Id $ E T

I
0

S
3

1 2

I
1

Accepted

I
2

S
4
/r

2
r
2

I
3

r
3

r
3

r
3

I
4

S
3

5 2

I
5

r
1

r
1

r
1

There are two entries in the same cell, so this is not

SLR(1) grammar.

Canonical LR Parser

Canonical LR parser is a simplified version of an LR parser

and is also known as CLR parser. CLR parser is the most

powerful parser of the LR parser family. Closure and Goto

function are processed differently than in SLR parser.

 1. Closure function of CLR:

Closure(I)

�· If I is A → B•CD, $ and C → •EF is in G, then

add C → •EF, {First(D), $}.
(Continued)

Chapter 6.indd 300 4/9/2015 9:59:45 AM

6.4 PARSER 301

Problem 6.18: Convert the following grammar into

operator grammar.

P → SR|S
R → bSR|bS
S → WbS |W
W → L*W |L
L → id

Solution:

The operator grammars for the given grammars are:

P → SbP |SbS |S
R → bP |bS
S → WbS |W
W → L*W |L
L → id

Important Points

 1. The relation between CLR(1), LALR(1), SLR(1),

LR(0) and LL(1) is shown in Fig. 6.11.

Unambiguous

CLR(1)

LALR(1)

SLR(1)

LR(0) LL(1)

Figure 6.11 | Relation between CLR(1), LALR(1),

SLR(1), LR(0) and LL(1).

 2. The relation between CLR(1), LALR(1), SLR(1),

LR(0) and operator precedence parser is shown in

Fig. 6.12.

Unambiguous

CLR(1)or LR(1)

LALR(1)

SLR(1)

LR(0)
Ambiguous

Operator

precedence

parser

Figure 6.12 | Relation between CLR(1), LALR(1),

SLR(1), LR(0) and operator precedence parser.

Continued

Action Goto

State A B $ S A

I
2

S
6

S
7

5

I
3

S
3

S
4

8

I
4

r
3

r
3

I
5

r
1

I
6

S
6

S
7

9

I
7

r
3

I
8

r
2

r
2

I
9

r
2

Here, in our example we have three productions which

are reduced.

S → AA production 1 (represented by r
1
)

A → aA production 2 (represented by r
2
)

A → b production 3 (represented by r
3
)

To know in which place r
3
 will get entry, check what

the look-ahead terminals in the closure are of the given

production of the grammar. Production A → b has

— a, b as look-ahead terminals. So reduction r
3
 will get

entry under a and b column. Given grammar is CLR(1)

grammar because there are two entries in the same cell.

Note: CLR(1) parser is more powerful than other variants

of LR parser, but it is costlier than the other due to more

number of states in the DFA of CLR(1), even though two

states are exactly the same other than look-ahead symbol.

So by merging those two states together, CLR(1) can be

minimized and the minimized CLR(1) is called LALR(1).

Operator Precedence Parser: It is based upon

bottom-up parsing technique that follow shift-reduce

parsing method. Operator precedence parser interprets

an operator precedence grammar. Operator precedence

parser is capable of parsing all LR(1) grammars.

Operator grammar: A grammar G is said to be opera-

tor grammar iff

1. G does not have null production.

2. G does not have two adjacent variables on the

right-hand side of the production.

Problem 6.17: Which is/are operator grammar in the

given set?

(a) E → E + E |E *E |id
(b) E → AB, A → a, B → b

(c) E → E + E |E *E |id|e

Solution:

(a) Operator grammar

(b) Not operator grammar

(c) Not operator grammar

Chapter 6.indd 301 4/9/2015 9:59:46 AM

302 CHAPTER 6: COMPILER DESIGN

Table 6.2 | Characteristics of S-attribute and

L-attribute definitions

S Attribute Definition L Attribute Definition

S-attribute definition

uses only synthesized

attributes.

L-attribute definition

uses both synthesized and

inherited attributes.

Semantic rules should be

placed at the rightmost

place of the right-hand side.

Semantic rules can be placed

anywhere on the right-hand

side of its production.

Evaluated by a bottom-up

or post-order traversal of a

parse tree.

Evaluated by a bottom-up

or pre-order traversal of a

parse tree.

6.5.3 Applications of SDT

 1. Evaluating arithmetic expression

 2. Creating syntax tree

 3. Converting infix to postfix

 4. Converting infix to prefix

 5. Generating intermediate code

 6. Converting binary to decimal

 7. Storing type information into symbol table

Problem 6.19: Construct SDT to evaluate the given

arithmetic expression:

Input: 2 + 3*4

Output: 14

Solution:

+Grammar Semantic Rules

E → E + T
 E.val = E.val + T.val

Print (E.val);

E → T E.val = T.val

T → T*F E.val = T.val * F.val

T → F T.val = F.val

F → id F.val = id

Parse Tree:

E

T E

T F

E. val = 12+2 =14

E. val = 2

T. val = 2T

F. val = 2F F. val = 3F

T. val = 3

T. val = 3 × 4 = 12

T. val = 4

+

id4

id3id2

∗

Parse tree for given arithmetic expression

2 + 3*4.

 3. If grammar G is LL(1), then

�· It may be LR(0).

�· It may be SLR(1).

�· It will surely be LALR(1).

 4. Every LL(1) grammar is surely LALR(1), but if

any grammar is LALR(1) then it may or may not

be LL(1).

 5. If any grammar is LALR(1), then it will surely be

CLR(1).

 6. CLR(1) is also known as LR(1).

 7. Every LL(1) grammar will surely be CLR(1).

 8. All LL(k) parsers are subset of LR(k) parser.

 9. If the number of states in LR(0), SLR(1), CLR(1)

and LALR(1) is n
1
, n

2
, n

3
, n

4
, respectively, then

the relation between them is

n
1
 = n

2
 = n

4
 ≤ n

3

6.5 SYNTAX-DIRECTED

TRANSLATION

Syntax-directed translation (SDT) is a method of com-

piler implementation which attaches semantic rules with

every production of a CFG while translating a string

into a sequence of actions. An SDT can be implemented

by first constructing a parse tree and then performing

the actions in a pre-order traversal.

Example 6.7

Let a production be E → E
1
 + E

2
, then SDT will be

E E E
E E E

E
→ ⋅ ⋅ ⋅

⋅
⎧
⎨
⎩

⎫
⎬
⎭

1 2

1 2
+

= +val val val

valPr int ();

6.5.1 Attributes of Syntax-Directed Translation

The following are two types of attributes supported by

the SDT:

 1. Synthesized attribute: An attribute is said

to be synthesized only if its value is calculated in

terms of its children in the parse tree.

 2. Inherited attribute: An attribute is said to be

inherited attribute only if its value is calculated

in terms of its parent or children or both in the

parse tree.

6.5.2 Types of Syntax-Directed Translation

An SDT is basically divided into two types: S-attribute

definition and L-attribute definition (Table 6.2).

Chapter 6.indd 302 4/9/2015 9:59:46 AM

6.6 RUNTIME ENVIRONMENT 303

Problem 6.22: Construct an SDT to convert infix

expression to prefix expression.

Input: a + b*c

Output: + a*b c

Solution:

The SDT is constructed as follows:

E → {print (+)} E + T

E → T

T → {print (*)} T*F

T → F

F → id {print (id)}

6.6 RUNTIME ENVIRONMENT

To generate the target code, there is a need to know

about the environment where the source program will

execute. It consists mapping of names and objects in the

memory, procedure activation, storage allocation, library

routines and exception handling, scopes and extents of

declarations and symbol table organization.

6.6.1 Storage Organization

Runtime memory needs to be subdivided as follows to

hold the different components of an executing program

(Fig. 6.13):

Program code

Stack

Static global data

Heap

Figure 6.13 | Storage organization.

 1. Program code: Refers to static area used by the

generated target code which is fixed at compile

time.

 2. Static global data: Refers to storage space for

data, which does not change during the execution

of the program.

 3. Stack: Manages activation of procedures at run-

time. The area usually grows towards lower address.

 4. Heap: Holds variable created at runtime.

Problem 6.20: Consider the following SDT:

S → TR

R → +T {print (+);} R

R → e
T → Num {print (num);}
For input string (9 + 5 + 2), what will be the output?

Solution:

We first draw the parse tree and then determine the

output.

R

T

T

R

R

ε

S

T

Num(9)

Num(5)

Num(2)

+

+

Print(+)

Print(+)

Parse tree for given arithmetic expression

(9 + 5 + 2).

Output = 95 + 2+

Problem 6.21: Construct an SDT to convert infix

expression to postfix expression.

Input: a + b*c

Output: abc* +

Solution:

The SDT is constructed as follows:

E → E + T {print (+)}
E → T

T → T *F {print (*)}
T → F

F → id {print (id)}
E

E

T T F

FF

*

T

id(c)

id(a) id(b)

+

Parse tree for given infix expression a + b*c.

Chapter 6.indd 303 4/9/2015 9:59:47 AM

304 CHAPTER 6: COMPILER DESIGN

Solution: The activation takes place as follows:

System starts main
enter f(5)

enter f(4)
enter f(3)

enter f(2)
exit f(2)
enter f(1)
exit f(1)
exit f(3)
enter f(2)
exit f(2)

exit f(4)
enter f(3)

enter f(2)
exit f(2)
enter f(1)
exit f(1)

exit f(3)
exit f(5)

The activation tree for f (5) is as follows:

main ()

f(5)

f(4)

f(2)

f(1)f(1)

f(3) f(2) f(1)

f(3)

Activation tree of f (5).

The following observations are made based upon the

activation tree:

 1. Order of activation corresponds to the pre-order

traversal of the tree.

 2. Order of deactivation corresponds to the post-order

traversal of the tree.

 3. If an activation of p calls q, then p will not termi-

nate before q.

6.6.3 Procedure Call Return Model

Every machine’s architecture and every language are

slightly different from each other. The basic steps fol-

lowed by a function call are as follows:

 1. Before a function call, the calling routine:

�· Saves any necessary registers

�· Pushes the arguments onto the stack for the tar-

get call

�· Sets up the static link (if appropriate)

�· Pushes the return address onto the stack

�· Jumps to the target

There are two different approaches for runtime storage

allocation, as given in Table 6.3.

Table 6.3 | Static and dynamic allocation

Static Allocation Dynamic Allocation

Allocates all needed space

when program starts.

Allocates space when it is

needed.

Deallocates all space

when program terminates.

Deallocates space when it

is no longer needed.

6.6.2 Activation Record and Activation Trees

Activation is the function in execution mode. The func-

tion code is the static part whereas execution is the

counterpart. The storage associated with an activation

of a procedure is called activation record.

 1. Activation record content:

�· Temporary values: Values generated as a result

of the expression evaluations which cannot be

put in registers.

�· Local data: Local data to belong to the procedure.

�· Saved machine: Keeps the context or machine

status (register, PC, etc.).

�· Access link: Points to non-local data in other AR.

�· Control link: Points to the caller’s activation

record the return value space of the called func-

tion, if any.

�· Actual parameters: Used by the calling proce-

dure to pass parameters to called procedures;

registers are used to pass these information.

For a recursive procedure or function, several activations

may be alive simultaneously. Activation tree shows the

path through which control enters and leaves activa-

tions for single run of a program. Each node represents

an activation of a function, if an arrow is facing a child

node from the parent node that means the child func-

tion is called by the parent function. Sibling `a’ is left

to `b’ means that function `a’ is called before function b.

Problem 6.23: Draw an activation tree of the given

example.

int a[10];
int main(){
int i;
for (i=0; i<10; i++){
a[i] = f(i);

}
}
int f (int n) {
if (n<3) return 1;
return f(n-1)+f(n-2);

main ends
}

Chapter 6.indd 304 4/9/2015 9:59:48 AM

6.7 INTERMEDIATE CODE GENERATION 305

Symbol table can be implemented by:

 1. Ordered list

 2. Unordered list

 3. Hash table

 4. Tree

Possible entries in a symbol table are as follows:

 1. Name

 2. Data type

 3. Size

 4. ID

 5. Scope information

 6. Storage allocation

6.7 INTERMEDIATE CODE

GENERATION

The source program can be directly converted into

the target language. But there are many benefits of

having an intermediate code or machine-independent

code such as increased abstraction, clear separation

between front end and back end, and easily retarget

and code optimization technique can also be applied

(Fig. 6.14).

Front end

Back

end

Static

checker

Intermediate

code

generatorS
c
a
n
n
e
r

P
a
r
s
e
r Intermediate

code

Figure 6.14 | Intermediate code generation.

6.7.1 Intermediate Representations

The commonly used representations of intermediate

code are as follows:

 1. Syntax tree

 2. Postfix notation

 3. Three-address code

6.7.1.1 Syntax Tree

A syntax tree is the tree representation of the abstract

syntactic structure of source code. Due to its abstract

nature it is also called as abstract syntax tree. Each of

the tree node denotes a construct occurring in source

code.

 2. During a function call, the target routine:

�· Saves any necessary registers

�· Sets up the new frame pointer

�· Makes space for any local variables

�· Does its work

�· Tears down frame pointer and static link

�· Restores any saved registers

�· Jumps to saved return address

 3. After a function call, the calling routine:

�· Removes return address and parameters from

the stack

�· Restores any saved registers

�· Continues executing

6.6.4 Lexical Versus Dynamic Scoping

Lexical (or Static

Scoping)

Dynamic Scoping

Binding of variable to

declarations is done at

compile time.

Binding of variable to

declarations is done at

compile time.

Lexical scope rules

specify the association

of variables with

declaration based on

the textual order of the

source code.

Dynamic scoping can be

achieved by copying a

function verbatim at the

place of call.

Innermost enclosing

block rule.

Most recent occurrence

rule.

Name resolution is

independent of caller.

Name resolution depends

on caller.

Used by most modern

languages: C/C++,

Pascal, etc.

Formerly used in some

interpreted languages

(older versions of LISP).

6.6.5 Symbol Table

It is a data structure used by compiler to store all the

information of tokens generated by lexical analyzer. After

the lexical analysis phase, semantic analyzer performs

type checking on the input code. During type check-

ing, semantic analyzer checks whether the use of names

(such as type names, variables, functions) is consistent

with their definition in the source code. Consequently,

if there are any inconsistencies or misuses found during

type checking then it is shown as an error. This is the

task of a symbol table.

Operations that can be performed on a symbol table

are as follows:

 1. Insert

 2. Delete

 3. Search

Chapter 6.indd 305 4/9/2015 9:59:48 AM

306 CHAPTER 6: COMPILER DESIGN

 1. Quadruples: A quadruple is a record structure

having four fields, namely op, arg1, arg2 and result.

The op field contains an internal code for opera-

tor. To translate binary expression `x operator y’

into three-address code, operator is placed in `op’

column; x in `arg1’ column, y in `arg2’ column and

a new temporary variable stores their calculated

result in the result column.

Example 6.10

The quadruples for the assignment a = b*c + d*e gener-

ates the following three-address code:

Op arg1 arg2 Result

(0) = C t
1

(1) * B t
1

t
2

(2) = D t
3

(3) * E t
3

t
4

(4) + t
2

t
4

t
5

(5) = t
5

A

 2. Triples: Temporary variables or memory names

in the symbol table can be avoided by the position

number of the statement that computes it. If we

used this method then three address statements can

be represented by records with three columns oper-

ation, arg1 and arg2. The column arg1 and arg2,

for the arguments of operation, are either point-

ers to the symbol table or pointers into the triple

structure. As numbers of used fields are three, so

this format is known as triples.

Example 6.11

Operation Arg1 Arg2

(0) = c

(1) * b (0)

(2) = c

(3) * b (2)

(4) + (1) (3)

(5) = a (4)

 3. Indirect triples: Triples are very difficult to opti-

mize because for optimization it required moving

of intermediate code and other triples connected

to it also have to be updated. So, a new variant of

Example 6.8

Statement written in source language:

a = b*c + d*c

a

=

+

* *

b c cd

Syntax tree of a = b*c + d*c.

6.7.1.2 Postfix Notation

Postfix notation is also known as `reverse polish’ nota-

tion. Any expression can be written unambiguously.

Interpreters can be built easily for postfix notation by

using the stack data structure. In the postfix notation,

an operator follows the operand.

Example 6.9

The source language statement:

a = b*c + d*c

Can be rewritten in postfix notation as:

abc*dc* + =

6.7.1.3 Three-Address Statement

Three-address statement is a linearized representation

of an abstract syntax, in which names of the temporar-

ies correspond to the nodes. The intermediate values

name allows three-address code to be easily rearranged,

which is convenient for optimization technique. The

reason to call `three-address code’ is that each state-

ment generally contains three addresses, two for the

operands and one for the result. Representations of the

three-address statement are quadruples, triples and

indirect triples.

Chapter 6.indd 306 4/9/2015 9:59:49 AM

6.8 CODE OPTIMIZATION 307

6.8.2 Primary Source of Optimization

Optimization can be done by using different ways.

Some of the primary source of optimization is discussed

below:

6.8.2.1 Dead-Code Elimination

Dead-code is a section of program code which is executed

but the result produced by that section is never used.

So, it can be removed from the program code because it

does not have any effect on the functionality of program.

Let we have temp1 = temp2 − temp3, and temp1 is

never used further in the program then we can eliminate

this whole instruction.

6.8.2.2 Constant Propagation

Constant propagation is the process of substituting a

constant value by the subsequent uses of a variable while

there is no intervening changes in the value of that vari-

able. Consider the given example below:

int a = 10;
int b = 12 – a / 2;
return b = b * (35/a +2);

Variable `a’ propagating the constant value 10 in the

given code.

6.8.2.3 Constant Folding

Constant folding is the process of evaluating the

constant expression at compile time. Constant fold-

ing process improves run-time performance and also

reduces code size by evaluating constant at compile

time. In program code below, the expression (4−2) can

be evaluated at compile time and replaced with the

constant 2.

int sub()
{
Return (4-2);
}

6.8.2.4 Elimination of Common

Sub-Expression

If two or more operations are similar and produce same

results then it is efficient way that to compute at once

and refer that results further rather than re-evaluate

it. In the given program code below, temp 3 and temp

6 produce similar results and temp 4 and temp 5 also

triples is called indirect triples is being used which

is easier to optimized. Indirect triples perform list-

ing pointers to triples, rather than listing the tri-

ples themselves.

Example 6.12

Stmt # Op Arg1 Arg2

(0) (14)
 → (14) C

(1) (15)
 → (15) * B (14)

(2) (16)
 → (16) C

(3) (17)
 → (17) * B (16)

(4) (18)
 → (18) + (15) (17)

(5) (19)
 → (19) = A (18)

 Program Triple container

6.8 CODE OPTIMIZATION

Code optimization phase is to reduce the size of the

code and improve the performance of the code gener-

ated by intermediate code phase. The most important

part of optimized code is to minimize the amount of

time taken by the code to execute and less common is

to minimize the amount of memory used by the code.

The basic requirement optimization methods should

comply with is that an optimized program must have

the same output and side effects as its non-optimized

version.

6.8.1 Types and Levels of Optimization

Optimization can be performed by automatic optimizers

or programmers. An optimizer is a built-in unit of a com-

piler. Modern processors have the capability to optimize

the execution order of code instructions. Optimizations

are classified mainly into two types, one is high-level

and the other is low-level optimizations. High-level opti-

mizations are generally performed by the programmer

who handles source code of the programs such as classes,

functions, control statements, and procedures. Low-level

optimizations are performed at the stage when source

code is compiled into a set of machine instructions, and

it is at this stage that automated optimization is usually

employed.

Chapter 6.indd 307 4/9/2015 9:59:49 AM

308 CHAPTER 6: COMPILER DESIGN

tmp2 = -x;
x = 21 * tmp2;
tmp3 = x * x;
tmp4 = x/y;
y = tmp3 + tmp4;
tmp5 = x/y;
z = tmp5/tmp3;
y = z;

6.8.2.5 Copy Propagation

Copy propagation is the different way of optimization,

in which assignment a=b for some variable `a’ and `b’,

we can replace later uses of `a’ with use of `b’ (it is to

be assumed that there is no change to either variable in-

between). The code on the left side makes a copy of tmp1

in tmp2 and a copy of tmp3 in tmp4. When we do optimi-

zation then on the right, we eliminated those unnecessary

copies and propagated the original variable into later uses.

tmp2 = tmp1;
tmp3 = tmp2 * tmp1;
tmp4 = tmp3;
tmp5 = tmp3 * tmp2;
c = tmp5 + tmp4;
tmp3 = tmp1 * tmp1;
tmp5 = tmp3 * tmp1;
c = tmp5 + tmp3;

produce similar results, so we can compute them once

and refer results further below in the code.

main()
{
int x, y, z;

x = (1+20)* -x;
y = x*x+(x/y);
y = z = (x/y)/(x*x);
}

straight translation:

tmp1 = 1 + 20;
tmp2 = -x;
x = tmp1 * tmp2;
tmp3 = x * x;
tmp4 = x/y;
y = tmp3 + tmp4;
tmp5 = x/y;
tmp6 = x * x;
z = tmp5/tmp6;
y = z;

What sub-expressions can be eliminated? How can valid

common sub-expressions (live ones) be determined? Here

is an optimized version, after constant folding and prop-

agation and elimination of common sub-expressions:

 1. Time complexity of RDP is O(2
n
).

 2. Every regular grammar need not be LL(1), because

that grammar may contain left factoring.

 3. Any ambiguous grammar cannot be LL(1).

 4. If any grammar contains left factoring, then it

can’t be LL(1) grammar.

 5. If given grammar contains left recursion, then it

can’t be LL(1) grammar.

 6. If grammar G is LL(1), then

 · It may be LR(0).

 · It may be SLR(1).

 · It will surely be LALR(1).

 7. Every LL(1) grammar will surely be LALR(1), but

if any grammar is LALR(1) then it may or may not

be LL(1).

 8. If any grammar is LALR(1), then it will surely be

CLR(1).

 9. CLR(1) is also known as LR(1).

 10. Every LL(1) grammar will surely be CLR(1).

 11. All LL(k) parsers are subset of LR(k) parser.

 12. If the number of states in LR(0), SLR(1), CLR(1)

and LALR(1) is n
1
, n

2
, n

3
, n

4
, respectively, then

relation between them is

n
1
 = n

2
 = n

4
 ≤ n

3

IMPORTANT FORMULAS

Chapter 6.indd 308 4/9/2015 9:59:50 AM

