
CHAPTER 6

COMPILER DESIGN

Syllabus: Compiler design: Lexical analysis, Parsing, Syntax-directed translation, Runtime environments, Intermediate 

and target code generation, Basics of code optimization.

6.1 INTRODUCTION

Computer understands programs written in machine  

language. Building program in machine language is  

a tedious and an error-prone task for human. So the  

programs are written in high-level languages which are 

easily understood by human. A compiler is a program 

that converts high-level program into low-level machine 

language that is understood by machine. This subject 

deals with how a compiler is designed and organized. 

While writing a compiler, the compilation process is 

divided into various phases. These phases operate in 

sequence; each phase takes input from the previous 

phase and provides output to the next phase.

6.2 COMPILERS AND INTERPRETERS

6.2.1 Compiler

A compiler is a special program that reads statements 

written in a language (called source language) and then 

converts them into another language (called target lan-

guage). In other words, a compiler is a program which 

translates statements written in high-level language (i.e. 

Java, C#, Visual Basic) into machine-level language 

(Fig. 6.1). In the process of translation, a compiler also 

checks for errors if any.
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6.2.3.1 Lexical Analyzer

Lexical analyzer reads the source program character by 

character at a time and unites them into a stream of tokens. 

Token is a group of character which represents keywords, 

operators and identifiers. Character sequence formed by 

tokens is called “lexeme”. Lexical analyzer is also known 

as lexer, tokenizer or scanner. If a lexical  analyzer gets an 

invalid token, then it will generate an error. The lexical 

analyzer assigns an id to each token according to their 

occurrence. It makes entries of each identifier into the 

symbol table. As a lexical analyzer cannot enter all infor-

mation regarding an identifier such as type and scope, the 

remaining information is inserted by the other phases of 

the compiler into the symbol table. For detail explanation 

about lexical analyzer, refer to Section 6.3.

 1. Symbol table: A symbol table is a data structure 

which stores identifier information related to its 

declaration and appearance in a program such as 

identifier id, type, scope, value and sometimes loca-

tion. Link list and hashing are the common tech-

niques which are used to construct symbol tables.

Example 6.1

Statement written in a source program is

A = B + C *25;

Tokens generated by lexical analyzer

A → Identifier

= → Assignment operator

B → Identifier

+ → Add operator

C → Identifier

* → Multiplication operator

25 → Constant

6.2.3.2 Syntax Analyzer or Parser

A syntax analyzer is the second and important phase 

of a compiler. It receives the tokens from the output 

of a lexical analyzer as an input. Parser performs two 

functions:

 1. A parser checks that the input tokens from a lexi-

cal analyzer are valid or not according to the speci-

fied grammar of source language.

 2. It generates a parse tree according to the given 

grammar to the source language. The grammar of 

source language is given below:

 S → id = P

 P → P + T/T

 T → T *Q/Q

 Q → id/Integer constant

High level language (HLL)

Compiler

Run      OutputInput Low level language

Figure 6.1 |  Compiler.

6.2.2 Interpreter

An interpreter takes a single instruction as input and con-

verts it into machine-level language and shows errors in the 

statement if any (Fig. 6.2). It requires less memory than a 

compiler, and execution of conditional control statements 

are slower. Debugging is easier in an interpreter.

High level language

Interpreter RunInput Output

Figure 6.2 |  Interpreter. 

6.2.3 Phases of a Compiler

A compiler takes a source program written in high-level 

language as input and produces an equivalent set of 

machine instruction as output. The compiler process is 

complex, so it is divided into six sub-processes which are 

also known as phases of a compiler. The following are 

different phases of a compiler (Fig. 6.3):

 1. Lexical analyzer

 2. Syntax analyzer

 3. Semantic analyzer

 4. Intermediate code generator

 5. Code optimization

 6. Target code

Lexical analyzer

Syntax analyzer

Semantic analyzer

Code optimization

Target code

Output

Intermediate code

generator

Input

Figure 6.3 |  Phases of a compiler. 
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Example 6.2

Parse tree of a given problem A = B + C *25.

S

P

TP

T T Q

Q Q 25

=

+

∗

(B)id

(A)id

(C)id

Parse tree of A = B + C *25

6.2.3.3 Semantic Analyzer

When the parse tree is generated by a syntax analyzer 

and passed as an input to the semantic analyzer, then 

the semantic analyzer computes the additional informa-

tion related to the recognized tokens, such as operator, 

operand, expression or statement, and inserts that infor-

mation into the symbol table. The information stored in 

the symbol table is frequently used by the other phases 

of the compiler. During the semantic analysis, the type 

of identifier is checked. In our example, let all identifiers 

be float, and 25 be treated as an integer constant. If 

required, the semantic analyzer will perform an implicit-

type conversion, and if it is not possible, then it will 

throw an error. This can be easily understood by the 

example given in Fig. 6.4.

Semantic analyzer

S

P Float

Float
Type

mismatch,

implicit

conversion

takes place

Float

Float

Float

Float

Float

Float

Integer

Integer

Float

Float

P T

TT Q

Q Q 25

id

id id

=

∗

+

Figure 6.4 |  Semantic analyzer of A = B + C *25. 

So, here in our example, implicit conversion took place. 

Implicit-type casting is also known as coercion.

6.2.3.4 Intermediate Code Generator

The intermediate code generator phase takes a tree as an 

input produced by a semantic analyzer and produces an 

intermediate code. The intermediate code thus generated 

has mainly two properties: it should be easy to produce 

and easy to translate into target program. An intermedi-

ate code can be represented in variety of forms. One of 

the forms is the three-address form, which is very similar 

to the assembly language in which every memory loca-

tion acts like a register. The intermediate code of our 

example is

Source code:

A B C= + * 25

Intermediate code:

T C

T B T

A T

1

2 1

2

25=

= +

=

*

6.2.3.5 Code Optimization

The code optimization phase is to reduce the size of the 

code and improve the performance of the code gener-

ated by an intermediate code phase. The most impor-

tant part of optimized code is to minimize the amount 

of time taken by the code to execute and less common 

is to minimize the amount of memory used by the code. 

Optimized code of our example is

Intermediate code:

T C

T B T

A T

1

2 1

2

25=

= +

=

*

Optimized code:

T C

A B T

1

1

25=

= +

*

6.2.3.6 Target Code

The target code is the final phase of the compiler which 

normally converts the input obtained from the code opti-

mization phase into the target code (machine code or 

assembly code). The target code of our example is as 

follows:

 MOV R
1
, C

 MUL R
1
, 25

 MOV R
2
, B

 ADD R
2
, R

1

 STORE A, R
2

This is the final output of the compiler.
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consist of identifiers, operators and operand. A lexical 

analyzer also stores the name and id of identifiers in the 

symbol table (Fig. 6.6).

Parser

get token( )

send token( )

Error

handler

Symbol

table

Lexical

analyzer

Figure 6.6 |  Lexical analyzer. 

6.3.1 Functions of a Lexical Analyzer

A lexical analyzer has the following functions.

 1. Lexical analyzer divides the given source code or 

program into some meaning full words called tokens.

 2. It eliminates the comment lines.

 3. It finds integer and floating point constant.

 4. It eliminates white-space character such as blank 

space and tab.

 5. It helps in giving error message by providing row 

and column numbers.

 6. It identifies identifier, keywords, operators and 

constants.

6.3.2 Implementation of a Lexical Analyzer

Method of implementing a lexical analyzer or scan-

ner is regular expression and finite automaton. Some 

background information related to regular expression 

and finite automaton are given in the following sec-

tions which will help to understand how a scanner 

works.

6.3.2.1 Regular Expression Review

 1. Symbol: Letters, digits and special symbols are 

examples of a symbol.

 2. Alphabet: A finite set of symbols through which 

we build large structures. An alphabet is denoted 

by Σ, for example, Σ = {0, 1}.

 3. String: A finite set of symbol made up of alpha-

bets, for example, a, b are alphabets and aaab, abba 

are the strings.

 4. Empty string: A string which has zero symbols, 

and represented by e.

6.2.4 Grouping of Phases

Phases deal with the logical organization of a compiler. 

In an implementation, activities from more than one 

phase are often grouped together. Basically, phases are 

grouped into two parts. The first part is known as the 

front end, which consists of initial four phases (lexical 

analyzer, syntax analyzer, semantic analyzer and inter-

mediate code) along with symbol table operations and 

error handling. The second part, also known as back end, 

consists of the last two phases (code optimization and 

target code). The back end also includes error handling 

and symbol table operation (Fig. 6.5).

Lexical 

Syntax

Semantic

Intermediate

 code

Back end

Front end

Code optimization

Target code

Figure 6.5 |  Grouping of compiler phases. 

6.2.4.1 Compiler Construction Tools

The compiler writers use software tools such as debug-

gers, version managers, profilers and so on. The follow-

ing is a list of some useful compiler construction tools:

 1. Parser generators: These produce syntax ana-

lyzer from context-free grammar as input.

 2. Scanner generators: These automatically pro-

duce lexical analyzer from a specification based on 

regular expressions.

 3. Syntax-directed translation engines: These 

produce collection of routines from parse tree, gen-

erating the intermediate code.

 4. Automatic code generators: These take col-

lection of rules that define the translation of 

each operation of the intermediate language into 

machine language for the target machine.

 5. Data-flow engines: Data flow analysis is req-

uired to perform good code optimization and data 

flow engines facilitates the gathering of informa-

tion about how values are transmitted from one 

part of a program to another part of that program.

6.3 LEXICAL ANALYZER

Lexical analyzer is the starting phase of a compiler. It 

reads the source program character by character at a 

time and unites them into a stream of tokens. Tokens 
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a lexical analyzer when called by the parser to get 

query for the next token. The positions are shown by 

the circles called states which are connected by edges. 

Here is a finite automaton which recognizes an integer 

(Fig. 6.7).

Not

digit

Not

digit

Digit

DigitStart

Figure 6.7 |  Finite automata for recognizing an integer. 

Problem 6.1: Consider the following C program, find 

the number of tokens.

float average(int a, int b)
{
float c;
c = (a + b)/2;
return c;
}

Solution: Every token individual has been under-

lined. Counting the number of underlines, we have 

the number of tokens as 27.

float average ( int a , int b )
{
float c ;
c = ( a + b ) / 2 ;
return c ;
}

Problem 6.2: Find the number of tokens in the fol-

lowing C statement.

printf(“k = %d”, i);

Solution: The number of tokens is 7.

printf(“k = %d”, i);

6.4 PARSER

A parser is a part of a compiler. It takes sequence of 

tokens from the lexical analyzer as an input and then 

builds a data structure in the form of a parse tree 

(Fig. 6.8). A parser’s main purpose is to  determine if 

 5. Formal language: A set of all possible strings 

which can be generated from given alphabets, and 

represented by Σ*.

 6. Regular expression: The rules that define 

the set of words that are valid tokens in a 

formal language. These rules are made by three 

operators:

�· Alternation x|y (x or y)

�· Repetition x* (x is repeated 0 or more times)

�· Concatenation xy

6.3.2.2 Finite Automata Review

Once we have all type of tokens defined by regular 

expression, we can create a finite automaton for recog-

nizing them. A finite automaton has the following:

 1. A finite set of states, one of which is the start state 

or initial state, and some (maybe none) of which 

are final states.

 2. An alphabet Σ of possible input symbols.

 3. A finite set of transitions that specifies for each 

state and for each symbol of the input alphabet, 

which defines that for an input symbol which will 

be the next state to go.

Example 6.3

q
0

q
2

q
1

q
3

b

a

a

a

b

b

a,b

where q
0
 is the initial state and q

3
 is the final state. The 

given finite automaton accepts a language which has a 

string starting with `a’ and ending with `b’.

6.3.2.3 Recognition of Tokens

In this section, we will explain how a token is rec-

ognized by a lexical analyzer. A lexical analyzer uses 

finite automaton to recognize a token. Transition dia-

gram is shown below which consists of stages and arcs. 

Arcs show the transition from one state to another 

state. Transition diagram describes the working of 
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6.4.2 Derivation Tree or Parse Tree

The string generated by a CFG G = (V
n
, T, S, P) is rep-

resented by a hierarchical structure called tree. A deriva-

tion tree or parse tree for a CFG is a tree that satisfies 

the following condition:

 1. If A → a
1
, a

2
, a

3
, …, a

n
 is a production in G, 

then A becomes the father of nodes, labelled a
1
, a

2
,  

a
3
, …, a

n
.

 2. The root has label S (starting symbol).

 3. Every vertex (or node) has a label.

 4. Internal nodes should be labels with variables only.

 5. The leaves nodes are labelled with e or terminal symbol.

 6. The collection of leaves from left to right yields the 

string w.

Problem 6.4: Consider the grammar S → S + 

S |S *S |a|b. Construct a derivation (or parse) tree for 

the string w = a + b *b.

Solution:

S

S S

S S
*

bb

a

+

6.4.2.1 Leftmost Derivation Tree

A derivation tree is called a leftmost derivation (LMD) 

tree if the ordering of decomposed variable is from left to 

right. Thus, for generating string w = aab from grammar:

S → AB (production 1)

A → aaA (production 2)

A → e (production 3)

B → bB (production 4)

B → e (production 5)

LMD:

S → AB (by production 1)

S → aaAB (by production 2)

S → aaB (by production 3)

S → aabB (by production 4)

S → aab (by production 5)

the input data may be derived from the start symbol 

of the grammar. Depending upon the method how 

the parse tree is derived, we have two types of  parsers—

top-down parser and bottom-up parser  (discussed 

shortly).

Grammar

V→T

Parse

tree

Parser

Source

program

Error

handler

Figure 6.8 |  Parser. 

6.4.1 Context-Free Grammar

A grammar G = (V
n
, T, S, P) is said to be a context-free 

grammar (CFG) if the production P = {u → v} of G are 

of the form u → v and satisfy the following conditions:

 1. u → v, where v V T∈ ∪( ) * , and V stands for vari-

able and T for terminal

 2. u → v, where u ∈ V
n

 3. u v≤  (length of u is less than v)

 4. Only single variable is allowed in left side (means u 

has single variable only)

As we know that a CFG has no context either left or right, 

this is the reason why it is also known as context-free.

Problem 6.3: Consider a grammar G = (V
n
, T, S, P) 

having production S → aSa|bSb|x. Check the produc-

tion and find the language generated.

Solution:

Let P
1
: S → aSa

P
2
: S → bSb

P
3
: S → x

(a, b, x) are terminals and S is a variable. As all the pro-

duction are of the form A → a, where a ∈ ∪( ) *V Sn  

and A ∈ V
n
, hence G is a CFG. And it will produce 

context-free language.

Language generated: L G wxw w a b
R

( ) : ( )*= +{ }∈
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6.4.3.1 Removal of Ambiguity

 1. Removal of left recursion: A production of 

grammar G = (V
n
, T, S, P) is said to be left recur-

sive grammar if it has one of the productions in the 

given form:

 A → Aa, where A is a variable and a ∈ (V
n
 ∪ S)*

Elimination of left recursion: Let the variable A 

have left recursive problem as following:

A → Aa
1
|Aa

2
|Aa

3
|…|Aa

n
|b

1
|b

2
|b

3
|…|b

m
 

where b
1
, b

2
, …, b

m
 do not begin with A. Then we 

replace A production by:

{A → b
1
A′|b

2
A′|b

3
A′|…|b

n
A′|} 

where A′ → a
1
A′|a

2
A′|a

3
A′|…|a

n
A′|e

Example 6.4

Let grammar S → S + S |S *S |a|b|c
To eliminate left recursion, the grammar S is replaced by

S ′ → +SS ′|*SS ′|e
S → aS ′|bS ′|cS ′

 2. Removal of left factoring: In grammar G, two 

or more productions of variable A are said to have 

left factoring if the productions are in the form:

A → ab
1
|ab

2
|ab

3
…|ab

m

where {b
1
|b

2
|b

3
…|b

m
} ∈ (V

n
 ∪ S)* and does not 

start with a. All these production have common 

left factor a.

Elimination of left factoring: Let variable A have 

(left factoring) production as follows:

A → ab
1
|ab

2
|ab

3
…|ab

m
|γ

1
|γ

2
|γ

3
|…|γ

m

where γ
1
, γ

2
, γ

3
, …, γ

m
 and {b

1
, b

2
, b

3
…b

m
} do not 

contain a as a prefix, then we replace this produc-

tion by

A → aA′|γ
1
|γ

2
|γ

3
|…|γ

m

A′ → b
1
|b

2
|b

3
…|b

m

Example 6.5

Let grammar A → abc|abd|abe
To remove left factoring, we have

A → abA′
A′ → c|d|e

6.4.4 Top-Down Parser

In top-down parser, parse tree construction starts from 

the root and proceeds to the leaf. Top-down parser uses 

6.4.2.2 Rightmost Derivation Tree

A derivation tree is called rightmost derivation tree 

(RMD) if the ordering of decomposed variable is from 

right to left. Thus, for generating string w = aab from 

the above grammar:

RMD:

S → AB (by production 1)

S → AbB (by production 4)

S → Ab (by production 5)

S → aaAb (by production 2)

S → aab (by production 3)

Left to right

S

BA

A

e e

aa Bb

6.4.3 Ambiguous Grammar

A grammar G is called ambiguous if for some string  

w ∈ L(G), there exist two or more derivation tree (two 

or more LMD or two or more RMD tree). Let us consider 

a CFG grammar having production:

S → S + S |S *S |a|b, for string w = a + a *a have more 

than one LMD tree.

S

S +

+

S

S

S S

S S
S Sa

a a
a a

a

*

*

Note: A language (L) is called ambiguous if and only 

if every grammar which generates it is ambiguous. The 

only known ambiguous language is {an
b
m
c
n} ∪ {an

b
m
c
m}.

Left recursion and left factoring is the major cause for 

a grammar to be ambiguous. But presence of these in 

a grammar does not mean that grammar is ambiguous; 

and similarly absence of these does not mean that the 

grammar is unambiguous.
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Problem with Recursive Descent Parser

 1. Recursion is used to generate parse tree.

 2. More time is wasted in backtracking.

 3. Recursive descent parser can enter into an infinite 

loop if the given grammar contains left recursion.

 4. Time complexity of RDP is O(2
n
).

6.4.4.2 Top-Down Parser without 

Backtracking

A predictive parser is a special class of recursive decent 

parser. The goal of predictive parsing is to construct 

a top-down parser that does not require backtracking. 

Predictive parsing technique can only be used for class 

of LL(k) grammars, where k is some integer. In LL(k) 

grammar, by seeing k tokens a recursive decent parser 

decides which production should be examined so that 

the LL(k) grammars are able to exclude all grammars 

that are ambiguous and having left recursion (Fig. 6.9).

Input

Parsing table

Output

Stack

$

LL() Action

table

LL() Parser

LL() Goto

table

Figure 6.9 |  Predictive parser. 

6.4.4.3 Algorithm of Predictive Parser

Let x be the top of stack and `a’ be the look-ahead 

symbol. Then

 1. If (x = = a = = $), then successful complete.

 2. If (x = = a = = $), then pop the stack element and 

increment input pointer.

 3. If (x is a variable), then see the LL(1) action pars-

ing table M.

If M[x
1
, a] = x → uvw, then replace x by uvw in the 

reverse order.

 4. If M[x
1
, a] = blank, then parsing error.

LMD for constructing the parse tree. When a variable 

contains more than one choice, choosing the correct 

 production is always going to be difficult. In top-down 

parsing, no left recursion and no left factoring exist.

Problem 6.5: String w = abbcde, grammar G is given 

below:

S→aABe

A→Abc/b

B→D

Draw a parse tree for the production of a string w 

with the help of grammar G.

Solution:

S

A

A

B e

b

b

c d

a

Parse tree for string w = abbcde.

Top-down parsing can be performed by the following 

two methods:

 1. Top-down parsing with backtracking

 2. Top-down parsing without backtracking

6.4.4.1 Top-Down Parsing with 

Backtracking

One of the most straightforward forms of parsing is recur-

sive descent parsing (RDP). This is a top-down process in 

which the parser attempts to verify that the syntax of the 

input stream is correct as it is read from left to right. The 

pseudocode of recursive descent parser is given as follows:

RDP(S)
{
Choose a production S→x1,x2,x3,x4
for(i=1 to n)
{
if(xi is variable)
RDP(i)
else if(xi==lookahead)
increment i/p pointer
else
error(choose another production)
}
}

Problem 6.6: Draw a top-down predictive parser 

using the following parser table.

Grammar of given language

S → (L)/a

L → SL′
L′ → e/,SL′

String w = (a, a, a)
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6.4.4.4 LL(1) Parsing Table Construction

 1. First set: First(A) gives a set of all terminals that 

may begin in a string derived from A. To get first 

of A, start finding all strings generated by that 

variable in a language and then pick the first ele-

ment of every string.

Rules:

�· If S → ab/cd/ef then

First(S) = {a, c, e}
�· If S → ab then

First(S) = {a}
First(e) = (e)
First(a) = {a}, where `a’ is terminal

�· If S → AB

A → a

B → b

then First(s) = {a}
�· If S → aS/b then

First(S) = {a, b}
�· If S → AB

A → a/c/d/e
B → b

then First(S) = {a, c, d, b}
 2. Follow set: Follow(A) gives a set of all terminals 

that may follow immediately to the right of A. e 
can never be a part of any follow set.

Rules:

�·  If S is the starting symbol, then $ is also one of 

the element of Follow(S).

�· If S → aBCDE, then

Follow(C) = First(DE) = First(D)

�· If S → AB or S → ABC and C → e, then

Follow(B) = Follow(S)

Problem 6.7: Find the first and the follow sets for the 

given grammar:

E → TE ′
E ′ → e/ + TE ′
T → FT ′
T ′ → e/*FT ′
F → id/(E)

Solution:

Variable First( ) Follow( )

E id, ( $, )

E ′ +, e $, )

T id, ( +, $, )

T ′ *, e +, $, )

F id, ( *, +, $, )

Parsing Table

A , ( ) $

S S → a S → (L)

L L → SL′ L → SL′

L′ L′ →, SL′ L′ → e

Solution:

S. No. Input Stack Production

1. (a, a, a)$ $S

$)L(

S → (L)

2. a, a, a)$ $)L

$)L′S
$)L′a

L → SL′
S → a

3. , a, a)$
$)L′
$)L′S,

L′ →, SL′

4. a, a)$
$)L′S
$)L′a

S → a

5. , a)$
$)L′S, L′ →,SL′

6. a)$
$)L′S
$)L′a

S → a

7. ) $
$)L′
$ )

L′ → e

8. $ $

By following these steps we can generate a parse tree 

for the string w = (a, a, a).

S

C L

a

a

a ¨

,

,

L

L

L′

S

S

S

J

Parse tree for the string w = (a, a, a). 
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Number of cells in parsing table = {V *(T + 1)}
So, table entries = {5*(5 + 1)} = 30

Parsing table constructed with the help of the first 

and follow sets of given grammar:

Id + * ( ) $

E E → TE ′ E → TE ′

E ′ E  ′ → +TE   ′ E ′ → e E ′ → e

T T → FT ′ T → FT ′

T ′ T ′ → e T ′ → *FT ′ T′ → e T ′ → e

F F → id F → (E)

How to Check a Given Grammar (G) Is LL(1) or Not?

The following are two ways to identify that a given 

grammar is LL(1) or not:

 1. By constructing parsing table, if parsing table does 

not have more than one production entry in any of 

the cell then only it is LL(1).

 2. By checking the following two conditions:

�·  If a given grammar G does not contain null(e) 
production:

Let grammar G be

A → a
1
/a

2
/a

3

Then a
1
, a

2
, a

3
 should be pair wise disjoint.

That is, 

First(a
1
) ∩ First(a

2
) = ∅

First(a
2
) ∩ First(a

3
) = ∅

First(a
3
) ∩ First(a

1
) = ∅

�· If grammar G contains null(e) production:

Let grammar G be

A → a
1
/a

2
/e

Find First(a
1
), First(a

2
) and Follow(A), they 

should be pair wise disjoint.

First(a
1
) ∩ Follow(A) = ∅

First(a
2
) ∩ Follow(A) = ∅

Problem 6.10: Check whether the following grammar 

is LL(1) or not.

S → E/a

E → a

Problem 6.8: Find the first and the follow sets for the 

given grammar:

S → (L)/a

L → SL′
L′ → e/,SL′

Solution:

Variable First( ) Follow( )

S (, a ,, ), $

L (, a )

L′ ,, e )

6.4.4.5 Algorithm for Constructing a 

Parsing Table

If a grammar G is given, the steps to construct a parsing 

table is as follows:

For each production A → a, do the following

 1. Add A → a under M[A, b], where b ∈ First(a).

 2. If First(a) contains e, then add A → a under 

M[A, c], where c ∈ Follow(A). 

Number of parsing table entries = {V *(T + 1)}, where 

V is the number of variables in the given grammar and T 

is the number of terminals in the given grammar.

Problem 6.9: Construct the parsing table from the 

following grammar:

E → TE ′
E′ → e/ + TE ′

T → FT ′
T′ → e/*FT ′
F → id/(E)

Solution:

The first and the follow sets for the given grammar 

are as follows:

Variable First( ) Follow( )

E id, ( $, )

E ′ +, e $, )

T id, ( +, $, )

T ′ *, e +, $, )

F id, ( *, +, $, )

Chapter 6.indd   296 4/9/2015   9:59:41 AM



6.4 PARSER    297

Draw a parse tree for reduction of a string w with the 

help of the grammar G.

Solution: The parse tree for reduction of the string 

w = abbcde.

S

a

a

a

a

A

A

A b

b b

c

c

B

d

d

d

e

e

e

e

6.4.5.1 Classification of Bottom-Up Parser

The bottom up parser is classified as shown in Fig. 6.10.

Bottom-up parser

LR Parser

Unambigious

  grammar

Operator precedence

  parser

Operator grammar

LR(0) SLR(1) CLR(1) LALR(1)

Figure 6.10 |  Classification of bottom-up parser. 

LR Parser

In computer science, an LR parser is a type of bottom-

up parser that efficiently handles context-free languages in 

guaranteed linear time. An LR parser reads input from left 

to right and produces an RMD. The canonical LR (CLR), 

look-ahead LR (LALR) and simple LR (SLR) parsers are 

common variants of LR parsers. For all types of LR parsers, 

parsing algorithm is same but parsing tables are different.

LR Parsing Algorithm

Let S be the state on top of the stack and ̀ a’ be the look-

ahead symbol, then

 1. If action [S, a] = S
i
, then shift `a’ and `i’, and also 

increment the i/p pointer.

 2. If action [S, a] = r
j
 and r

j
 is a → b, then pop 2|b | 

symbols and replace by a. If S
m−1

 is the state below 

a, then push Goto [S
m−1

, a].

Solution: In the given grammar there is no null pro-

duction, so

First(S) = a

First(E) = a

According to the given condition 1, First(S) ∩ 

First(A) ≠ ∅. So the given grammar is not LL(1).

Problem 6.11: Check the following grammar is LL(1) 

or not.

S → aABb

A → a/e
B → d/e

Solution: In the given grammar there is null pro-

duction, so find first and follow of those productions 

which have null production.

First

Follow
No common element

( )

( ) ,

A a

A d b

=

=

⎧
⎨
⎩

⎫
⎬
⎭

First

Follow

No common element

( )

( )

B d

B b

=

=

⎧
⎨
⎩

⎫
⎬
⎭

Important Points

 1. Every regular grammar need not be LL(1) because 

that grammar may contain left factoring.

 2. Any ambiguous grammar cannot be LL(1).

 3. If any grammar contains left factoring, then it 

cannot be LL(1) grammar.

 4. If a given grammar contains left recursion, then it 

cannot be LL(1) grammar.

6.4.5 Bottom-Up Parser

In bottom-up parser, parse tree construction starts from 

children and proceeds to root. Bottom-up parser uses 

RMD for constructing the parse tree. A substring which 

will give reduction of string is called handle.

The difficulty with bottom-up parser is identifying the 

right handle which will give one required variable so that 

we will go to start symbol.

Problem 6.12: String w = abbcde, grammar G is 

given below:

S → aABe

A → Abc/b

B → D
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Problem 6.13: Consider the following grammar and 

construct the LR parsing table.

 
 
S  → AA (production number 1)

 A → aA (production number 2)

 A → b  (production number 3)

Solution:

Step 1: Construct the augmented grammar.

S′ → S

S → AA

A → aA

A → b

Step 2: Find closure.

S

A
A

b

A

a

b

b

a

a

S′ → .S

S′ → S.

S → A.A
S → AA.

A →aA.

A → aA

A → a.A
A → aA
A → .b

A → .b

A → b.

I1

I0

I2

I3

I4

I5

I6

S → .A
A → .aA
A → .b

Step 3: Construct DFA.

I
1

I
0

I2

I
3

I
4

I
6

I
5

S

A

a a

a

A

Ab b

b

Step 4: Construct LR(0) parsing table.

�! S
i
 denotes the shift move in the above DFA, where 

`i’ denotes the state number.

�! r
i
 represents reduction move in the above DFA, 

where `i’ denotes the production number. 

Action Goto

State A b $ S A

I
0

S
3

S
4

1 2

I
1

Accepted

I
2

S
3

S
4

5

I
3

S
3

S
4

6

I
4

r
3

r
3

r
3

I
5

r
1

r
1

r
1

I
6

r
2

r
2

r
2

 3. If action [S, a] = accepted, then successful parsing.

 4. If action [S, a] = blank, then parsing error.

Stack Operations

 1. Shift: Shifts the next input symbol onto the top 

of the stack.

 2. Reduce: Replaces a set of grammar symbol or 

handle on the top of the stack with the LHS of a 

production rule.

 3. Accept: Declares successful completion of the 

parsing.

LR(0) Parser

 1. LR(0) parsing table construction: For con-

structing LR(0) parsing table we have to follow the 

given steps:

�· Construct augmented grammar.

Let given grammar G be

S → AA

A → aA/b

Augmented grammar G′ will be

S ′ → S

S → AA

A → aA/b

S ′ → S is called the augmented production.

�· Find closure {I
0
 = closure (S ′ → •S )}.

To find closure of a production I, follow these 

steps:

�" In closure of I, add I also to closure (I ).

�" If I is A → B • CD and C → EF is in the given 

grammar G, then add C → •EF to closure (I ).

�" Repeat these steps for every newly added 

LR(0) item.

This can be understood clearly by the given exam-

ple; it uses the above grammar to find closure.

Closure (S ′ → •S ) = {S ′ → •S |S → •AA|A → •aA| 
            A → •b}
Closure (S → •AA) = {S → •AA|A → •aA|A → •b}
Closure (A → •aA) = {A → •aA}
�·  Using I

0
 construct deterministic finite automata 

(DFA).

�· Reduce DFA into LR(0) parsing table.

�· Find Goto (I, X).

Goto (I, X) function is used to fill the second 

part of the parsing table, which have entries 

related to move after X.

Example 6.6

Consider the above grammar for the Goto function.

�! Goto (S′ → •S, S) = S′ → S.

�! Goto (S′ → •AA, A) = S → S•|A → •aA|A → •b

�! Goto (A → •aA, a) = A → a•A|A → •aA|A → •b
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Important Points

 1. If there are two reductions on any state of DFA, 

then in table entry we have to put both in that cell. 

In that situation parser will not be able to decide 

for which reduction it has to parse, so this problem 

is called reduce-reduce (R-R) problem.

 2. If in any state one production is reduced and 

another is shifted then also parser is not able to 

parse it. This problem is called shift-reduce (S-R) 

problem.

 3. Due to DFA no shift-shift (S-S) problem occurred.

 4. For conflict, there should be two productions and 

at least one of them should be reduced.

 5. Goto section does not participate in conflict.

Problem 6.15: Check if the following grammar is 

LR(0) or not.

E → T + E …….(production number 1)

E → T …….........(production number 2)

T → id ……........(production number 3)

Solution:

Step 1: Construct an augmented grammar.

E′ → E

E → T + E

E → T

T → id

Step 2: Find closure.

I1

I2

I0

I7id

E

E

E ′ → .E
E ′ → E.

E  → .T+E E  → T.+E

E  → T+.E

E  → T+E.E  → .T+E

E  → .T E  → T. E  → .T
T → .id T → .id

T → id.

T

T

id

I4

I5

+

Step 3: Construct DFA.

I
0

I
2

I
3

I
1

I
4 I

5

E

E

T

id

+

id

T

Problem 6.14: Check whether the following grammar 

is LR(0) or not.

S → (L) (production number 1)

S → a (production number 2)

L → L, S (production number 3)

L → S (production number 4)

Solution:

Step 1: Construct the augmented grammar.

S ′ → S

S → (L)

S → a

L → L, S

L → S

Step 2: Find closure (I
0
 = S′ → S).

L→ L,S.

I1

I2

I
3

I4

I5

I6

I7 I8

I0
S

S

L

(

a

a

a

S′ → .S
S → .(L)

S→ (.L)

S→ (L.)

S→ S.

S→ .(L)

S→ (L).

L → S.
S→ .a

S→ .a

S → .(L)

L → .L,S L → L.,S

L → L,.SL   → .SS→ .a

S → a.

(

(

,

)

Step 3: Construct DFA.

I
0

I
1

I
2

I
4

I
6

I
7

I
8

I
5

I
3

a

a

a

S

S

L

S

(

(

,

)

Step 4: Construct LR parsing table.

Action Goto

State A ( ) , $ S L

I
0

S
3

S
2

1

I
1

Accepted

I
2

S
3

S
2

5 4

I
3

r
2

r
2

r
2

r
2

r
2

I
4

S
6

S
7

I
5

r
4

r
4

r
4

r
4

r
4

I
6

r
1

r
1

r
1

r
1

r
1

I
7

S
3

S
2

8

I
8

r
3

r
3

r
3

r
3

r
3

The given grammar is LR(0) because there are no 

multiple entries in the same cell.

Chapter 6.indd   299 4/9/2015   9:59:44 AM



300    CHAPTER 6: COMPILER DESIGN 

�· Also add I to closure(I ).

�· Repeat above steps for every newly added items.

 2. Goto function of CLR:

Goto(I, X)

�· Add I to Goto(I, X) and also move dot(•) after X.

�·  Apply closure to the result obtained in the pre-

vious step.

Problem 6.16: Construct parsing table for the follow-

ing grammar and also check that the given grammar 

is CLR(1) or not?

S → AA

A → aA

A → b

Solution:

Step 1: Construct an augmented grammar.

S′ → S

S → AA

A → aA

A → b

Step 2: Find closure.

I1

I1

I5

I2

I7

I6

I8

I9

I3

I4

S′ → S,$

S′ → S  . ,$

S → .AA,$

S′  → A. A,$

S′ → AA.,$

A → a.A,$

A → aA.,$A→ a.A,$
A → .aA,$
A → .b,$

A→ b. , $
A → .b,$

A → .aA,a/b,
A → .b,a/b,

A → a.A,a/b
A → .aA,a/b

A → aA.,a/b

A → .b ,  a/b

A′ → b .,  a/b

S

A

A

A

A
a

a

a
a

b

b

b

b

Step 3: Construct DFA.

I
0

I
1

I
5

I9

I
7

I
8

I
2

I
3

I
4

S

A

A

A

A

a

a
a

b

b

b b

I
6

Step 4: Construct parsing table.

Action Goto

State A B $ S A

I
0

S
3

S
4

1 2

I
1

Accepted

Step 4: Construct LR() parsing table.

Action Goto

+ Id $ E T

I
0

S
3

1 2

I
1

Accepted

I
2

S
4
/r

2
r
2

r
2

I
3

r
3

r
3

r
3

I
4

S
3

5 2

I
5

r
1

r
1

r
1

The given grammar is not LR(0) because there are 

multiple entries (S
4
/r

2
) in the same cell. This conflict 

is called as SR (shift-reduce) conflict.

SLR(1) Parser

SLR(1) parser is one of the variants of LR parser. An SLR 

parser is efficient at finding the single correct bottom-

up parser in a single scan without backtracking. SLR(1) 

parser table has only one difference from LR(0) pars-

ing table, reduction entries are made only in the specific 

location. Let production E → T be reduced, then entry 

of the reduced production will be in those column which 

comes in Follow(T). If there are multiple entries in the 

same cell, then the given grammar will not be SLR(1).

From Problem 6.15, we will construct parse table 

only for SLR(1) (Table 6.1). State 2 has shift and reduce 

entry, but we have to find that where we have to put the 

reduce entry. The production which is reduced is E → T, 

so we will put r
2
 at places which come in Follow(T).

Follow (T) = {+, $}

Table 6.1 |  Parsing table for SLR(1)

Action Goto

+ Id $ E T

I
0

S
3

1 2

I
1

Accepted

I
2

S
4
/r

2
r
2

I
3

r
3

r
3

r
3

I
4

S
3

5 2

I
5

r
1

r
1

r
1

There are two entries in the same cell, so this is not 

SLR(1) grammar.

Canonical LR Parser

Canonical LR parser is a simplified version of an LR parser 

and is also known as CLR parser. CLR parser is the most 

powerful parser of the LR parser family. Closure and Goto 

function are processed differently than in SLR parser.

 1. Closure function of CLR:

Closure(I)

�· If I is A → B•CD, $ and C → •EF is in G, then 

add C → •EF, {First(D), $}.
(Continued)
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Problem 6.18: Convert the following grammar into 

operator grammar.

P → SR|S
R → bSR|bS
S → WbS |W
W → L*W |L
L → id

Solution:

The operator grammars for the given grammars are:

P → SbP |SbS |S
R → bP |bS
S → WbS |W
W → L*W |L
L → id

Important Points

 1. The relation between CLR(1), LALR(1), SLR(1), 

LR(0) and LL(1) is shown in Fig. 6.11.

Unambiguous

CLR(1)

LALR(1)

SLR(1)

LR(0) LL(1)

Figure 6.11 |  Relation between CLR(1), LALR(1), 

SLR(1), LR(0) and LL(1). 

 2. The relation between CLR(1), LALR(1), SLR(1), 

LR(0) and operator precedence parser is shown in 

Fig. 6.12.

Unambiguous

CLR(1)or LR(1)

LALR(1)

SLR(1)

LR(0)
Ambiguous

Operator

precedence

parser

Figure 6.12 |  Relation between CLR(1), LALR(1), 

SLR(1), LR(0) and operator precedence parser. 

Continued

Action Goto

State A B $ S A

I
2

S
6

S
7

5

I
3

S
3

S
4

8

I
4

r
3

r
3

I
5

r
1

I
6

S
6

S
7

9

I
7

r
3

I
8

r
2

r
2

I
9

r
2

Here, in our example we have three productions which 

are reduced.

S → AA production 1 (represented by r
1
)

A → aA production 2 (represented by r
2
)

A → b  production 3 (represented by r
3
)

To know in which place r
3
 will get entry, check what 

the look-ahead terminals in the closure are of the given 

production of the grammar. Production A → b has 

— a, b as look-ahead terminals. So reduction r
3
 will get 

entry under a and b column. Given grammar is CLR(1) 

grammar because there are two entries in the same cell.

Note: CLR(1) parser is more powerful than other variants 

of LR parser, but it is costlier than the other due to more 

number of states in the DFA of CLR(1), even though two 

states are exactly the same other than look-ahead symbol. 

So by merging those two states together, CLR(1) can be 

minimized and the minimized CLR(1) is called LALR(1).

Operator Precedence Parser: It is based upon  

bottom-up parsing technique that follow shift-reduce 

parsing method. Operator precedence parser interprets 

an operator precedence grammar. Operator precedence 

parser is capable of parsing all LR(1) grammars.

Operator grammar: A grammar G is said to be opera-

tor grammar iff

1.  G does not have null production.

2.   G does not have two adjacent variables on the 

right-hand side of the production.

Problem 6.17: Which is/are operator grammar in the 

given set?

(a) E → E + E |E *E |id
(b) E → AB, A → a, B → b

(c) E → E + E |E *E |id|e

Solution:

(a) Operator grammar

(b) Not operator grammar

(c) Not operator grammar
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Table 6.2 |  Characteristics of S-attribute and  

L-attribute definitions

S Attribute Definition L Attribute Definition

S-attribute definition 

uses only synthesized 

attributes.

L-attribute definition 

uses both synthesized and 

inherited attributes.

Semantic rules should be 

placed at the rightmost  

place of the right-hand side.

Semantic rules can be placed 

anywhere on the right-hand 

side of its production.

Evaluated by a bottom-up 

or post-order traversal of a 

parse tree.

Evaluated by a bottom-up 

or pre-order traversal of a 

parse tree.

6.5.3 Applications of SDT

 1. Evaluating arithmetic expression

 2. Creating syntax tree

 3. Converting infix to postfix

 4. Converting infix to prefix

 5. Generating intermediate code

 6. Converting binary to decimal

 7. Storing type information into symbol table

Problem 6.19: Construct SDT to evaluate the given 

arithmetic expression:

Input: 2 + 3*4

Output: 14

Solution:

+Grammar Semantic Rules

E → E + T
 E.val = E.val + T.val 

Print (E.val);

E → T E.val = T.val

T → T*F E.val = T.val * F.val

T → F T.val = F.val

F → id F.val = id

Parse Tree:

E 

T E

T F

E. val = 12+2 =14

E. val = 2

T. val = 2T 

F. val = 2F F. val = 3F

T. val = 3

T. val = 3 × 4 = 12

T. val = 4

+

id4

id3id2

∗

Parse tree for given arithmetic expression  

2 + 3*4. 

 3. If grammar G is LL(1), then

�· It may be LR(0).

�· It may be SLR(1).

�· It will surely be LALR(1).

 4. Every LL(1) grammar is surely LALR(1), but if 

any grammar is LALR(1) then it may or may not 

be LL(1).

 5. If any grammar is LALR(1), then it will surely be 

CLR(1).

 6. CLR(1) is also known as LR(1).

 7. Every LL(1) grammar will surely be CLR(1).

 8. All LL(k) parsers are subset of LR(k) parser.

 9. If the number of states in LR(0), SLR(1), CLR(1) 

and LALR(1) is n
1
, n

2
, n

3
, n

4
, respectively, then 

the relation between them is

n
1
 = n

2
 = n

4
 ≤ n

3

6.5 SYNTAX-DIRECTED 

TRANSLATION

Syntax-directed translation (SDT) is a method of com-

piler implementation which attaches semantic rules with 

every production of a CFG while translating a string 

into a sequence of actions. An SDT can be implemented 

by first constructing a parse tree and then performing 

the actions in a pre-order traversal.

Example 6.7

Let a production be E → E
1
 + E

2
, then SDT will be

E E E
E E E

E
→ ⋅ ⋅ ⋅

⋅
⎧
⎨
⎩

⎫
⎬
⎭

1 2

1 2
+

= +val val val

valPr int ( );

6.5.1 Attributes of Syntax-Directed Translation

The following are two types of attributes supported by 

the SDT:

 1. Synthesized attribute: An attribute is said 

to be synthesized only if its value is calculated in 

terms of its children in the parse tree.

 2. Inherited attribute: An attribute is said to be 

inherited attribute only if its value is calculated 

in terms of its parent or children or both in the 

parse tree.

6.5.2 Types of Syntax-Directed Translation

An SDT is basically divided into two types: S-attribute 

definition and L-attribute definition (Table 6.2).
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Problem 6.22: Construct an SDT to convert infix 

expression to prefix expression.

Input: a + b*c

Output: + a*b c

Solution:

The SDT is constructed as follows:

E → {print (+)} E + T

E → T

T → {print (*)} T*F

T → F

F → id {print (id)}

6.6 RUNTIME ENVIRONMENT

To generate the target code, there is a need to know 

about the environment where the source program will 

execute. It consists mapping of names and objects in the 

memory, procedure activation, storage allocation, library 

routines and exception handling, scopes and extents of 

declarations and symbol table organization.

6.6.1 Storage Organization

Runtime memory needs to be subdivided as follows to 

hold the different components of an executing program 

(Fig. 6.13):

Program code

Stack

Static global data

Heap

Figure 6.13 |  Storage organization. 

 1. Program code: Refers to static area used by the 

generated target code which is fixed at compile 

time.

 2. Static global data: Refers to storage space for 

data, which does not change during the execution 

of the program.

 3. Stack: Manages activation of procedures at run-

time. The area usually grows towards lower address.

 4. Heap: Holds variable created at runtime.

Problem 6.20: Consider the following SDT:

S → TR

R → +T {print (+);} R

R → e
T → Num {print (num);}
For input string (9 + 5 + 2), what will be the output?

Solution:

We first draw the parse tree and then determine the 

output.

R

T

T

R

R

ε

S

T

Num(9)

Num(5)

Num(2)

+

+

Print(+)

Print(+)

Parse tree for given arithmetic expression  

(9 + 5 + 2). 

Output = 95 + 2+

Problem 6.21: Construct an SDT to convert infix 

expression to postfix expression.

Input: a + b*c

Output: abc* +

Solution:

The SDT is constructed as follows:

E → E + T {print (+)}
E → T

T → T *F  {print (*)}
T → F

F → id   {print (id)}
E

E

T T F

FF

*

T

id(c)

id(a) id(b)

+

Parse tree for given infix expression a + b*c.
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Solution: The activation takes place as follows:

System starts main
enter f(5)

enter f(4)
enter f(3)

enter f(2)
exit f(2)
enter f(1)
exit f(1)
exit f(3)
enter f(2)
exit f(2)

exit f(4)
enter f(3)

enter f(2)
exit f(2)
enter f(1)
exit f(1)

exit f(3)
exit f(5)

The activation tree for f (5) is as follows:

main ( )

f(5)

f(4)

f(2)

f(1)f(1)

f(3) f(2) f(1)

f(3)

Activation tree of f (5). 

The following observations are made based upon the 

activation tree:

 1. Order of activation corresponds to the pre-order 

traversal of the tree.

 2. Order of deactivation corresponds to the post-order 

traversal of the tree.

 3. If an activation of p calls q, then p will not termi-

nate before q.

6.6.3 Procedure Call Return Model

Every machine’s architecture and every language are 

slightly different from each other. The basic steps fol-

lowed by a function call are as follows:

 1. Before a function call, the calling routine:

�· Saves any necessary registers

�· Pushes the arguments onto the stack for the tar-

get call

�· Sets up the static link (if appropriate)

�· Pushes the return address onto the stack

�· Jumps to the target

There are two different approaches for runtime storage 

allocation, as given in Table 6.3.

Table 6.3 |  Static and dynamic allocation

Static Allocation Dynamic Allocation

Allocates all needed space 

when program starts.

Allocates space when it is 

needed.

Deallocates all space 

when program terminates.

Deallocates space when it 

is no longer needed.

6.6.2 Activation Record and Activation Trees

Activation is the function in execution mode. The func-

tion code is the static part whereas execution is the 

counterpart. The storage associated with an activation 

of a procedure is called activation record.

 1. Activation record content:

�·  Temporary values: Values generated as a result 

of the expression evaluations which cannot be 

put in registers.

�·  Local data: Local data to belong to the procedure.

�·  Saved machine: Keeps the context or machine 

status (register, PC, etc.).

�·  Access link: Points to non-local data in other AR.

�·  Control link: Points to the caller’s activation 

record the return value space of the called func-

tion, if any.

�·  Actual parameters: Used by the calling proce-

dure to pass parameters to called procedures; 

registers are used to pass these information.

For a recursive procedure or function, several activations 

may be alive simultaneously. Activation tree shows the 

path through which control enters and leaves activa-

tions for single run of a program. Each node represents 

an activation of a function, if an arrow is facing a child 

node from the parent node that means the child func-

tion is called by the parent function. Sibling `a’ is left 

to `b’ means that function `a’ is called before function b.

Problem 6.23: Draw an activation tree of the given 

example.

int a[10];
int main(){
int i;
for (i=0; i<10; i++){
a[i] = f(i);

}
}
int f (int n) {
if (n<3)  return 1;
return f(n-1)+f(n-2);

main ends
}
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Symbol table can be implemented by:

 1. Ordered list

 2. Unordered list

 3. Hash table

 4. Tree

Possible entries in a symbol table are as follows:

 1. Name

 2. Data type

 3. Size

 4. ID

 5. Scope information

 6. Storage allocation

6.7 INTERMEDIATE CODE 

GENERATION

The source program can be directly converted into 

the target language. But there are many benefits of 

having an intermediate code or machine-independent 

code such as increased abstraction, clear separation 

between front end and back end, and easily retarget 

and code optimization technique can also be applied 

(Fig. 6.14).

Front end

Back

end

Static

checker

Intermediate

code

generatorS
c
a
n
n
e
r

P
a
r
s
e
r Intermediate

code

Figure 6.14 |  Intermediate code generation. 

6.7.1 Intermediate Representations

The commonly used representations of intermediate 

code are as follows:

 1. Syntax tree

 2. Postfix notation

 3. Three-address code

6.7.1.1 Syntax Tree

A syntax tree is the tree representation of the abstract 

syntactic structure of source code. Due to its abstract 

nature it is also called as abstract syntax tree. Each of 

the tree node denotes a construct occurring in source 

code.

 2. During a function call, the target routine:

�· Saves any necessary registers

�· Sets up the new frame pointer

�· Makes space for any local variables

�· Does its work

�· Tears down frame pointer and static link

�· Restores any saved registers

�· Jumps to saved return address

 3. After a function call, the calling routine:

�· Removes return address and parameters from 

the stack

�· Restores any saved registers

�· Continues executing 

6.6.4 Lexical Versus Dynamic Scoping

Lexical (or Static 

Scoping)

Dynamic Scoping

Binding of variable to 

declarations is done at 

compile time.

Binding of variable to 

declarations is done at 

compile time.

Lexical scope rules 

specify the association 

of variables with 

declaration based on 

the textual order of the 

source code.

Dynamic scoping can be 

achieved by copying a 

function verbatim at the 

place of call.

Innermost enclosing 

block rule.

Most recent occurrence 

rule.

Name resolution is 

independent of caller.

Name resolution depends 

on caller.

Used by most modern 

languages: C/C++, 

Pascal, etc.

Formerly used in some 

interpreted languages 

(older versions of LISP).

6.6.5 Symbol Table

It is a data structure used by compiler to store all the 

information of tokens generated by lexical analyzer. After 

the lexical analysis phase, semantic analyzer performs 

type checking on the input code. During type check-

ing, semantic analyzer checks whether the use of names 

(such as type names, variables, functions) is consistent 

with their definition in the source code. Consequently, 

if there are any inconsistencies or misuses found during 

type checking then it is shown as an error. This is the 

task of a symbol table.

Operations that can be performed on a symbol table 

are as follows:

 1. Insert

 2. Delete

 3. Search
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 1. Quadruples: A quadruple is a record structure 

having four fields, namely op, arg1, arg2 and result. 

The op field contains an internal code for opera-

tor. To translate binary expression `x operator y’ 

into three-address code, operator is placed in `op’ 

column; x in `arg1’ column, y in `arg2’ column and 

a new temporary variable stores their calculated 

result in the result column.

Example 6.10

The quadruples for the assignment a = b*c + d*e gener-

ates the following three-address code:

Op arg1 arg2 Result

(0) = C t
1

(1) * B t
1

t
2

(2) = D t
3

(3) * E t
3

t
4

(4) + t
2

t
4

t
5

(5) = t
5

A

 2. Triples: Temporary variables or memory names 

in the symbol table can be avoided by the position 

number of the statement that computes it. If we 

used this method then three address statements can 

be represented by records with three columns oper-

ation, arg1 and arg2. The column arg1 and arg2, 

for the arguments of operation, are either point-

ers to the symbol table or pointers into the triple 

structure. As numbers of used fields are three, so 

this format is known as triples.

Example 6.11

Operation Arg1 Arg2

(0) = c

(1) * b (0)

(2) = c

(3) * b (2)

(4) + (1) (3)

(5) = a (4)

 3. Indirect triples: Triples are very difficult to opti-

mize because for optimization it required moving 

of intermediate code and other triples connected 

to it also have to be updated. So, a new variant of 

Example 6.8

Statement written in source language:

a = b*c + d*c

a

=

+

* *

b c cd

Syntax tree of a = b*c + d*c. 

6.7.1.2 Postfix Notation

Postfix notation is also known as `reverse polish’ nota-

tion. Any expression can be written unambiguously. 

Interpreters can be built easily for postfix notation by 

using the stack data structure. In the postfix notation, 

an operator follows the operand.

Example 6.9

The source language statement:

a = b*c + d*c

Can be rewritten in postfix notation as:

abc*dc* + =

6.7.1.3 Three-Address Statement

Three-address statement is a linearized representation 

of an abstract syntax, in which names of the temporar-

ies correspond to the nodes. The intermediate values 

name allows three-address code to be easily rearranged, 

which is convenient for optimization technique. The 

reason to call `three-address code’ is that each state-

ment generally contains three addresses, two for the 

operands and one for the result. Representations of the 

three-address statement are quadruples, triples and 

indirect triples.
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6.8.2 Primary Source of Optimization

Optimization can be done by using different ways. 

Some of the primary source of optimization is discussed 

below:

6.8.2.1 Dead-Code Elimination

Dead-code is a section of program code which is executed 

but the result produced by that section is never used. 

So, it can be removed from the program code because it 

does not have any effect on the functionality of program.

Let we have temp1 = temp2 − temp3, and temp1 is 

never used further in the program then we can eliminate 

this whole instruction.

6.8.2.2 Constant Propagation

Constant propagation is the process of substituting a 

constant value by the subsequent uses of a variable while 

there is no intervening changes in the value of that vari-

able. Consider the given example below:

int a = 10;
int b = 12 – a / 2;
return b = b * (35/a +2);

Variable `a’ propagating the constant value 10 in the 

given code.

6.8.2.3 Constant Folding

Constant folding is the process of evaluating the 

constant expression at compile time. Constant fold-

ing process improves run-time performance and also 

reduces code size by evaluating constant at compile 

time. In program code below, the expression (4−2) can 

be evaluated at compile time and replaced with the 

constant 2.

int sub( )
{
Return (4-2);
}

6.8.2.4 Elimination of Common  

Sub-Expression

If two or more operations are similar and produce same 

results then it is efficient way that to compute at once 

and refer that results further rather than re-evaluate 

it. In the given program code below, temp 3 and temp 

6 produce similar results and temp 4 and temp 5 also 

triples is called indirect triples is being used which 

is easier to optimized. Indirect triples perform list-

ing pointers to triples, rather than listing the tri-

ples themselves.

Example 6.12

# Stmt # Op Arg1 Arg2

(0) (14)
 → (14) C

(1) (15)
 → (15) * B (14)

(2) (16)
 → (16) C

(3) (17)
 → (17) * B (16)

(4) (18)
 → (18) + (15) (17)

(5) (19)
 → (19) = A (18)

 Program Triple container 

6.8 CODE OPTIMIZATION

Code optimization phase is to reduce the size of the 

code and improve the performance of the code gener-

ated by intermediate code phase. The most important 

part of optimized code is to minimize the amount of 

time taken by the code to execute and less common is 

to minimize the amount of memory used by the code. 

The basic requirement optimization methods should 

comply with is that an optimized program must have 

the same output and side effects as its non-optimized 

version.

6.8.1 Types and Levels of Optimization

Optimization can be performed by automatic optimizers 

or programmers. An optimizer is a built-in unit of a com-

piler. Modern processors have the capability to optimize 

the execution order of code instructions. Optimizations 

are classified mainly into two types, one is high-level 

and the other is low-level optimizations. High-level opti-

mizations are generally performed by the programmer 

who handles source code of the programs such as classes, 

functions, control statements, and procedures. Low-level 

optimizations are performed at the stage when source 

code is compiled into a set of machine instructions, and 

it is at this stage that automated optimization is usually 

employed.
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tmp2 = -x;
x = 21 * tmp2; 
tmp3 = x * x; 
tmp4 = x/y; 
y = tmp3 + tmp4; 
tmp5 = x/y; 
z = tmp5/tmp3; 
y = z;

6.8.2.5 Copy Propagation

Copy propagation is the different way of optimization, 

in which assignment a=b for some variable `a’ and `b’, 

we can replace later uses of `a’ with use of `b’ (it is to 

be assumed that there is no change to either variable in-

between). The code on the left side makes a copy of tmp1 

in tmp2 and a copy of tmp3 in tmp4. When we do optimi-

zation then on the right, we eliminated those unnecessary 

copies and propagated the original variable into later uses.

tmp2 = tmp1; 
tmp3 = tmp2 * tmp1; 
tmp4 = tmp3; 
tmp5 = tmp3 * tmp2; 
c = tmp5 + tmp4; 
tmp3 = tmp1 * tmp1;
tmp5 = tmp3 * tmp1;
c = tmp5 + tmp3;

produce similar results, so we can compute them once 

and refer results further below in the code.

main()
{
int x, y, z;

x = (1+20)* -x;
y = x*x+(x/y);
y = z = (x/y)/(x*x);
}

straight translation: 

tmp1 = 1 + 20; 
tmp2 = -x;
x = tmp1 * tmp2; 
tmp3 = x * x; 
tmp4 = x/y; 
y = tmp3 + tmp4; 
tmp5 = x/y; 
tmp6 = x * x; 
z = tmp5/tmp6; 
y = z;

What sub-expressions can be eliminated? How can valid 

common sub-expressions (live ones) be determined? Here 

is an optimized version, after constant folding and prop-

agation and elimination of common sub-expressions:

 1. Time complexity of RDP is O(2
n
).

 2. Every regular grammar need not be LL(1), because 

that grammar may contain left factoring.

 3. Any ambiguous grammar cannot be LL(1).

 4. If any grammar contains left factoring, then it 

can’t be LL(1) grammar.

 5. If given grammar contains left recursion, then it 

can’t be LL(1) grammar.

 6. If grammar G is LL(1), then

 · It may be LR(0).

 · It may be SLR(1).

 · It will surely be LALR(1).

 7. Every LL(1) grammar will surely be LALR(1), but 

if any grammar is LALR(1) then it may or may not 

be LL(1).

 8. If any grammar is LALR(1), then it will surely be 

CLR(1).

 9. CLR(1) is also known as LR(1).

 10. Every LL(1) grammar will surely be CLR(1).

 11. All LL(k) parsers are subset of LR(k) parser.

 12. If the number of states in LR(0), SLR(1), CLR(1) 

and LALR(1) is n
1
, n

2
, n

3
, n

4
, respectively, then 

relation between them is

n
1
 = n

2
 = n

4
 ≤ n

3

IMPORTANT FORMULAS
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