
CHAPTER 2

COMPUTER ORGANIZATION AND ARCHITECTURE

Syllabus: Machine instructions and addressing modes, ALU and data path, CPU control design, memory interface, 

I/O interface (interrupt and DMA mode), instruction pipelining, cache and main memory, secondary storage

2.1 INTRODUCTION

Computer architecture and organization is the  

science of interconnecting hardware components, design-

ing and configuring the hardware/software interface to 

fulfill functional and performance goals of a computer. 

This chapter outlines the basic hardware structure of a 

modern digital programmable computer, the basic laws 

for performance evaluation, designing the control and 

data path hardware for a processor, concept of pipelining 

for executing machine instructions simultaneously and 

designing fast memory and storage systems.

Computer architecture deals with the structure 

and behaviour of computer system as viewed by the 

user. It encompasses instruction formats, the instruction 

set architecture (ISA) and addressing modes.

Computer organization deals with the operation 

and interconnection of the various hardware components.

2.2 COMPUTER ARCHITECTURE

2.2.1 Register Set

The computer needs registers for processing and manip-

ulating data and for holding memory addresses that 

are available to the machine-code programmer. Some  

registers for a basic computer are given in Table 2.1.

Table 2.1 |  Types of registers and their functions
Register 

Symbol

Register 

Name

Function

DR Data register Holds memory operand

ACC Accumulator Special purpose 

processor register

AR Address 

register

Holds address for 

memory

(Continued)
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When the system consists of multiple frequent cases, 

where i is the number of frequent cases:
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Problem 2.1: Consider a hypothetical processor used 

in mathematical model simulation. It consists of two 

functional units, floating point and integer. The float-

ing point is enhanced then it runs two times faster, 

but only 10% of the instructions are floating point. 

What is the speed up?

Solution: Here S = 2, F = 0.1

Soverall = + =( . )

.

.1 0 1

0 1

2

1 052

1

−⎡
⎣⎢

⎤
⎦⎥

−

2.3 MACHINE INSTRUCTIONS AND 

ADDRESSING MODES

Machine instruction is an individual machine code. The 

complete set of all machine codes recognized by a partic-

ular processor makes its Instruction Set. Instructions can 

be grouped according to the function they perform. The 

number of ways by which arguments for these machine 

instructions can be specified constitutes the addressing 

modes for a processor.

2.3.1 Machine Instructions

An instruction is a command to the microprocessor to 

perform a given task. Most computer instructions are 

classified as follows:

 1. Data transfer instructions: These instructions 

move data from one place to another in the com-

puter without changing the data content. Example: 

LOAD, MOVE, IN, OUT, PUSH, STORE.

 2. Data manipulation instructions: These instruc-

tions perform arithmetic, logical and shift opera-

tions on data. Example: ADD, SUB, MUL, DIV, 

INC, AND, XOR, OR, SHR, SHL, ROR, ROL.

 3. Program control instructions: These instruc-

tions may change the address value in program coun-

ter and cause the normal sequential flow to change.

On the basis of the number of address fields in an instruc-

tion, they are classified as follows:

 1. Three-address instruction: Computer with 

three-address instruction format can use each 

address field to specify two sources and a destina-

tion, which can be either a processor register or a 

memory operand. It results in short program but 

requires too many bits to specify three addresses.

Example: ADD R
1
, A, B  (R

1
 ← M[A] + M[B])

Table 2.1 |  Continued
Register 

Symbol

Register 

Name

Function

IR Instruction 

register

Holds an instruction 

that is to be executed

PC Program 

counter

Holds address of 

instruction to be 

executed next

TR Temporary 

register

Holds temporary data 

if required

INPR Input register Holds input character

OUTR Output register Holds output character

2.2.2 Quantitative Principles to Design  

High-Performance Processor

Amdahl’s law focused on performance gain after enhanc-

ing the system. The performance gain is denoted by 

S
overall

 and ET stands for execution time.
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After enhancement, the system consists of two portions: 

unenhanced and enhanced portion.

ET ET of the unenhanced portion

ET of enhanced portion

new =

+

To calculate ET
new
, the following two factors are needed:

 1. Fraction
enhance

 (F): It indicates how much por-

tion of the old system undergoes enhancement.

 2. Speed
enhance

 (S): It indicates how many times the 

new portion is running faster than the old portion.
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On the basis of the above factor,
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Substitute the value of ET in Eq. (2.1):
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2.3  MACHINE INSTRUCTIONS AND ADDRESSING MODES    59

 2. Two-address instruction: Each address field can 

specify either a processor register or a memory word.

Example:  MOV R
1
, A      (R

1
 ← M[A]);  

MUL R
1
, R

2
  (R

1
 ← R

1
*R

2
)

 3. One-address instruction: It used an implied 

accumulator (AC) register for all data manipula-

tion. The other operand is in register or memory.

Example:  LOAD A  (AC ← M[A]);  

ADD B  (AC ← AC + M[B])

 4. Zero-address instruction: A stack organized 

computer does not use an address field for the 

instruction ADD and MUL.

Problem 2.2:

 (a) ISA of a processor consists of 64 registers, 125 

instructions and 8 bits for immediate mode. In a 

given program, 30% of the instructions take one 

input register and have one output register, 30% 

have two input registers and one output  register, 

20% have one immediate input, and one output  

register, and remaining have two immediate 

input, 1 register input and one output register. 

Calculate the number of bits required for each 

instruction type. Assume that the ISA requires 

that all instructions be a multiple of 8 bits in 

length.

 (b) Compare the memory space required with that of 

variable length instruction set.

Solution:

 (a) Since there are 125 instructions so we need 7 bits 

to differentiate them as 64 < 125 < 128. For 64 
registers, we need 6 bits and 8 bits for immediate 

mode.

  For Type 1, 1 reg in, 1 reg out: 7 + 6 + 6 = 

19 bits ∼ 32 bits
  For Type 2, 2 reg in, 1 reg out: 7+ 6 + 6 + 6 = 

26 bits ∼ 32 bits
  For Type 3, 1 imm in, 1 reg out: 7 + 6 + 8 =  

21 bits ∼ 32 bits
  For Type 4, reg in, 2 imm in, 1 reg out: 7 + 6 + 

8 + 8 + 6 = 35 bits ∼48 bits
 (b) As the largest instruction type requires 48 bit 

instructions, the fixed-length instruction format 

uses 48 bits per instruction. Variable length instruc-

tion format uses 0.3 × 32 + 0.3 × 32 + 0.2 × 32 + 
0.2 × 48 = 36 = bits on average, that is, 25% less 
space.

2.3.2 Addressing Modes

The addressing mode specifies how effective address of 

an operand is calculated from an instruction. Computers 

use various addressing mode techniques to:

 1. provide programming flexibility to users through 

use of pointers to memory, counter for loop control, 

data indexing and program relocation.

 2. reduce the size of the addressing field of the 

instruction.

Let us suppose [x] means contents at location x for all the 

addressing modes.

2.3.2.1 Types of Addressing Modes

 1. Implied mode: In this mode, the operands are 

implicitly stated in the instruction. For example, 

register reference instructions such as CMA (comple-

ment accumulator), CLA (clear accumulator) and 

zero-address instructions that use stack organization.

 2. Immediate mode: In this mode, the operand is 

specified in the instruction itself, that is, address 

field is replaced by an actual operand. Immediate 

mode instructions are useful for initializing regis-

ters to a constant value. For example, used for ini-

tializing CPU registers to some constant value such 

as MOV R
1
, #34.

Instruction with immediate mode

Opcode Data Operand

 3. Register (direct) mode: In this mode, the oper-

ands are in CPU registers. An n-bit register field 

can specify any one of 2
n
 registers. Example: ADD 

R
1
 will add the contents of an accumulator and 

contents of R
1
, that is, ACC = [ACC] + [R

1
].

Instruction with register direct mode

Opcode Register address

Operand

CPU register

 4. Register (indirect) mode: In this mode, the 

instruction format specifies a CPU register which 

contains an effective address of the operand resid-

ing in memory. This mode ensures less number of 

bits to specify a register value than to specify a 

memory location. Example: ADD @ R
1
 will add the 

contents of an accumulator with contents of the 

register R
1
, that is, AC = [ACC] + [[R

1
]].

Instruction with register indirect mode

Opcode Register address

CPU register

Pointer to 

operand 

Operand

Memory

Instruction with register indirect mode

Opcode Register address

CPU register

Pointer to 

operand 

Operand

Memory
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 5. Auto-increment or Auto-decrement mode: 

This is similar to register indirect mode except the 

register containing effective address is incremented 

or decremented after (or before) its value is used to 

access memory.

 6. Direct address mode: In this mode, the effec-

tive address of an operand is equal to the address 

part of the instruction. Example: ADD A instruc-

tion adds content of memory cell A to accumula-

tor, that is, ACC = [ACC] + M[A].

Instruction with direct address mode

Opcode Memory address

Operand

Memory

 7. Indirect address mode: In this mode, memory 

address specified by address field contains the 

address of (pointer to) the operand. Example: 

ADD @ A will add the contents of the memory cell 

A, that is, ACC = [ACC] + M[M[A]].

Instruction with indirect address mode 

Opcode Memory address

Pointer to operand

Operand

Memory

 8. Relative address mode: In this mode, the effective 

address of an operand is obtained by adding the con-

tent of a program counter to the address part of the 

instruction. The address part of the instruction can be 

either positive or negative represented in 2’s comple-

ment. The result obtained after adding the content of 

the program counter to the address field produces an 

effective address whose position in memory is relative 

to the address of the next instruction.

 9. Index address mode: In this mode, the effective 

address of an operand is obtained by adding the 

content of an index register to the address part of 

the instruction. The index register is a special CPU 

register that stores an index value and the address 

field of the instruction stores the base address of a 

data array in the memory. The distance between 

the base address and the address of the operand is 

the index value that is stored in the index register. 

The index register can be incremented to facilitate 

access to consecutive operands stored in arrays 

using the same instruction.

10. Base register addressing mode: In this mode, 

the effective address of an operand is obtained by 

adding the content of a base register to the address 

part of the instruction. This is somewhat similar to 

the indexed addressing mode except that the base 

register stores base or beginning address instead of 

an index register. It is used for program relocation.

Problem 2.3: A two-word instruction LOAD is stored 

at location 300 with its address field in the next loca-

tion. The address field has value 600 and value stored 

at 600 is 500 and at 500 is 650. The words stored 

at 900, 901 and 902 are 400, 401 and 402, respec-

tively. A processor register R contains the number 

800 and index register has value 100. Evaluate the 

effective address and operand if addressing mode of 

the instruction is as follows:

 1. Direct

 2. Indirect

 3. Relative 

 4. Immediate

 5. Register indirect

 6. Index

Solution: Memory layout is as follows

300 LOAD

301 600

500 650

600 500

700 900

800 700

900 400

901 401

902 402

Addressing 

Mode

Effective 

Address

Operand 

Direct 600 500

Indirect 500 650

Relative 902 402

Immediate 301 600

Register indirect 800 700

Index 700 900

Problem 2.4: A relative mode branch type instruc-

tion is stored in memory at an address equivalent to 

decimal 600 and the branch is made to an address 

equivalent to decimal 400. What is the value of the 

relative address field of the instruction (in decimal)?

Solution: Relative address = 400 − 601 = −201
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By controlling the output Y of multiplexers with two  

selection inputs S
1
 and S

0
 and C

in
 either 0 or 1, we can 

generate the eight arithmetic micro-operations (Table 2.2).

2.4.2 Logic Micro-Operations

Logic micro-operations such as AND, OR, Exclusive OR, 

etc., consider each bit of register separately and specify 

binary operations for strings of bits (Table 2.3).

Table 2.3 |  Types of micro-operations
Micro-operation Name

F ← 0 Clear

F ← A ∧ B AND

F A B← ∧
F ← A Transfer A

F A B← ∧
F ← B Transfer B

F ← A ⊕ B Exclusive OR

F ← A ∨B OR

F A B← ∨ NOR

F A B← ⊕ Exclusive NOR

F B← Complement B

F A B← ∨

F A← Complement A

F A B← ∨

F A B← ∧ NAND

F ← all 1’s Set to all 1’s

2.4 ARITHMETIC LOGIC UNIT

Arithmetic logic unit (ALU) is a combinational circuit 

that performs all arithmetic and logic operations so that 

the entire register transfer operation from the source reg-

isters through the ALU and into the destination register 

can be performed during one clock pulse period.

2.4.1 Arithmetic Micro-Operations

The basic arithmetic micro-operations such as addition, 

subtraction, increment, decrement and shift are performed 

on numeric data stored in registers. The basic component 

of arithmetic is parallel binary adder, and by controlling  

the input to adder, different micro-operations can be 

 realized. Figure 2.1 depicts a 2-bit arithmetic circuit which 

includes two full-adder circuits and two multiplexers for 

choosing different arithmetic micro-operations. There are 

two 2-bit input numbers A and B and 2-bit output D. The 

two inputs from A go directly to X inputs of full adder. 

The output of multiplexer goes to input Y of full adder.  

Table 2.2 |  Arithmetic circuit function table
Select Input to 

Adder Y

Output of Binary 

Adder

D = A + Y + C
in

Micro-Operation

S
1

S
0

C
in

0 0 0 0 D = A Transfer A

0 0 1 0 D = A + 1 Increment A

0 1 0 B D = A + B Add

0 1 1 B D = A + B + 1 Add with carry

1 0 0 B D A B= + Subtract with borrow

1 0 1 B D A B= + +1 Subtract

1
1 0 1 D = A − 1 Decrement A

1 1 1 1 D = A Transfer A

A
0 X

0

Y
0

S
1

C
in

S
1

S
0

S
0

B
0

A
1

B
1

C
0

C
1

FA

X
1

Y
1

C
1

C
2

FA D
1

D
0

C
out

0

1

2

3

S
1

S
0

0

0 1

1

2

3

4 × 1
MUX

4 × 1
MUX

Figure 2.1 |  A 2-bit arithmetic circuit.
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2.5 CPU CONTROL DESIGN

Central processing unit (CPU), or the brain of a com-

puter, performs the data processing operations. It consists 

of three major parts: register set that stores intermedi-

ate data during instruction execution, ALU performs the 

required micro-operations and control unit that super-

vises all other elements for the transfer of information 

from one register to the other. The main function of a 

CPU is to fetch an instruction from the memory and exe-

cute it. CPU is divided into three types of organizations:

 1. Single accumulator organization: In this, one 

operand is implied in the accumulator, a special 

purpose register, and the other operand is a register 

or the memory. Example: ADD R
1
 (R

1
 ← AC + 

R
1
), LOAD A (AC ← A), STORE T (M[T] ← AC).

 2. General register organization: In this, the 

CPU will have several general purpose regis-

ters which lead to shorter and efficient programs 

because registers are faster. Example: ADD R
1
, R

2
 

(R
1
 ← R

1
 + R

2
). Figure 2.2 shows bus organiza-

tion for three registers R
1
, R

2
 and R

3
. The output 

of these registers and one from the external input 

is connected to two multiplexers A and B. The two 

Logical micro-operations are capable of manipulating 

individual bits or a portion of word stored in CPU regis-

ters. Let us consider the data in a register A. In another 

register, B is the operand that will be used to modify the 

contents of A using logic micro-operations. Some of the 

applications are as follows:

 1. Selective set operation: In this, If a bit in B is 

set to 1, that same position in A sets to 1, other-

wise that bit in A retains its previous value.

1 1 0 0

1 0 1 0

1 1 1 0 1

A

B A

A A A B

t

t

( )

( )

To set some bits in

+ +¬

 2. Selective complement operation: If a bit in 

B is set to 1, that same position in A gets comple-

mented from its original value, otherwise it remains 

unchanged.

1 1 0 0

1 0 1 0

0 1 1 0 1

A

B A

A A A B

t

t

( )

( )

To complement some bits in

+ ← ⊕

 3. Selective clear operation: If a bit in B is set to 

1, that same position in A sets to 0, otherwise it 

remains unchanged.

1 1 0 0

1 0 1 0

0 1 0 0 1

A

B A

A A A B

t

t

( )

( )

To clear some bits in

+ ← ⋅ ′

 4. Mask operation: If a bit in B is set to 0, that same 

position in A sets to 0, otherwise it remains unchanged.

1 1 0 0

1 0 1 0

0 0 0 0 1

A

B A

A A A B

t

t

( )

( )

To clear some bits in

+ ¬ ×

 5. Clear operation: If the bits in the same position 

in A and B are the same, they are cleared in A, else 

they are set in A.

1 1 0 0

1 0 1 0

0 1 1 0 1

A

B

A A A B

t

t+ ( )¬ Å

 6. Insert operation: It is used to insert a specific bit 

pattern into A register, leaving the other bit posi-

tions unchanged. This is accomplished by two sub- 

operations: masking operation to clear the desired bit  

positions, followed by OR operation to introduce the 

new bits into the desired positions. Suppose you wanted  

to introduce 10 into the low order two bits of A:

 1101 A (Original) and 1110 A (Desired)

1 1 0 1

1 1 0 0

1 1 0 0

0 0 1 0

1 1 1 0

A (Original)

Mask

A (Intermediate)

Added bits

A (Desired)

MUXSELA SELB

SELD OPR

A bus B bus

MUX

ALU

2 × 4
Decoder

External output

External

input

R
1

R
2

R
3

Figure 2.2 |  General register organization. 

2 bits 2 bits 2 bits 4 bits

SELA SELB SELD OPR

Figure 2.3 |  A control word.

select lines SELA and SELB from multiplexers A 

and B select one of the input and feed to ALU. 

OPR specifies one of the possible operation codes 

that ALU will perform on the data inputs and the 

output is transferred either to one of the registers 

using 2 × 4 decoder or to the external output say 
memory. The control word (Fig. 2.3) for the two-

operand instruction is as follows:
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2.5  CPU CONTROL DESIGN    63

 3. Stack organization: Stack may consist of number 

of registers or a part of main memory in which data 

items are stored in consecutive locations that are 

accessed by LIFO (last in, first out) mechanism. As 

there is limited number of registers, a part of memory 

is implemented as stack for storage and retrieval of 

intermediate data. Stack pointer (SP) keeps a track 

of the top item of a stack. The process of inserting 

a new item onto a stack is known as push accom-

plished by first incrementing stack pointer and then 

inserting an item from the data register.

SP ← SP + 1

M[SP] ← DR

The process of removing an item from the top of a 

stack is known as pop performed by first transfer-

ring data into DR and then decrementing SP.

DR ← M[SP]

SP ← SP − 1

Problem 2.5: A system has CPU organized in the 

form of general register organization consisting of 16 

registers, each storing 32-bit data. Assume the ALU 

has 35 operations.

(a) How many multiplexers are there in A bus and B 

bus, and what is the size of each multiplexer?

(b) How many selection inputs are needed for MUX A 

and MUX B?

(c) How many inputs and outputs are there in a decoder?

(d) How many inputs and outputs are there in ALU 

for data, including input and output carries?

(e) Formulate a control word for the system. 

Solution:

(a) 32 Multiplexers, each of size 16 × 1.
(b) 4 Inputs each, to select one of 16 registers.

(c) 4 to 16 − Line decoder
(d) 32 + 32 + 1 = 65 data input lines

(e) 32 + 1 = 33 data output lines

4 bits 4 bits 4 bits 6 bits

SELA SELB SELD OPR

2.5.1 Instruction Execution

A CPU generally executes one instruction at a time 

sequentially and a sequence of such instructions is 

known as a program. The CPU executes the instructions 

that reside in the main memory. In order to execute 

an instruction, the CPU has to fetch the instruction 

first from the main memory into one of its registers.  

It then decodes the instruction, that is, it decides what 

the instruction intended to do, fetch operands required 

and finally executes the instruction. This process is 

repeated continuously for a complete program and is 

known as the fetch−execute cycle (Fig. 2.4). The fol-
lowing steps are performed for executing an instruction:

Yes

No

No

Yes

Load PC contents

to MAR

Increment PC to

point to next

instruction

Load the instruction

stored at MAR to IR

IR ← M[MAR]

Decode the

instruction

Load any data

required into MDR

Execute the

instruction

Set PC to value

from jump inset

Service the

interrupt

Check for

interrupts

Check

for jump

instruction

Start

Figure 2.4 |  Instruction cycle.

 1. Fetching the instruction: The next instruction 

is fetched from the memory address that is saved in 

the program counter, and memory content fetched 

is stored in instruction register (IR). The program 

counter then points to the next instruction that 

will be read in the next cycle.

 2. Decode the instruction: During this cycle, the 

instruction inside the IR gets interpreted by the 

decoder.
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 3. Operand fetch: In case of a direct or indirect 

memory instruction, the execution begins in the 

next clock cycle. If the instruction has an indirect 

address, the effective address of the operand is read 

from the main memory, and the required data is 

fetched from the memory into memory data regis-

ters. If the instruction has direct address, nothing 

is done at this clock cycle.

 4. Execute the instruction: The control unit of 

the CPU passes the instruction decoded by decoder 

as a sequence of control signals to the different 

functional units of the CPU to execute the tasks 

required by the instruction such as reading values 

from registers or input devices, performing mathe-

matical or logic micro-operations by ALU, and writ-

ing the result back to a register or main memory.

2.5.2 CPU Data Path

CPU contains data paths that are responsible for routing 

data between the functional units of a computer. The 

following are the different data path structures available 

for routing:

 1. Single bus structure: In this architecture, all CPU 

registers are connected to the same bus. Data can be 

transferred either between CPU registers or between 

CPU register and ALU at a given clock pulse. The 

speed of operation is slow as only one operand can be 

transferred in one clock cycle and addition operation 

(R
1
 ← R

2
 + R

3
) occurs in three clock cycles.

 2. Two bus structure: All general purpose CPU 

registers are connected to both buses say bus A and 

bus B; but special purpose registers are divided into 

two groups, say group 1 connecting bus A to pro-

gram counter and one input of ALU and group 2 

connecting bus B to MDR (Memory Data Register) 

and other input of ALU. The two operands are 

transferred to ALU in 1 clock cycle and the addition 

operation (R
1
 ← R

2
 + R

3
) occurs in 2 clock cycles.

 3. Three bus structure: The performance can be 

further be improved by using three buses such that 

addition operation (R
1
 ← R

2
 + R

3
) can occur in 

one clock cycle.

2.5.3 Control Unit Design

Control unit is considered as brain of a CPU that con-

trols various units in the data path. The performance of 

control unit is important as it determines the clock cycle 

of the processor. Control unit can be designed either by 

hardwired or by microprogram.

 1. Hardwired control: Control unit is made up 

of sequential and combinatorial circuits to gener-

ate the control signals and interpret instructions 

(Fig. 2.5). The instruction decoder decodes the 

instruction loaded in instruction register. The step 

decoder generates a separate control line for each 

step in the control sequence. The encoder gets 

its input signal from the decoder, step decoder, 

external input and condition codes and generates 

individual control signals. It is faster and more 

efficient but less flexible and is difficult to add 

new feature or correct mistakes in original design.

Clock
ResetControl step

counter

Step decoder

External

inputs

Condition

codes

End

Encoder

Control

signals

IR
Instruction

decoder

T
1

I
1

I
2

I
n

T
2

T
n

Figure 2.5 |  Block diagram of hardwired control unit. 
 2. Micro-programmed control: Control signals 

are generated by using programming known as 

micro-programs that constitutes micro-instructions 

(control word) (Fig. 2.6). Memory that is part 

Sequences

(starting and branch

address generator)

Control address

register

Control

memory

Control

signals to

system bus

Control 

signals

within CPU

Micro instruction

register

Control word

Read

command

Address

Decoder

Clock

IR
External

inputs

Condition

codes

Figure 2.6 |   Block diagram of micro-programmed  
 control unit. 
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of CPU is known as control memory and stores 

micro-instructions. The micro-program sequencer 

generates the address of micro-instruction accord-

ing to instruction stored in instruction register. 

The address of micro-instruction to be executed 

is available in content addressable register. Micro-

program sequencer issues read command to read 

micro-instruction from control memory into micro-

instruction register which on execution generates 

control signals for various parts of a processor. This 

control unit design is more flexible to accommodate 

new features and less error prone but quite slower 

than the hardwired unit.

The format of the control word is

Branch 

condition

Flag Control 

signal

Control memory 

address

On the basis of the type of control word supported, it is 

divided into two types:

 1. Horizontal micro-programmed control unit:  

In this design, the control signals are represented in 

the form of 1 bit per control signal and it supports 

longer control word.

 2. Vertical micro-programmed control unit: In  

this design, the control signal is represented by using  

encoding format.

Problem 2.6: Consider a control unit which has 1024 

control word memory; it supports 48 control signals 

and 8 flag conditions. What is the size of the control 

word in bits and control memory in bytes?

Solution:

(a) Using horizontal programmed control unit

0 bits 3 bits 48 bits 10 bits

Branch 

condition

Flag Control 

signal

Control 

memory

Size of control word = 61 bits

Control memory = (1024 × 61)/8 = 128 × 61 bytes

(b) Using vertical programmed control unit

0 bits 3 bits 48 bits 10 bits

Branch 

condition

Flag Control 

signal

Control 

memory

log 48 ∼ 6 bits
Size of control word = 19 bits

Control memory = (1024 × 19)/8 = 128 × 19 bytes

2.5.4 RISC versus CISC Processors

The differences between reduced and complex instruc-

tion set computers is given in Table 2.4

Table 2.4 |  RISC versus CISC
RISC (Reduced 

 Instruction Set 

 Computers)

CISC (Complex 

 Instruction Set 

 Computers)

Rich register set Less number of registers

Supports less addressing 

modes

Supports more number of 

addressing modes

Supports fixed length 

instruction

Supports variable length 

instruction

Successful pipeline with 

one instruction per cycle

Unsuccessful pipeline

Example: ARM, 

Motorola

Example: Pentium 

processors

2.6 I/O INTERFACE (INTERRUPT 

AND DMA MODE)

I/O interface bridges the differences between CPU and 

peripheral devices and provides a method for transfer-

ring information between internal storage and external 

I/O devices. There are the following three modes of I/O 

transfer:

 1. Programmed I/O: The I/O device does not 

have direct access to memory. It requires execution 

of several instructions by the CPU and the CPU 

has to wait for the I/O device to be ready for either 

reception or transmission of data.

 2. Interrupt initiated I/O: In this, instead of 

waiting, the control is transferred from a currently 

running program to another service program as a 

result of an external/internal generated request.

�• Hardware interrupts: These interrupts are 

present in the hardware pins.

�• Software interrupts: These are the instruc-

tions used in the program whenever the required 

functionality is needed.

�• Maskable interrupts: These interrupts may 

be enabled or disabled explicitly.

�• Non-maskable interrupts: These interrupts 

are always there in the enable state. We cannot 

disable them by explicit conditions (flags).

�• Vectored interrupts: These interrupts are 

associated with the static vector address.

�• Non-vectored interrupts: These interrupts 

are associated with dynamic vector address.

�• External interrupts: These interrupts are 

generated by external devices such as I/O.

�• Internal interrupts: These devices are gener-

ated by the internal components of the processor 

such as temperature sensor, power failure, error 

instruction, etc.
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�• Synchronous interrupts: These interrupts 

are controlled by the fixed time interval. All 

the interval interrupts are called as synchronous  

interrupt.

�• Asynchronous interrupts: These interrupts 

are initiated based on the feedback of previ-

ous instructions. All the external interrupts are 

called as asynchronous interrupt.

 3. Direct memory access (DMA): It is one of 

several methods for coordinating the data transfers 

between an I/O device and the core processing unit 

or memory in a computer. It refers to transfer of 

data directly between a fast storage device and 

memory  bypassing CPU because of its limited 

speed. DMA  provides a significant improvement 

in terms of latency and throughput as it allows 

the I/O device to access the memory directly, 

without using the processor. There are certain 

advantages of using DMA for data transfer:

�• DMA saves processor’s MIPS as the core can 

operate in parallel.

�• DMA saves power because it requires less cir-

cuitry than the processor to transfer data.

�• DMA has no modulo block size restrictions.

Direct memory access (DMA) controller takes over 

the control of buses to manage the transfer directly 

between the I/O device and memory. Bus request 

(BR) and Bus grant (BG) signals are used by the 

DMA controller to request the CPU to relinquish 

control of the buses and get the control of system 

buses (Fig. 2.7). The DMA controller consists of 

3 different registers: an address register, a control 

register and a word counter register. To transfer a 

block of data between an I/O device and memory, 

the controller stores initial values in the address 

register. The DMA channel then transfers the 

block of information from or to memory according 

to the control register. The starting address of the 

block in memory is given by the address register, 

and the length of the bytes to transfer is given by 

the word count register. The controller decrements 

a word counter each time it moves a data byte.

There are several modes of operation of DMA:

�• Burst or block transfer mode: In this mode, 

the entire block of data is transferred once the 

DMA controller is granted access to the system 

bus by the CPU. The bytes of data in the block are 

transferred before releasing control of the system 

buses back to the CPU. The only disadvantage of 

this mode is that it renders the CPU inactive for 

some long periods of time.

�• Cycle stealing mode: In this mode, the DMA con-

troller obtains access to the system buses like burst 

mode; but after one byte of data transfer, the control 

of the system bus is released back to the CPU via 

BG. It is then continually requested again via BR, 

transferring one byte of data per request, until the 

entire block of data has been transferred. This mode 

is suitable for the systems in which the CPU cannot 

be disabled for the considerable length of time as in 

burst transfer modes such as for controllers moni-

toring the data in real time. The advantage is that 

CPU is not idled for as long as in burst mode, but 

the data block is not transferred as quickly.

�• Transparent mode: It is the slowest yet more ef-

ficient data transfer mode in terms of overall system 

performance. The DMA controller transfers data only 

when the CPU is busy in performing operations that 

do not use the system buses. So, the CPU never stops 

executing its programs but the biggest disadvantage 

is complex hardware circuitry that needs to deter-

mine when the CPU is not using the system buses.

A DMA read transfers data from the memory to 

the I/O device, while DMA write transfers data 

from an I/O device to memory. The functional 

behaviour of a DMA transfer outlined in Fig. 2.8:

�• The CPU transmits the following information to a 

DMA controller:

  (a)  beginning address in memory which is stored in 

address register in DMA controller.

  (b)  Number of words to transfer which is stored in 

word count register in DMA Controller.

  (c)  direction (memory-to-I/O device or I/O device-

to-memory), port ID, DMA mode of transfer 

and end of block transfer either through inter-

rupt request or no interrupt request which is 

stored in control register as command word.

�• The processor them relinquishes control of  address, 

data and control buses to DMA Controller and 

 returns to other processing activities while the 

DMA controller starts the data transfer between 

I/O device and memory.
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Figure 2.7 |  Block diagram of the DMA controller. 
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execution time of a set of instructions and there is no 

need to wait of the most part of the processor circuits for 

the other parts of the processor to complete their part 

of execution. Pipeline speed is limited by the slowest 

pipeline stage.

Throughput of a processor is the rate at which opera-

tions get executed. Latency is the amount of time that a 

single operation takes to execute. In an unpipelined com-

puter, throughput = 1/latency, as each operation exe-

cutes by itself and for pipelined computer, throughput 

> 1/latency, since execution of instruction is overlapped.
Consider a k-segment pipeline with a clock cycle time 

T
p
 used to execute n tasks (Fig. 2.9). An equivalent non-

pipelined system takes T
n
 time to complete each task. 

The speed up of a pipelined system over a non-pipelined 

system is given by the following relation:

S

n T

k n T

n

p

=

+

×
×( )−1

Theoretically, maximum speed up that a pipelined 

system can achieve is given by the following equation:

S

kT

T

k
p

n

= =

Pipelining Hazards: These hazards reduce the 

ideal speed up gained by pipelining by preventing the 

next instruction in the sequence from being executing 

during its designated clock pulse. Hazards forces the 

pipeline to be stalled. There are three types of hazards:

�• When the DMA controller accesses memory, it 

synchronizes this memory request with an idle  

period of the processor, thus disabling the pro-

cessor, or requesting a halt of the processor, and 

awaits an acknowledgement.

�• After the completion of the block transfer, the DMA 

controller either raises an interrupt request if the 

interrupts are enabled or indicates the  completion  

in its status register and the  processor recognizes 

I/O completion (either by interrupt signal or by 

reading the status register) and gets its  system 

buses back and normal processing starts. The 

 device has to initiate a new data transfer through 

DMA request signal which is again acknowledged 

by CPU through DMA acknowledge signal via 

DMA controller.

2.7 INSTRUCTION PIPELINING

In early computers, each instruction completely finished 

before the execution of the next one began. The hard-

ware circuits needed to perform different operations 

of an instruction cycle are different and most part of 

these processor circuits are idle at a given moment of 

time. These processor circuits wait for the other parts 

of the processor to complete its part of execution first. 

Instruction pipelining is a technique for overlapping the 

execution of several instructions to reduce the overall 

Interrupt
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BR

BR
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Interrupt
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Direct Memory
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CPU
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select
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RD WR Address

DMA acknowledge

DMA request

I/O

peripheral

device

Data

Read control

Write control

Address bus

Data bus

Figure 2.8 |  DMA controller interconnection with memory, CPU and I/O devices.
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instruction refers to a result which is yet not 

been calculated, that is, in this inst2 tries to 
read a source before inst1 writes to it. This 
situation arises if the read operation by instruc-

tion takes place before write done by other in-

struction. For example,

inst1: R3 <-R1 + R2
inst2: R4 <-R3 + R2

The first instruction calculates a value by adding 

values in registers R1 and R2 and saves the result 

in register R3, and the second instruction uses 

this saved value to calculate a result for regis-

ter R4. However, in a pipeline, when operands 

for the second operation are fetched, the results 

from the first instruction will not have been 

saved yet, and so there arises a data depend-

ency. It can be said that there is a data depend-

ency with instruction inst2, as it is dependent 
on the completion of instruction inst1.

 1. Structural hazards: These result from resource 

conflicts when the hardware cannot support 

instructions that need simultaneous execution in 

pipeling.

 2. Data hazards: They arise when an instruction 

depends on the result of a previous instruction and 

that result is not yet calculated.

There are three situations in which data hazards 

can occur:

�• Read after write (RAW), a true dependency

�• Write after read (WAR), an anti dependency

�• Write after write (WAW), an output dependency

Consider two instructions inst1 and inst2 
occurring, with inst1 occurring before inst2 in 
the program order.

�• Read after write (RAW): A read after write 

(RAW) data hazard is a situation in which an 

step → 1
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Figure 2.9 |   (a) Unpipelined processor. (b) Pipelined five-stage processor.  
(c) Timing diagram of a five-stage instruction pipeline. 
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�• Write after read (WAR): A write after 

read (WAR) data hazard refers to a situation in 

which there is a problem with concurrent execu-

tion, that is, inst2 tries to write a destination 
before it is read by inst1. This situation arises 
if write operation completes first by instruction 

before the read operation takes place by other 

instruction. For example,

inst1: R4 <-R1 + R3
inst2: R3 <-R1 + R2

If a situation arises in which there is a chance 

that inst2 may get completed before inst1 
(i.e., with concurrent execution) we must note 

that we do not store the result of register R3 
before inst1 has had a chance to fetch the 

operands.

�• Write after write (WAW): A write after 

write (WAW) data hazard refers to a situation 

in which there is a concurrent execution envi-

ronment, that is, inst2 tries to write an oper-
and before it is written by inst1.This situation 
arises if write operation by an instruction occurs 

in the reverse order of the intended sequence. 

For example,

inst1: R2 <-R1 + R3
inst2: R2 <-R4 + R5

The WB (write back) of inst2 must be delayed 
until the execution of inst1.

 3. Control hazards: They arise from the pipelining 

of branches and other instructions that change the 

value of PC.

Speed up from pipelining

Average instruction time unpipelined

Ave

=

rrage instruction time pipelined

Speed up from pipelining

CPI unpipelined Clock cycle pipelined

CP

=

×
II pipelined Clock cycle pipelined×

Ideal CPI

CPI unpipelined

Pipeline depth

=

Speed up from pipelining

IdealCPI Pipeline depth Clock cycle unp
=

× × iipelined

CPI pipelined Clock cycle pipelined×

Speed up from pipelining

IdealCPI Pipeline depth Clock cycle unp
=

× × iipelined

IdealCPI Pipeline stall Clock cycle pipelined+( ) ×

Assuming ideal CPI as 1, speed up is:

Speed up from pipelining

Pipeline depth Clock cycle unpipelined

=

×
1++Pipeline stall Clock cycle pipelined( ) ×

where CPI is cycles per instruction.

Problem 2.7: Consider a four-stage pipeline processor. The number of cycles needed by the four instructions I
1
, I
2
, 

I
3
 and I

4
 in stages instruction fetch, decode, operand fetch and execute are shown below. Assume I

2
 is the branch 

instruction. Draw the timing space diagram.

S
1

S
2

S
3

S
4

I
1

2 1 1 1

I
2

1 2 3 1

I
3

1 1 1 2

I
4

2 1 3 1

Solution:

STEP → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fetch I
1

I
1

I
2

I
3

− − − − − I
3

I
4

I
4

Decode I
1

I
2

I
2

− − − − − I
3

− I
4

Operand Fetch I
1

I
2

I
2

I
2

− − − I
3

− I
4

I
4

I
4

Execute I
1

− − − I
2

− − − I
3

I
3

− − I
4
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Problem 2.8: Assume a simple 5-stage pipeline (IF, ID, E, DF, W) each stage takes a single cycle. Assuming there 

are no cache misses. How many cycles would the following code take to execute if there is no special hardware to 

improve performance in the presence of hazards?

MOV edx,[ecx+100]

MOV ebx,[ecx+104]

ADD edx,ebx

MOV [ecx+108],ebx

MOV eax,[ecx+100]

ADD ebx,eax

Solution: The above code takes 14 cycles to execute, as shown below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

IF ID DF E W

IF ID DF E W

IF ID DF stall E W

IF ID stall DF stall W

IF ID stall DF stall stall E W

IF ID stall DF stall stall stall E W

Problem 2.9: In the below figure, calculate the total execution time after which the result of the fourth task enter-

ing the pipe above ready?

IF ID EX MEM WB

5 ns 5 ns 10 ns 10 ns 5 ns

Solution:

5 10 15 20 25 30 35 40 45 50 55 60 65

Inst1 IF ID EX EX MEM MEM WB

Inst2 IF ID EX EX MEM MEM WB

Inst3 IF ID EX EX MEM MEM WB

Inst4 IF ID EX EX MEM MEM WB

Therefore, the total execution time is 65 ns.

Problem 2.10: What is the mean overhead of a pipe-

line with 8 stages and an execution time per stage of 

2 ns?

Solution: The mean overhead = (Stages − 1) × 
Execution time per stage = (8 − 1) × 2 = 7 × 2 = 14 ns

Problem 2.11: How many stages has a pipeline that 

achieves a speed of 9.9 for 100 operations?

Solution: 

Speed =

+

=

+

=
n k

k n

n

n

n
×

− −1

9 9
90

90 1

11⇒
×

⇒.

( )

Problem 2.12: Calculate the time required to perform 

1000 operations in a 6-staged pipeline with an execu-

tion time of 3 ns per stage?

Solution: 

T k n T
p
= + = + =( ) ( ) .− × − ×1 6 1 1000 3 3 015 sµ

Problem 2.13: Calculate the mean overhead of a pipeline 

with 7 stages and an execution time per stage of 2 ns?

Solution: Mean overhead of pipeline = 

( )

( ) ( )

k T T

k

k T
p n

× −
− × − ×= = =1 7 1 2 12 ns
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Problem 2.14: Consider a pipeline with 5 stages: IF, ID, EX, M and W. Assume that each stage requires one clock 

cycle. Show how the following program segment for adding 2 arrays is processed and compare the clock cycles 

needed in non-pipelined system with pipelined system when result of the branch instruction i.e. content of is avail-

able after WB stage.

LOAD R4 #400

L1: LOAD R1, 0 (R4);

LOAD R2, 400 (R4);

ADD R3, R1, R2;

STORE R3, 0 (R4);

SUB R4, R4, #4;

BNEZ R4, L1;

Solution: Number of cycles = [ Initial instruction + (Number of instructions in the loop L1) × Number of loop  
cycles] × Number of clock cycles/instruction (CPI)

= [1 + (6) × 400/4] × 5 = 3005

Timing diagram for one loop iteration in a pipelined system is as follows: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOAD R4 #400 IF ID EX M W 

LOAD R1, 0 (R4) IF ID EX M W 

LOAD R2, 400 (R4) IF ID stall stall EX M W

ADD R3, R1, R2 IF ID stall stall EX stall M W

STORE R3, 0 (R4) IF ID stall DF stall stall E W

SUB R4,R4, #4 IF ID stall Ex M W

BNEZ R4, L1 IF stall ID stall stall EX M W

Number of cycles in the loop = 15

Number of clock cycles for segment execution on pipelined processor

= 1 + (Number of clock cycles in the loop L1) × Number of loop cycles

= 1 + 15 × 400/4 = 1501

Speedup = 

Number of Clock cycles for the program execution on non-pipelined processor

Number of Clock cycles for the segment execution on pipelined processor

= 
3005

1501
 = 2 times

Problem 2.15: Consider a 5-stage pipeline with stages: For all following questions we assume that: (a) Pipeline 

contains stages: IF (Instruction Fetch), IS (Issue), FO (Fetch operand), E (Execute) and W (Write). (b) Each stage 

except E requires one clock cycle and system has 4 Functional Units for floating point operations, FP load/store, 

FP addition/subtraction, FP multiplication and FP division, (c) Execution stage for Load/Store operations requires 

1 clock cycle, for ADD or SUB operations requires 1 clock cycle, for MUL operation requires 3 clock cycles and for 

DIV operation requires 4 clock cycles. All memory references hit in cache. Pipeline has forwarding circuitry for all 

FUs, except FP-Load/Store where operand is ready after W-stage.
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2.8 MEMORY HIERARCHY

The storage media can be categorized in hierarchy accord-

ing to their speed and cost (Fig. 2.10). As we move down 

the hierarchy, access time increases and cost per bit 

decreases.

Increasing

cost and

speed

Magnetic tapes

Magnetic disks

Main memory

Cache

memory

CPU

registers

Decreasing

cost and 

speed

Increasing

size

Decreasing

size

Figure 2.10 |  Memory hierarchy.

2.8.1 Main Memory

It is the central storage unit that directly communicates  

with the CPU. It is designed using  semiconductor- 

integrated circuits and needs constant power supply to  

maintain the information. It is expensive as compared to  

auxiliary storage so it has limited capacity. Example: R/W  

(read/write) memory or RAM (random access memory) 

and ROM (read only memory). Integrated RAM chips 

are available in two modes:

 1. Static RAM: It stores the binary information in 

flip flops and information remains valid until power 

is supplied. It has faster access time and is used in 

implementing cache memory.

 2. Dynamic RAM: It stores the binary information 

as a charge on the capacitor. It requires refreshing 

circuitry to maintain the charge on the capacitors 

after few milliseconds. It contains more memory 

cells per unit area as compared to SRAM.

2.8.1.1 Memory Interfacing

If the required memory for the computer is larger 

than the capacity of one chip, it is necessary to 

connect multiple RAM and ROM chips to a CPU 

through the data and address buses (Fig. 2.11). The 

low-order address bus lines select the word within a 

chip and other lines select a particular chip through 

its chip select inputs. Assume a computer system 

needs 256 bytes of RAM and 512 bytes of ROM. The 

configuration of RAM chip is 128 × 8 and ROM chip 
is 512 × 8. The RAM and ROM chips required are 
as follows:

Number of RAM chips = 256/128 = 2

Number of ROM chips = 512/512 = 1

Timing diagram of is presented below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LOAD F6, 20(R5) IF IS FO E W 

LOAD F2, 28(R5) IF ISD FO E W 

MUL F0, F2, F4 IF IS stall stall FO E E E W

SUB F8, F6, F3 IF IS FO E W

DIV F10, F0, F6 IF IS stall stall stall stall FO E E E E W

ADD F6, F8, F2 IF IS FO E W

STORE F8, 50(R5) IF IS FO E W

Identify the hazards in the following instructions from the following list (Structural, Data, Control, RAW, WAR, 

WAW, None)

1. MULT F0, F2, F4 and STORE F8, 50(R5)

2. DIV F10, F0, F6 and ADD F6, F8, F2

3. MULT F0, F2, F4 and DIV F10, F0, F6

4. DIV F10, F0, F6 and ADD F6, F8, F2

Solution: 1. Structural; 2. Data; 3. RAW; 4. WAR.
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The memory interconnection is depicted in the following diagram:
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(b)

Figure 2.11 |  (a) RAM chip. (b) ROM chip. 

Problem 2.16: A computer employs RAM chips of 256 × 8 and ROM chips of 1024 × 16. The computer system needs 
2K bytes of RAM and 4K bytes of ROM and four interface units each with four registers. Draw a memory address 

map for the system and give the address range in hexadecimal for RAM and ROM chips.

Solution: RAM 2048/256 = 8 chips; 2048 = 211; 256 = 28

ROM 4096/1024 = 4 chips; 4096 = 212; 1024 = 210

Interface 4 × 4 = 16 registers; 16 = 24

Component Address 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

RAM 0000-O7FF
 0   0   0  0  0  ↔   x  x x x  x  x x x

3 × 8
decoder

ROM 4000-4FFF
 0   1   0  0  ↔  x   x  x x x x  x x  x x

2 × 4
decoder

Interface 8000-800F  1   0   0  0  0  0   0  0  0  0   0  0  x  x  x  x

2.8.2 Secondary Memory

Secondary memory, also known as auxiliary memory or 

external memory, can store a large amount of data at 

lesser cost per byte than the main memory. They are 

non-volatile in nature, that is, data is not lost when the 

device is powered off. The most common auxiliary stor-

age devices used in consumer systems are flash memory, 

optical disks and magnetic disks.

 1. Flash memory: Flash memory is an electronic 

non-volatile fastest computer storage device that 

can be electrically erased and reprogrammed. 

Example: flash drives and solid state drive.

 2. Optical disk: Optical disks are low-cost mass 

storage devices from which read and write opera-

tions are performed using laser technology. Optical 

disks can store huge amounts of data up to 6 GB 

(6 billion bytes). Different types of optical disks 

are CD-ROM (compact disk read-only), WORM 

(write-once read-many), EO (erasable optical 

disks) and DVD.

 3. Magnetic disk: A magnetic disk is composed 

of a circular platter made of metal or plastic and 

coated with magnetized material on both sides. 

Multiple disks are stacked over one another on the 

spindle with read/write heads on each surface. Bits 

are stored as spots on magnetized surface along 

concentric circles called tracks. Tracks are further 

divided into wedge-shaped sectors.

 4. Magnetic tapes: It consists of tape made up of 

plastic covered with magnetic oxide coating. Tapes 

are mounted on reels. Bits are recorded as magnetic 

spots on tape along several tracks. R/W heads are 

mounted in each track so that data can be recorded 

and read as a sequence of characters. Seven or nine 

bits are recorded to form a character together with 

a parity bit. Data is recorded in contiguous blocks 

separated by inter-record gaps.

2.8.3 Cache Memory

It is a special memory that compensates the speed 

mismatch between processor and main memory access 

time. It temporarily stores frequently used instructions 

and data for faster processing by the CPU. Cache hit 

ratio is calculated to measure its performance. If a data 
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2.8.4.1 Direct Mapping

In this technique, each block from the main memory has 

only one possible location in the cache memory. In this 

example, say a block from main memory maps onto a 

block (i mod 128) of the cache. If there are 2
n
 words in the 

cache memory and 2
m
 words in the main memory, then 

m-bit main memory address is divided into two fields: n 

bits for index field to access the cache and (m − n) bits 
for the tag field. Each word in cache consists of the data 

and the associated tag. Whenever a new block is brought 

into cache, tag is stored along with data bits. Index field 

is further divided into block and word if there are mul-

tiple words (say k) in a block. The lower k bits select one 

of the k words in a block known as word field. The block 

field is used to distinguish a block from other blocks.

Tag (m − n) bits Index (n bits)

Tag (m − n) bits Block (n − k) bits Word (k bits)

When CPU generates a memory request, the block field 

points to a particular block location in the cache. The 

high-order tag field is compared with tag bits associated 

with that cache location. If they match, then the desired 

word is in that block of cache. If there is no match, then 

the block containing the required word must be loaded 

to cache first (Fig. 2.13).

Main memory address Main memory

Cache memory

Tag

5 7 4

Tag 0

(5 bits)

Block

Block 0

Block 0

Block 1

Block 127

Block 127

Block 128

Block 255

Block 3968

Block 4095

Tag 3 Data

Data

Word

≈ ≈ ≈

≈ ≈

≈≈

≈

Figure 2.13 |  Direct mapped cache organization. 
The demerit of direct mapping is that hit ratio drops 

 considerably if two or more words having same index and 

different tags are accessed consecutively one after the other.

2.8.4.2 Fully Associative Mapping

In this technique, a main memory block can be placed 

into any cache block location. It is the most flexible cache 

organization. The main memory address is divided into 

item requested by the CPU is found in cache it is called 

hit otherwise it is a miss. Hit ratio is defined as ratio 

of number of hits divided by total CPU references to 

memory.

Hit ratio ( )

Number of hits

Number of hits Number of misses

h =

+

Average access time Hit ratio

Hit ratio

=

+ +

×
−

T

T T

c

c m
( )( )1

where T
c
 is cache access time and T

m
 is the main memory 

access time.

2.8.3.1 Elements of Cache Design

The various elements of cache design are as follows:

 1. Cache size: It should be optimum, small enough 

to keep average cost per bit close to the main 

memory and large enough to keep overall average 

access time close to the cache memory.

 2. Mapping function: It describes the mapping of 

main memory block to cache block. There are three 

different mapping techniques: fully associative, direct 

mapped and set associative cache organization.

 3. Replacement algorithm: When a new memory 

block is required in cache, one of the existing blocks 

must be replaced by a new block. Example: FIFO 

(first in, first out), LRU (least recently used).

 4. Write policy: Cache memory follows write-

through and write-back updating policies. In 

write-through policy, cache controller copies data 

immediately to main memory as data is written in 

cache. The data in main memory is always valid, 

but this approach reduces system performance. In 

write back, update to memory block is delayed until 

the updated cache block is replaced by a new block.

2.8.4 Cache Mapping Techniques

The cache memory can store a reasonable number of 

blocks, but this number is always small as compared to 

blocks in the main memory to keep average cost per bit 

low. The correspondence between memory blocks and 

cache block is specified by the following mapping tech-

niques. Consider a cache memory consisting of 2K words 

with 128 blocks of 16 words each. Number of bits required 

to address a cache block is 11 bits. Main memory has 64K 

words and bits required to address is 16 (Fig. 2.12).

Main memory

64K × 8 Cache memory

2K × 8

CPU

Figure 2.12 |  Cache mapping example. 
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two fields: word and tag. The associative memory stores 

both the address (tag) and data of the main memory. 

Figure 2.14 shows the mapping of different blocks into 

cache. High-order 12 bits of CPU address is placed in the 

argument register of the associative memory and com-

pared to tag bits of each block of the cache to see if the 

desired block is present. Once the desired block is pres-

ent, 4-bit word is used to extract necessary word from 

the cache.

Main memory address

Main memory

Cache memory

Tag

12 4

Date
Tag 0

(12 bits)

Word
Block 0

Block 1

Block i

Block 4095

Figure 2.14 |  Associative mapped cache organization. 

It is necessary to compare high-order bits of main 

memory with all tag bits corresponding to each block to 

find whether a given block is present in cache, so it is 

the most expensive.

2.8.4.3 Set-Associative Mapping

As fully associative mapping is an expensive solution and 

direct mapping does not allow words with same index 

but different tag to exist in cache, set associative map-

ping is a combination of both. It is an improvement over 

direct mapping where contention problem is solved by 

having several choices for block placement. The figure 

below shows two-way set associative cache because each 

block of main memory has two choices for block place-

ment in cache. A block i in the main memory can be 

in any block belonging to set i mod S of cache, where 

S is the number of sets. The block 0, 64, 128, … and so 

on of main memory can map into any of the two blocks 

in set 0.

The main memory address is divided into three fields: 

low-order bits for word field, set field to determine the 

desired block from all possible sets and high-order bits 

for the tag field. Each word in cache consists of data and 

the associated tag. 

Tag Set Word

When the CPU generates a memory request, the set 

field points to a particular set of the cache which might 

contain the desired block. The high-order tag field is 

then compared associatively to the tags corresponding 

to the matched set. If a match occurs, the corresponding 

word is read from cache else main memory is referred 

and block containing that word is brought into cache for 

future reference (Fig. 2.15).

Tag

Set 0

Set 63

6 6 4

Tag 0

6 bits

WordSet

Tag 2

Tag 3 Tag 61Date Date

Data Data

≈ ≈

Main memory address

Main memory

Cache memory

Block 0

Block 1

Block 63

Block 62

4095

4033

Tag 0

Tag 63

Figure 2.15 |  Set-associative mapped cache organization. 

Problem 2.17: Consider a memory hierarchy 

system containing a cache, a main memory and a 

virtual memory. Assuming, cache access time of 5 

ns, and 80% hit ratio . The access time of the main 

memory is 100 ns, and it has a 99.5% hit rate. 

The access time of the virtual memory is 10 ms. 

Calculate the average access time of the memory 

hierarchy.

Solution: As we know, the hit rate of virtual memory 

is 100%, the average access time for requests that 

reach the main memory as (l00 ns × 0.995) + (10 ns ×  
0.005) = 50,099.5 ns. Given this, the average access 

time for requests that reach the cache is (5 ns × 0.80) +  
(50,099.5 ns × 0.20) = 10,024 ns.

Problem 2.18: A computer uses RAM chips of 1024 ×  
1 capacity.

(a) How many chips are needed to provide a memory 

capacity of 16K bytes?

(b) How many of these lines will be common to all 

chips?

Solution:

(a) Chips are needed to provide a memory capacity of 

16K bytes = 16 × 8 = 128 chips
(b) Using 14 address lines (16K = 2

14
), we have 10 

lines specifying the chip address which is common 

to all chips.
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