
CHAPTER 2

COMPUTER ORGANIZATION AND ARCHITECTURE

Syllabus: Machine instructions and addressing modes, ALU and data path, CPU control design, memory interface,

I/O interface (interrupt and DMA mode), instruction pipelining, cache and main memory, secondary storage

2.1 INTRODUCTION

Computer architecture and organization is the

science of interconnecting hardware components, design-

ing and configuring the hardware/software interface to

fulfill functional and performance goals of a computer.

This chapter outlines the basic hardware structure of a

modern digital programmable computer, the basic laws

for performance evaluation, designing the control and

data path hardware for a processor, concept of pipelining

for executing machine instructions simultaneously and

designing fast memory and storage systems.

Computer architecture deals with the structure

and behaviour of computer system as viewed by the

user. It encompasses instruction formats, the instruction

set architecture (ISA) and addressing modes.

Computer organization deals with the operation

and interconnection of the various hardware components.

2.2 COMPUTER ARCHITECTURE

2.2.1 Register Set

The computer needs registers for processing and manip-

ulating data and for holding memory addresses that

are available to the machine-code programmer. Some

registers for a basic computer are given in Table 2.1.

Table 2.1 | Types of registers and their functions
Register

Symbol

Register

Name

Function

DR Data register Holds memory operand

ACC Accumulator Special purpose

processor register

AR Address

register

Holds address for

memory

(Continued)

Chapter 2.indd 57 4/9/2015 9:49:42 AM

58 CHAPTER 2: COMPUTER ORGANIZATION AND ARCHITECTURE

When the system consists of multiple frequent cases,

where i is the number of frequent cases:

S F

F

S
i

i

overall = +1

1

−()⎡
⎣⎢

⎤
⎦⎥∑ ∑

−

Problem 2.1: Consider a hypothetical processor used

in mathematical model simulation. It consists of two

functional units, floating point and integer. The float-

ing point is enhanced then it runs two times faster,

but only 10% of the instructions are floating point.

What is the speed up?

Solution: Here S = 2, F = 0.1

Soverall = + =(.)

.

.1 0 1

0 1

2

1 052

1

−⎡
⎣⎢

⎤
⎦⎥

−

2.3 MACHINE INSTRUCTIONS AND

ADDRESSING MODES

Machine instruction is an individual machine code. The

complete set of all machine codes recognized by a partic-

ular processor makes its Instruction Set. Instructions can

be grouped according to the function they perform. The

number of ways by which arguments for these machine

instructions can be specified constitutes the addressing

modes for a processor.

2.3.1 Machine Instructions

An instruction is a command to the microprocessor to

perform a given task. Most computer instructions are

classified as follows:

 1. Data transfer instructions: These instructions

move data from one place to another in the com-

puter without changing the data content. Example:

LOAD, MOVE, IN, OUT, PUSH, STORE.

 2. Data manipulation instructions: These instruc-

tions perform arithmetic, logical and shift opera-

tions on data. Example: ADD, SUB, MUL, DIV,

INC, AND, XOR, OR, SHR, SHL, ROR, ROL.

 3. Program control instructions: These instruc-

tions may change the address value in program coun-

ter and cause the normal sequential flow to change.

On the basis of the number of address fields in an instruc-

tion, they are classified as follows:

 1. Three-address instruction: Computer with

three-address instruction format can use each

address field to specify two sources and a destina-

tion, which can be either a processor register or a

memory operand. It results in short program but

requires too many bits to specify three addresses.

Example: ADD R
1
, A, B (R

1
 ← M[A] + M[B])

Table 2.1 | Continued
Register

Symbol

Register

Name

Function

IR Instruction

register

Holds an instruction

that is to be executed

PC Program

counter

Holds address of

instruction to be

executed next

TR Temporary

register

Holds temporary data

if required

INPR Input register Holds input character

OUTR Output register Holds output character

2.2.2 Quantitative Principles to Design

High-Performance Processor

Amdahl’s law focused on performance gain after enhanc-

ing the system. The performance gain is denoted by

S
overall

 and ET stands for execution time.

Soverall

erformance of the systemwith enhancement

Performance o

=

P

ff the system withoutenhancement

 Soverall

new

old

ET

ET

=

1

1

 (2.1)

Soverall

old

new

ET

ET

=

After enhancement, the system consists of two portions:

unenhanced and enhanced portion.

ET ET of the unenhanced portion

ET of enhanced portion

new =

+

To calculate ET
new
, the following two factors are needed:

 1. Fraction
enhance

 (F): It indicates how much por-

tion of the old system undergoes enhancement.

 2. Speed
enhance

 (S): It indicates how many times the

new portion is running faster than the old portion.

S

F

F

F

F

F

= = =

Performance

Performance

ET

ET

ET

ET

new

old

new

old

old

ne

1

1 wwF

So, ET

ET

new

old

F

F

S

=

On the basis of the above factor,

ET ET

ET

new old

old

F F

F

S

= +()1 −

Substitute the value of ET in Eq. (2.1):

ET ET

ET

new old

old

F F

F

S

= +()1 −

Let ET
old
 = 1,

S

F F S

F

F

S
overall =

+

= +

1

1

1

1

() ()

()

−
−⎡

⎣⎢
⎤
⎦⎥

−

Chapter 2.indd 58 4/9/2015 9:49:45 AM

2.3 MACHINE INSTRUCTIONS AND ADDRESSING MODES 59

 2. Two-address instruction: Each address field can

specify either a processor register or a memory word.

Example: MOV R
1
, A (R

1
 ← M[A]);

MUL R
1
, R

2
 (R

1
 ← R

1
*R

2
)

 3. One-address instruction: It used an implied

accumulator (AC) register for all data manipula-

tion. The other operand is in register or memory.

Example: LOAD A (AC ← M[A]);

ADD B (AC ← AC + M[B])

 4. Zero-address instruction: A stack organized

computer does not use an address field for the

instruction ADD and MUL.

Problem 2.2:

 (a) ISA of a processor consists of 64 registers, 125

instructions and 8 bits for immediate mode. In a

given program, 30% of the instructions take one

input register and have one output register, 30%

have two input registers and one output register,

20% have one immediate input, and one output

register, and remaining have two immediate

input, 1 register input and one output register.

Calculate the number of bits required for each

instruction type. Assume that the ISA requires

that all instructions be a multiple of 8 bits in

length.

 (b) Compare the memory space required with that of

variable length instruction set.

Solution:

 (a) Since there are 125 instructions so we need 7 bits

to differentiate them as 64 < 125 < 128. For 64
registers, we need 6 bits and 8 bits for immediate

mode.

 For Type 1, 1 reg in, 1 reg out: 7 + 6 + 6 =

19 bits ∼ 32 bits
 For Type 2, 2 reg in, 1 reg out: 7+ 6 + 6 + 6 =

26 bits ∼ 32 bits
 For Type 3, 1 imm in, 1 reg out: 7 + 6 + 8 =

21 bits ∼ 32 bits
 For Type 4, reg in, 2 imm in, 1 reg out: 7 + 6 +

8 + 8 + 6 = 35 bits ∼48 bits
 (b) As the largest instruction type requires 48 bit

instructions, the fixed-length instruction format

uses 48 bits per instruction. Variable length instruc-

tion format uses 0.3 × 32 + 0.3 × 32 + 0.2 × 32 +
0.2 × 48 = 36 = bits on average, that is, 25% less
space.

2.3.2 Addressing Modes

The addressing mode specifies how effective address of

an operand is calculated from an instruction. Computers

use various addressing mode techniques to:

 1. provide programming flexibility to users through

use of pointers to memory, counter for loop control,

data indexing and program relocation.

 2. reduce the size of the addressing field of the

instruction.

Let us suppose [x] means contents at location x for all the

addressing modes.

2.3.2.1 Types of Addressing Modes

 1. Implied mode: In this mode, the operands are

implicitly stated in the instruction. For example,

register reference instructions such as CMA (comple-

ment accumulator), CLA (clear accumulator) and

zero-address instructions that use stack organization.

 2. Immediate mode: In this mode, the operand is

specified in the instruction itself, that is, address

field is replaced by an actual operand. Immediate

mode instructions are useful for initializing regis-

ters to a constant value. For example, used for ini-

tializing CPU registers to some constant value such

as MOV R
1
, #34.

Instruction with immediate mode

Opcode Data Operand

 3. Register (direct) mode: In this mode, the oper-

ands are in CPU registers. An n-bit register field

can specify any one of 2
n
 registers. Example: ADD

R
1
 will add the contents of an accumulator and

contents of R
1
, that is, ACC = [ACC] + [R

1
].

Instruction with register direct mode

Opcode Register address

Operand

CPU register

 4. Register (indirect) mode: In this mode, the

instruction format specifies a CPU register which

contains an effective address of the operand resid-

ing in memory. This mode ensures less number of

bits to specify a register value than to specify a

memory location. Example: ADD @ R
1
 will add the

contents of an accumulator with contents of the

register R
1
, that is, AC = [ACC] + [[R

1
]].

Instruction with register indirect mode

Opcode Register address

CPU register

Pointer to

operand

Operand

Memory

Instruction with register indirect mode

Opcode Register address

CPU register

Pointer to

operand

Operand

Memory

Chapter 2.indd 59 4/9/2015 9:49:47 AM

60 CHAPTER 2: COMPUTER ORGANIZATION AND ARCHITECTURE

 5. Auto-increment or Auto-decrement mode:

This is similar to register indirect mode except the

register containing effective address is incremented

or decremented after (or before) its value is used to

access memory.

 6. Direct address mode: In this mode, the effec-

tive address of an operand is equal to the address

part of the instruction. Example: ADD A instruc-

tion adds content of memory cell A to accumula-

tor, that is, ACC = [ACC] + M[A].

Instruction with direct address mode

Opcode Memory address

Operand

Memory

 7. Indirect address mode: In this mode, memory

address specified by address field contains the

address of (pointer to) the operand. Example:

ADD @ A will add the contents of the memory cell

A, that is, ACC = [ACC] + M[M[A]].

Instruction with indirect address mode

Opcode Memory address

Pointer to operand

Operand

Memory

 8. Relative address mode: In this mode, the effective

address of an operand is obtained by adding the con-

tent of a program counter to the address part of the

instruction. The address part of the instruction can be

either positive or negative represented in 2’s comple-

ment. The result obtained after adding the content of

the program counter to the address field produces an

effective address whose position in memory is relative

to the address of the next instruction.

 9. Index address mode: In this mode, the effective

address of an operand is obtained by adding the

content of an index register to the address part of

the instruction. The index register is a special CPU

register that stores an index value and the address

field of the instruction stores the base address of a

data array in the memory. The distance between

the base address and the address of the operand is

the index value that is stored in the index register.

The index register can be incremented to facilitate

access to consecutive operands stored in arrays

using the same instruction.

10. Base register addressing mode: In this mode,

the effective address of an operand is obtained by

adding the content of a base register to the address

part of the instruction. This is somewhat similar to

the indexed addressing mode except that the base

register stores base or beginning address instead of

an index register. It is used for program relocation.

Problem 2.3: A two-word instruction LOAD is stored

at location 300 with its address field in the next loca-

tion. The address field has value 600 and value stored

at 600 is 500 and at 500 is 650. The words stored

at 900, 901 and 902 are 400, 401 and 402, respec-

tively. A processor register R contains the number

800 and index register has value 100. Evaluate the

effective address and operand if addressing mode of

the instruction is as follows:

 1. Direct

 2. Indirect

 3. Relative

 4. Immediate

 5. Register indirect

 6. Index

Solution: Memory layout is as follows

300 LOAD

301 600

500 650

600 500

700 900

800 700

900 400

901 401

902 402

Addressing

Mode

Effective

Address

Operand

Direct 600 500

Indirect 500 650

Relative 902 402

Immediate 301 600

Register indirect 800 700

Index 700 900

Problem 2.4: A relative mode branch type instruc-

tion is stored in memory at an address equivalent to

decimal 600 and the branch is made to an address

equivalent to decimal 400. What is the value of the

relative address field of the instruction (in decimal)?

Solution: Relative address = 400 − 601 = −201

Chapter 2.indd 60 4/9/2015 9:49:48 AM

2.4 ARITHMETIC LOGIC UNIT 61

By controlling the output Y of multiplexers with two

selection inputs S
1
 and S

0
 and C

in
 either 0 or 1, we can

generate the eight arithmetic micro-operations (Table 2.2).

2.4.2 Logic Micro-Operations

Logic micro-operations such as AND, OR, Exclusive OR,

etc., consider each bit of register separately and specify

binary operations for strings of bits (Table 2.3).

Table 2.3 | Types of micro-operations
Micro-operation Name

F ← 0 Clear

F ← A ∧ B AND

F A B← ∧
F ← A Transfer A

F A B← ∧
F ← B Transfer B

F ← A ⊕ B Exclusive OR

F ← A ∨B OR

F A B← ∨ NOR

F A B← ⊕ Exclusive NOR

F B← Complement B

F A B← ∨

F A← Complement A

F A B← ∨

F A B← ∧ NAND

F ← all 1’s Set to all 1’s

2.4 ARITHMETIC LOGIC UNIT

Arithmetic logic unit (ALU) is a combinational circuit

that performs all arithmetic and logic operations so that

the entire register transfer operation from the source reg-

isters through the ALU and into the destination register

can be performed during one clock pulse period.

2.4.1 Arithmetic Micro-Operations

The basic arithmetic micro-operations such as addition,

subtraction, increment, decrement and shift are performed

on numeric data stored in registers. The basic component

of arithmetic is parallel binary adder, and by controlling

the input to adder, different micro-operations can be

 realized. Figure 2.1 depicts a 2-bit arithmetic circuit which

includes two full-adder circuits and two multiplexers for

choosing different arithmetic micro-operations. There are

two 2-bit input numbers A and B and 2-bit output D. The

two inputs from A go directly to X inputs of full adder.

The output of multiplexer goes to input Y of full adder.

Table 2.2 | Arithmetic circuit function table
Select Input to

Adder Y

Output of Binary

Adder

D = A + Y + C
in

Micro-Operation

S
1

S
0

C
in

0 0 0 0 D = A Transfer A

0 0 1 0 D = A + 1 Increment A

0 1 0 B D = A + B Add

0 1 1 B D = A + B + 1 Add with carry

1 0 0 B D A B= + Subtract with borrow

1 0 1 B D A B= + +1 Subtract

1
1 0 1 D = A − 1 Decrement A

1 1 1 1 D = A Transfer A

A
0 X

0

Y
0

S
1

C
in

S
1

S
0

S
0

B
0

A
1

B
1

C
0

C
1

FA

X
1

Y
1

C
1

C
2

FA D
1

D
0

C
out

0

1

2

3

S
1

S
0

0

0 1

1

2

3

4 × 1
MUX

4 × 1
MUX

Figure 2.1 | A 2-bit arithmetic circuit.

Chapter 2.indd 61 4/9/2015 9:49:51 AM

62 CHAPTER 2: COMPUTER ORGANIZATION AND ARCHITECTURE

2.5 CPU CONTROL DESIGN

Central processing unit (CPU), or the brain of a com-

puter, performs the data processing operations. It consists

of three major parts: register set that stores intermedi-

ate data during instruction execution, ALU performs the

required micro-operations and control unit that super-

vises all other elements for the transfer of information

from one register to the other. The main function of a

CPU is to fetch an instruction from the memory and exe-

cute it. CPU is divided into three types of organizations:

 1. Single accumulator organization: In this, one

operand is implied in the accumulator, a special

purpose register, and the other operand is a register

or the memory. Example: ADD R
1
 (R

1
 ← AC +

R
1
), LOAD A (AC ← A), STORE T (M[T] ← AC).

 2. General register organization: In this, the

CPU will have several general purpose regis-

ters which lead to shorter and efficient programs

because registers are faster. Example: ADD R
1
, R

2

(R
1
 ← R

1
 + R

2
). Figure 2.2 shows bus organiza-

tion for three registers R
1
, R

2
 and R

3
. The output

of these registers and one from the external input

is connected to two multiplexers A and B. The two

Logical micro-operations are capable of manipulating

individual bits or a portion of word stored in CPU regis-

ters. Let us consider the data in a register A. In another

register, B is the operand that will be used to modify the

contents of A using logic micro-operations. Some of the

applications are as follows:

 1. Selective set operation: In this, If a bit in B is

set to 1, that same position in A sets to 1, other-

wise that bit in A retains its previous value.

1 1 0 0

1 0 1 0

1 1 1 0 1

A

B A

A A A B

t

t

()

()

To set some bits in

+ +¬

 2. Selective complement operation: If a bit in

B is set to 1, that same position in A gets comple-

mented from its original value, otherwise it remains

unchanged.

1 1 0 0

1 0 1 0

0 1 1 0 1

A

B A

A A A B

t

t

()

()

To complement some bits in

+ ← ⊕

 3. Selective clear operation: If a bit in B is set to

1, that same position in A sets to 0, otherwise it

remains unchanged.

1 1 0 0

1 0 1 0

0 1 0 0 1

A

B A

A A A B

t

t

()

()

To clear some bits in

+ ← ⋅ ′

 4. Mask operation: If a bit in B is set to 0, that same

position in A sets to 0, otherwise it remains unchanged.

1 1 0 0

1 0 1 0

0 0 0 0 1

A

B A

A A A B

t

t

()

()

To clear some bits in

+ ¬ ×

 5. Clear operation: If the bits in the same position

in A and B are the same, they are cleared in A, else

they are set in A.

1 1 0 0

1 0 1 0

0 1 1 0 1

A

B

A A A B

t

t+ ()¬ Å

 6. Insert operation: It is used to insert a specific bit

pattern into A register, leaving the other bit posi-

tions unchanged. This is accomplished by two sub-

operations: masking operation to clear the desired bit

positions, followed by OR operation to introduce the

new bits into the desired positions. Suppose you wanted

to introduce 10 into the low order two bits of A:

 1101 A (Original) and 1110 A (Desired)

1 1 0 1

1 1 0 0

1 1 0 0

0 0 1 0

1 1 1 0

A (Original)

Mask

A (Intermediate)

Added bits

A (Desired)

MUXSELA SELB

SELD OPR

A bus B bus

MUX

ALU

2 × 4
Decoder

External output

External

input

R
1

R
2

R
3

Figure 2.2 | General register organization.

2 bits 2 bits 2 bits 4 bits

SELA SELB SELD OPR

Figure 2.3 | A control word.

select lines SELA and SELB from multiplexers A

and B select one of the input and feed to ALU.

OPR specifies one of the possible operation codes

that ALU will perform on the data inputs and the

output is transferred either to one of the registers

using 2 × 4 decoder or to the external output say
memory. The control word (Fig. 2.3) for the two-

operand instruction is as follows:

Chapter 2.indd 62 4/9/2015 9:49:53 AM

2.5 CPU CONTROL DESIGN 63

 3. Stack organization: Stack may consist of number

of registers or a part of main memory in which data

items are stored in consecutive locations that are

accessed by LIFO (last in, first out) mechanism. As

there is limited number of registers, a part of memory

is implemented as stack for storage and retrieval of

intermediate data. Stack pointer (SP) keeps a track

of the top item of a stack. The process of inserting

a new item onto a stack is known as push accom-

plished by first incrementing stack pointer and then

inserting an item from the data register.

SP ← SP + 1

M[SP] ← DR

The process of removing an item from the top of a

stack is known as pop performed by first transfer-

ring data into DR and then decrementing SP.

DR ← M[SP]

SP ← SP − 1

Problem 2.5: A system has CPU organized in the

form of general register organization consisting of 16

registers, each storing 32-bit data. Assume the ALU

has 35 operations.

(a) How many multiplexers are there in A bus and B

bus, and what is the size of each multiplexer?

(b) How many selection inputs are needed for MUX A

and MUX B?

(c) How many inputs and outputs are there in a decoder?

(d) How many inputs and outputs are there in ALU

for data, including input and output carries?

(e) Formulate a control word for the system.

Solution:

(a) 32 Multiplexers, each of size 16 × 1.
(b) 4 Inputs each, to select one of 16 registers.

(c) 4 to 16 − Line decoder
(d) 32 + 32 + 1 = 65 data input lines

(e) 32 + 1 = 33 data output lines

4 bits 4 bits 4 bits 6 bits

SELA SELB SELD OPR

2.5.1 Instruction Execution

A CPU generally executes one instruction at a time

sequentially and a sequence of such instructions is

known as a program. The CPU executes the instructions

that reside in the main memory. In order to execute

an instruction, the CPU has to fetch the instruction

first from the main memory into one of its registers.

It then decodes the instruction, that is, it decides what

the instruction intended to do, fetch operands required

and finally executes the instruction. This process is

repeated continuously for a complete program and is

known as the fetch−execute cycle (Fig. 2.4). The fol-
lowing steps are performed for executing an instruction:

Yes

No

No

Yes

Load PC contents

to MAR

Increment PC to

point to next

instruction

Load the instruction

stored at MAR to IR

IR ← M[MAR]

Decode the

instruction

Load any data

required into MDR

Execute the

instruction

Set PC to value

from jump inset

Service the

interrupt

Check for

interrupts

Check

for jump

instruction

Start

Figure 2.4 | Instruction cycle.

 1. Fetching the instruction: The next instruction

is fetched from the memory address that is saved in

the program counter, and memory content fetched

is stored in instruction register (IR). The program

counter then points to the next instruction that

will be read in the next cycle.

 2. Decode the instruction: During this cycle, the

instruction inside the IR gets interpreted by the

decoder.

Chapter 2.indd 63 4/9/2015 9:49:54 AM

64 CHAPTER 2: COMPUTER ORGANIZATION AND ARCHITECTURE

 3. Operand fetch: In case of a direct or indirect

memory instruction, the execution begins in the

next clock cycle. If the instruction has an indirect

address, the effective address of the operand is read

from the main memory, and the required data is

fetched from the memory into memory data regis-

ters. If the instruction has direct address, nothing

is done at this clock cycle.

 4. Execute the instruction: The control unit of

the CPU passes the instruction decoded by decoder

as a sequence of control signals to the different

functional units of the CPU to execute the tasks

required by the instruction such as reading values

from registers or input devices, performing mathe-

matical or logic micro-operations by ALU, and writ-

ing the result back to a register or main memory.

2.5.2 CPU Data Path

CPU contains data paths that are responsible for routing

data between the functional units of a computer. The

following are the different data path structures available

for routing:

 1. Single bus structure: In this architecture, all CPU

registers are connected to the same bus. Data can be

transferred either between CPU registers or between

CPU register and ALU at a given clock pulse. The

speed of operation is slow as only one operand can be

transferred in one clock cycle and addition operation

(R
1
 ← R

2
 + R

3
) occurs in three clock cycles.

 2. Two bus structure: All general purpose CPU

registers are connected to both buses say bus A and

bus B; but special purpose registers are divided into

two groups, say group 1 connecting bus A to pro-

gram counter and one input of ALU and group 2

connecting bus B to MDR (Memory Data Register)

and other input of ALU. The two operands are

transferred to ALU in 1 clock cycle and the addition

operation (R
1
 ← R

2
 + R

3
) occurs in 2 clock cycles.

 3. Three bus structure: The performance can be

further be improved by using three buses such that

addition operation (R
1
 ← R

2
 + R

3
) can occur in

one clock cycle.

2.5.3 Control Unit Design

Control unit is considered as brain of a CPU that con-

trols various units in the data path. The performance of

control unit is important as it determines the clock cycle

of the processor. Control unit can be designed either by

hardwired or by microprogram.

 1. Hardwired control: Control unit is made up

of sequential and combinatorial circuits to gener-

ate the control signals and interpret instructions

(Fig. 2.5). The instruction decoder decodes the

instruction loaded in instruction register. The step

decoder generates a separate control line for each

step in the control sequence. The encoder gets

its input signal from the decoder, step decoder,

external input and condition codes and generates

individual control signals. It is faster and more

efficient but less flexible and is difficult to add

new feature or correct mistakes in original design.

Clock
ResetControl step

counter

Step decoder

External

inputs

Condition

codes

End

Encoder

Control

signals

IR
Instruction

decoder

T
1

I
1

I
2

I
n

T
2

T
n

Figure 2.5 | Block diagram of hardwired control unit.
 2. Micro-programmed control: Control signals

are generated by using programming known as

micro-programs that constitutes micro-instructions

(control word) (Fig. 2.6). Memory that is part

Sequences

(starting and branch

address generator)

Control address

register

Control

memory

Control

signals to

system bus

Control

signals

within CPU

Micro instruction

register

Control word

Read

command

Address

Decoder

Clock

IR
External

inputs

Condition

codes

Figure 2.6 | Block diagram of micro-programmed
 control unit.

Chapter 2.indd 64 4/9/2015 9:49:55 AM

2.6 I/O INTERFACE (INTERRUPT AND DMA MODE) 65

of CPU is known as control memory and stores

micro-instructions. The micro-program sequencer

generates the address of micro-instruction accord-

ing to instruction stored in instruction register.

The address of micro-instruction to be executed

is available in content addressable register. Micro-

program sequencer issues read command to read

micro-instruction from control memory into micro-

instruction register which on execution generates

control signals for various parts of a processor. This

control unit design is more flexible to accommodate

new features and less error prone but quite slower

than the hardwired unit.

The format of the control word is

Branch

condition

Flag Control

signal

Control memory

address

On the basis of the type of control word supported, it is

divided into two types:

 1. Horizontal micro-programmed control unit:

In this design, the control signals are represented in

the form of 1 bit per control signal and it supports

longer control word.

 2. Vertical micro-programmed control unit: In

this design, the control signal is represented by using

encoding format.

Problem 2.6: Consider a control unit which has 1024

control word memory; it supports 48 control signals

and 8 flag conditions. What is the size of the control

word in bits and control memory in bytes?

Solution:

(a) Using horizontal programmed control unit

0 bits 3 bits 48 bits 10 bits

Branch

condition

Flag Control

signal

Control

memory

Size of control word = 61 bits

Control memory = (1024 × 61)/8 = 128 × 61 bytes

(b) Using vertical programmed control unit

0 bits 3 bits 48 bits 10 bits

Branch

condition

Flag Control

signal

Control

memory

log 48 ∼ 6 bits
Size of control word = 19 bits

Control memory = (1024 × 19)/8 = 128 × 19 bytes

2.5.4 RISC versus CISC Processors

The differences between reduced and complex instruc-

tion set computers is given in Table 2.4

Table 2.4 | RISC versus CISC
RISC (Reduced

 Instruction Set

 Computers)

CISC (Complex

 Instruction Set

 Computers)

Rich register set Less number of registers

Supports less addressing

modes

Supports more number of

addressing modes

Supports fixed length

instruction

Supports variable length

instruction

Successful pipeline with

one instruction per cycle

Unsuccessful pipeline

Example: ARM,

Motorola

Example: Pentium

processors

2.6 I/O INTERFACE (INTERRUPT

AND DMA MODE)

I/O interface bridges the differences between CPU and

peripheral devices and provides a method for transfer-

ring information between internal storage and external

I/O devices. There are the following three modes of I/O

transfer:

 1. Programmed I/O: The I/O device does not

have direct access to memory. It requires execution

of several instructions by the CPU and the CPU

has to wait for the I/O device to be ready for either

reception or transmission of data.

 2. Interrupt initiated I/O: In this, instead of

waiting, the control is transferred from a currently

running program to another service program as a

result of an external/internal generated request.

�• Hardware interrupts: These interrupts are

present in the hardware pins.

�• Software interrupts: These are the instruc-

tions used in the program whenever the required

functionality is needed.

�• Maskable interrupts: These interrupts may

be enabled or disabled explicitly.

�• Non-maskable interrupts: These interrupts

are always there in the enable state. We cannot

disable them by explicit conditions (flags).

�• Vectored interrupts: These interrupts are

associated with the static vector address.

�• Non-vectored interrupts: These interrupts

are associated with dynamic vector address.

�• External interrupts: These interrupts are

generated by external devices such as I/O.

�• Internal interrupts: These devices are gener-

ated by the internal components of the processor

such as temperature sensor, power failure, error

instruction, etc.

Chapter 2.indd 65 4/9/2015 9:49:55 AM

66 CHAPTER 2: COMPUTER ORGANIZATION AND ARCHITECTURE

�• Synchronous interrupts: These interrupts

are controlled by the fixed time interval. All

the interval interrupts are called as synchronous

interrupt.

�• Asynchronous interrupts: These interrupts

are initiated based on the feedback of previ-

ous instructions. All the external interrupts are

called as asynchronous interrupt.

 3. Direct memory access (DMA): It is one of

several methods for coordinating the data transfers

between an I/O device and the core processing unit

or memory in a computer. It refers to transfer of

data directly between a fast storage device and

memory bypassing CPU because of its limited

speed. DMA provides a significant improvement

in terms of latency and throughput as it allows

the I/O device to access the memory directly,

without using the processor. There are certain

advantages of using DMA for data transfer:

�• DMA saves processor’s MIPS as the core can

operate in parallel.

�• DMA saves power because it requires less cir-

cuitry than the processor to transfer data.

�• DMA has no modulo block size restrictions.

Direct memory access (DMA) controller takes over

the control of buses to manage the transfer directly

between the I/O device and memory. Bus request

(BR) and Bus grant (BG) signals are used by the

DMA controller to request the CPU to relinquish

control of the buses and get the control of system

buses (Fig. 2.7). The DMA controller consists of

3 different registers: an address register, a control

register and a word counter register. To transfer a

block of data between an I/O device and memory,

the controller stores initial values in the address

register. The DMA channel then transfers the

block of information from or to memory according

to the control register. The starting address of the

block in memory is given by the address register,

and the length of the bytes to transfer is given by

the word count register. The controller decrements

a word counter each time it moves a data byte.

There are several modes of operation of DMA:

�• Burst or block transfer mode: In this mode,

the entire block of data is transferred once the

DMA controller is granted access to the system

bus by the CPU. The bytes of data in the block are

transferred before releasing control of the system

buses back to the CPU. The only disadvantage of

this mode is that it renders the CPU inactive for

some long periods of time.

�• Cycle stealing mode: In this mode, the DMA con-

troller obtains access to the system buses like burst

mode; but after one byte of data transfer, the control

of the system bus is released back to the CPU via

BG. It is then continually requested again via BR,

transferring one byte of data per request, until the

entire block of data has been transferred. This mode

is suitable for the systems in which the CPU cannot

be disabled for the considerable length of time as in

burst transfer modes such as for controllers moni-

toring the data in real time. The advantage is that

CPU is not idled for as long as in burst mode, but

the data block is not transferred as quickly.

�• Transparent mode: It is the slowest yet more ef-

ficient data transfer mode in terms of overall system

performance. The DMA controller transfers data only

when the CPU is busy in performing operations that

do not use the system buses. So, the CPU never stops

executing its programs but the biggest disadvantage

is complex hardware circuitry that needs to deter-

mine when the CPU is not using the system buses.

A DMA read transfers data from the memory to

the I/O device, while DMA write transfers data

from an I/O device to memory. The functional

behaviour of a DMA transfer outlined in Fig. 2.8:

�• The CPU transmits the following information to a

DMA controller:

 (a) beginning address in memory which is stored in

address register in DMA controller.

 (b) Number of words to transfer which is stored in

word count register in DMA Controller.

 (c) direction (memory-to-I/O device or I/O device-

to-memory), port ID, DMA mode of transfer

and end of block transfer either through inter-

rupt request or no interrupt request which is

stored in control register as command word.

�• The processor them relinquishes control of address,

data and control buses to DMA Controller and

 returns to other processing activities while the

DMA controller starts the data transfer between

I/O device and memory.

DS
DMA

select

Data

bus Data bus

buffer

Address bus

buffer

Address

register

Word count

register

Control

register

I/O

device

Address

bus

Register

select

Read

Write

Bus

request

Bus

grant

Interrupt Interrupt

I
n
t
e
r
n
a
l

b
u
s

RS

RD

WR

BG

BR

Figure 2.7 | Block diagram of the DMA controller.

Chapter 2.indd 66 4/9/2015 9:49:56 AM

2.7 INSTRUCTION PIPELINING 67

execution time of a set of instructions and there is no

need to wait of the most part of the processor circuits for

the other parts of the processor to complete their part

of execution. Pipeline speed is limited by the slowest

pipeline stage.

Throughput of a processor is the rate at which opera-

tions get executed. Latency is the amount of time that a

single operation takes to execute. In an unpipelined com-

puter, throughput = 1/latency, as each operation exe-

cutes by itself and for pipelined computer, throughput

> 1/latency, since execution of instruction is overlapped.
Consider a k-segment pipeline with a clock cycle time

T
p
 used to execute n tasks (Fig. 2.9). An equivalent non-

pipelined system takes T
n
 time to complete each task.

The speed up of a pipelined system over a non-pipelined

system is given by the following relation:

S

n T

k n T

n

p

=

+

×
×()−1

Theoretically, maximum speed up that a pipelined

system can achieve is given by the following equation:

S

kT

T

k
p

n

= =

Pipelining Hazards: These hazards reduce the

ideal speed up gained by pipelining by preventing the

next instruction in the sequence from being executing

during its designated clock pulse. Hazards forces the

pipeline to be stalled. There are three types of hazards:

�• When the DMA controller accesses memory, it

synchronizes this memory request with an idle

period of the processor, thus disabling the pro-

cessor, or requesting a halt of the processor, and

awaits an acknowledgement.

�• After the completion of the block transfer, the DMA

controller either raises an interrupt request if the

interrupts are enabled or indicates the completion

in its status register and the processor recognizes

I/O completion (either by interrupt signal or by

reading the status register) and gets its system

buses back and normal processing starts. The

 device has to initiate a new data transfer through

DMA request signal which is again acknowledged

by CPU through DMA acknowledge signal via

DMA controller.

2.7 INSTRUCTION PIPELINING

In early computers, each instruction completely finished

before the execution of the next one began. The hard-

ware circuits needed to perform different operations

of an instruction cycle are different and most part of

these processor circuits are idle at a given moment of

time. These processor circuits wait for the other parts

of the processor to complete its part of execution first.

Instruction pipelining is a technique for overlapping the

execution of several instructions to reduce the overall

Interrupt

Random Access

Memory (RAM)

BG

BR

BR

BG

Interrupt

RS

DS

Direct Memory

Access (DMA)

controller

CPU

RD RDWR WRAddress Address

Address

select

Data Data

RD WR Address

DMA acknowledge

DMA request

I/O

peripheral

device

Data

Read control

Write control

Address bus

Data bus

Figure 2.8 | DMA controller interconnection with memory, CPU and I/O devices.

Chapter 2.indd 67 4/9/2015 9:49:57 AM

68 CHAPTER 2: COMPUTER ORGANIZATION AND ARCHITECTURE

instruction refers to a result which is yet not

been calculated, that is, in this inst2 tries to
read a source before inst1 writes to it. This
situation arises if the read operation by instruc-

tion takes place before write done by other in-

struction. For example,

inst1: R3 <-R1 + R2
inst2: R4 <-R3 + R2

The first instruction calculates a value by adding

values in registers R1 and R2 and saves the result

in register R3, and the second instruction uses

this saved value to calculate a result for regis-

ter R4. However, in a pipeline, when operands

for the second operation are fetched, the results

from the first instruction will not have been

saved yet, and so there arises a data depend-

ency. It can be said that there is a data depend-

ency with instruction inst2, as it is dependent
on the completion of instruction inst1.

 1. Structural hazards: These result from resource

conflicts when the hardware cannot support

instructions that need simultaneous execution in

pipeling.

 2. Data hazards: They arise when an instruction

depends on the result of a previous instruction and

that result is not yet calculated.

There are three situations in which data hazards

can occur:

�• Read after write (RAW), a true dependency

�• Write after read (WAR), an anti dependency

�• Write after write (WAW), an output dependency

Consider two instructions inst1 and inst2
occurring, with inst1 occurring before inst2 in
the program order.

�• Read after write (RAW): A read after write

(RAW) data hazard is a situation in which an

step → 1

I
1

I
2

I
1

I
1

I
2

I
2

I
3

I
3

I
4

I
4

I
1

I
2

I
3

I
4

I
1

I
2

I
3

I
4

I
3

I
4

2 3 4 5 6 7 8

Segment ↓ Fetch

Decode

Fetch operand

Execute

Write back

(c)

Fetch an

instruction

Fetch an

instruction

Fetch an

operand

Fetch an

operand

Pipeline latch / overhead/delay

One clock

cycle cycle cycle

Pipeline Stages

cycle cycle

One clock One clock One clock One clock

One clock cycle

Execute

instruction

Execute

instruction

Write

result back

Write

result

back

Decode

instruction

Decode

(a)

(b)

Figure 2.9 | (a) Unpipelined processor. (b) Pipelined five-stage processor.
(c) Timing diagram of a five-stage instruction pipeline.

Chapter 2.indd 68 4/9/2015 9:49:58 AM

2.7 INSTRUCTION PIPELINING 69

�• Write after read (WAR): A write after

read (WAR) data hazard refers to a situation in

which there is a problem with concurrent execu-

tion, that is, inst2 tries to write a destination
before it is read by inst1. This situation arises
if write operation completes first by instruction

before the read operation takes place by other

instruction. For example,

inst1: R4 <-R1 + R3
inst2: R3 <-R1 + R2

If a situation arises in which there is a chance

that inst2 may get completed before inst1
(i.e., with concurrent execution) we must note

that we do not store the result of register R3
before inst1 has had a chance to fetch the

operands.

�• Write after write (WAW): A write after

write (WAW) data hazard refers to a situation

in which there is a concurrent execution envi-

ronment, that is, inst2 tries to write an oper-
and before it is written by inst1.This situation
arises if write operation by an instruction occurs

in the reverse order of the intended sequence.

For example,

inst1: R2 <-R1 + R3
inst2: R2 <-R4 + R5

The WB (write back) of inst2 must be delayed
until the execution of inst1.

 3. Control hazards: They arise from the pipelining

of branches and other instructions that change the

value of PC.

Speed up from pipelining

Average instruction time unpipelined

Ave

=

rrage instruction time pipelined

Speed up from pipelining

CPI unpipelined Clock cycle pipelined

CP

=

×
II pipelined Clock cycle pipelined×

Ideal CPI

CPI unpipelined

Pipeline depth

=

Speed up from pipelining

IdealCPI Pipeline depth Clock cycle unp
=

× × iipelined

CPI pipelined Clock cycle pipelined×

Speed up from pipelining

IdealCPI Pipeline depth Clock cycle unp
=

× × iipelined

IdealCPI Pipeline stall Clock cycle pipelined+() ×

Assuming ideal CPI as 1, speed up is:

Speed up from pipelining

Pipeline depth Clock cycle unpipelined

=

×
1++Pipeline stall Clock cycle pipelined() ×

where CPI is cycles per instruction.

Problem 2.7: Consider a four-stage pipeline processor. The number of cycles needed by the four instructions I
1
, I
2
,

I
3
 and I

4
 in stages instruction fetch, decode, operand fetch and execute are shown below. Assume I

2
 is the branch

instruction. Draw the timing space diagram.

S
1

S
2

S
3

S
4

I
1

2 1 1 1

I
2

1 2 3 1

I
3

1 1 1 2

I
4

2 1 3 1

Solution:

STEP → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fetch I
1

I
1

I
2

I
3

− − − − − I
3

I
4

I
4

Decode I
1

I
2

I
2

− − − − − I
3

− I
4

Operand Fetch I
1

I
2

I
2

I
2

− − − I
3

− I
4

I
4

I
4

Execute I
1

− − − I
2

− − − I
3

I
3

− − I
4

Chapter 2.indd 69 4/9/2015 9:49:59 AM

70 CHAPTER 2: COMPUTER ORGANIZATION AND ARCHITECTURE

Problem 2.8: Assume a simple 5-stage pipeline (IF, ID, E, DF, W) each stage takes a single cycle. Assuming there

are no cache misses. How many cycles would the following code take to execute if there is no special hardware to

improve performance in the presence of hazards?

MOV edx,[ecx+100]

MOV ebx,[ecx+104]

ADD edx,ebx

MOV [ecx+108],ebx

MOV eax,[ecx+100]

ADD ebx,eax

Solution: The above code takes 14 cycles to execute, as shown below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

IF ID DF E W

IF ID DF E W

IF ID DF stall E W

IF ID stall DF stall W

IF ID stall DF stall stall E W

IF ID stall DF stall stall stall E W

Problem 2.9: In the below figure, calculate the total execution time after which the result of the fourth task enter-

ing the pipe above ready?

IF ID EX MEM WB

5 ns 5 ns 10 ns 10 ns 5 ns

Solution:

5 10 15 20 25 30 35 40 45 50 55 60 65

Inst1 IF ID EX EX MEM MEM WB

Inst2 IF ID EX EX MEM MEM WB

Inst3 IF ID EX EX MEM MEM WB

Inst4 IF ID EX EX MEM MEM WB

Therefore, the total execution time is 65 ns.

Problem 2.10: What is the mean overhead of a pipe-

line with 8 stages and an execution time per stage of

2 ns?

Solution: The mean overhead = (Stages − 1) ×
Execution time per stage = (8 − 1) × 2 = 7 × 2 = 14 ns

Problem 2.11: How many stages has a pipeline that

achieves a speed of 9.9 for 100 operations?

Solution:

Speed =

+

=

+

=
n k

k n

n

n

n
×

− −1

9 9
90

90 1

11⇒
×

⇒.

()

Problem 2.12: Calculate the time required to perform

1000 operations in a 6-staged pipeline with an execu-

tion time of 3 ns per stage?

Solution:

T k n T
p
= + = + =() () .− × − ×1 6 1 1000 3 3 015 sµ

Problem 2.13: Calculate the mean overhead of a pipeline

with 7 stages and an execution time per stage of 2 ns?

Solution: Mean overhead of pipeline =

()

() ()

k T T

k

k T
p n

× −
− × − ×= = =1 7 1 2 12 ns

Chapter 2.indd 70 4/9/2015 9:50:01 AM

2.7 INSTRUCTION PIPELINING 71

Problem 2.14: Consider a pipeline with 5 stages: IF, ID, EX, M and W. Assume that each stage requires one clock

cycle. Show how the following program segment for adding 2 arrays is processed and compare the clock cycles

needed in non-pipelined system with pipelined system when result of the branch instruction i.e. content of is avail-

able after WB stage.

LOAD R4 #400

L1: LOAD R1, 0 (R4);

LOAD R2, 400 (R4);

ADD R3, R1, R2;

STORE R3, 0 (R4);

SUB R4, R4, #4;

BNEZ R4, L1;

Solution: Number of cycles = [Initial instruction + (Number of instructions in the loop L1) × Number of loop
cycles] × Number of clock cycles/instruction (CPI)

= [1 + (6) × 400/4] × 5 = 3005

Timing diagram for one loop iteration in a pipelined system is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOAD R4 #400 IF ID EX M W

LOAD R1, 0 (R4) IF ID EX M W

LOAD R2, 400 (R4) IF ID stall stall EX M W

ADD R3, R1, R2 IF ID stall stall EX stall M W

STORE R3, 0 (R4) IF ID stall DF stall stall E W

SUB R4,R4, #4 IF ID stall Ex M W

BNEZ R4, L1 IF stall ID stall stall EX M W

Number of cycles in the loop = 15

Number of clock cycles for segment execution on pipelined processor

= 1 + (Number of clock cycles in the loop L1) × Number of loop cycles

= 1 + 15 × 400/4 = 1501

Speedup =

Number of Clock cycles for the program execution on non-pipelined processor

Number of Clock cycles for the segment execution on pipelined processor

=
3005

1501
 = 2 times

Problem 2.15: Consider a 5-stage pipeline with stages: For all following questions we assume that: (a) Pipeline

contains stages: IF (Instruction Fetch), IS (Issue), FO (Fetch operand), E (Execute) and W (Write). (b) Each stage

except E requires one clock cycle and system has 4 Functional Units for floating point operations, FP load/store,

FP addition/subtraction, FP multiplication and FP division, (c) Execution stage for Load/Store operations requires

1 clock cycle, for ADD or SUB operations requires 1 clock cycle, for MUL operation requires 3 clock cycles and for

DIV operation requires 4 clock cycles. All memory references hit in cache. Pipeline has forwarding circuitry for all

FUs, except FP-Load/Store where operand is ready after W-stage.

Chapter 2.indd 71 4/9/2015 9:50:01 AM

72 CHAPTER 2: COMPUTER ORGANIZATION AND ARCHITECTURE

2.8 MEMORY HIERARCHY

The storage media can be categorized in hierarchy accord-

ing to their speed and cost (Fig. 2.10). As we move down

the hierarchy, access time increases and cost per bit

decreases.

Increasing

cost and

speed

Magnetic tapes

Magnetic disks

Main memory

Cache

memory

CPU

registers

Decreasing

cost and

speed

Increasing

size

Decreasing

size

Figure 2.10 | Memory hierarchy.

2.8.1 Main Memory

It is the central storage unit that directly communicates

with the CPU. It is designed using semiconductor-

integrated circuits and needs constant power supply to

maintain the information. It is expensive as compared to

auxiliary storage so it has limited capacity. Example: R/W

(read/write) memory or RAM (random access memory)

and ROM (read only memory). Integrated RAM chips

are available in two modes:

 1. Static RAM: It stores the binary information in

flip flops and information remains valid until power

is supplied. It has faster access time and is used in

implementing cache memory.

 2. Dynamic RAM: It stores the binary information

as a charge on the capacitor. It requires refreshing

circuitry to maintain the charge on the capacitors

after few milliseconds. It contains more memory

cells per unit area as compared to SRAM.

2.8.1.1 Memory Interfacing

If the required memory for the computer is larger

than the capacity of one chip, it is necessary to

connect multiple RAM and ROM chips to a CPU

through the data and address buses (Fig. 2.11). The

low-order address bus lines select the word within a

chip and other lines select a particular chip through

its chip select inputs. Assume a computer system

needs 256 bytes of RAM and 512 bytes of ROM. The

configuration of RAM chip is 128 × 8 and ROM chip
is 512 × 8. The RAM and ROM chips required are
as follows:

Number of RAM chips = 256/128 = 2

Number of ROM chips = 512/512 = 1

Timing diagram of is presented below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LOAD F6, 20(R5) IF IS FO E W

LOAD F2, 28(R5) IF ISD FO E W

MUL F0, F2, F4 IF IS stall stall FO E E E W

SUB F8, F6, F3 IF IS FO E W

DIV F10, F0, F6 IF IS stall stall stall stall FO E E E E W

ADD F6, F8, F2 IF IS FO E W

STORE F8, 50(R5) IF IS FO E W

Identify the hazards in the following instructions from the following list (Structural, Data, Control, RAW, WAR,

WAW, None)

1. MULT F0, F2, F4 and STORE F8, 50(R5)

2. DIV F10, F0, F6 and ADD F6, F8, F2

3. MULT F0, F2, F4 and DIV F10, F0, F6

4. DIV F10, F0, F6 and ADD F6, F8, F2

Solution: 1. Structural; 2. Data; 3. RAW; 4. WAR.

Chapter 2.indd 72 4/9/2015 9:50:02 AM

2.8 MEMORY HIERARCHY 73

The memory interconnection is depicted in the following diagram:

CS
1

CS
2

128 × 8
RAM chip

Bidirectional

data bus

RD

Chip select 1

Chip select 2

Read

Write

Address bus

WR

AD
7

(a)

512 × 8
ROM chip

Address bus

Chip select 1

Chip select 2

AD
9

CS
1

CS
2

Data bus in

output mode only

(b)

Figure 2.11 | (a) RAM chip. (b) ROM chip.

Problem 2.16: A computer employs RAM chips of 256 × 8 and ROM chips of 1024 × 16. The computer system needs
2K bytes of RAM and 4K bytes of ROM and four interface units each with four registers. Draw a memory address

map for the system and give the address range in hexadecimal for RAM and ROM chips.

Solution: RAM 2048/256 = 8 chips; 2048 = 211; 256 = 28

ROM 4096/1024 = 4 chips; 4096 = 212; 1024 = 210

Interface 4 × 4 = 16 registers; 16 = 24

Component Address 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

RAM 0000-O7FF
 0 0 0 0 0 ↔ x x x x x x x x

3 × 8
decoder

ROM 4000-4FFF
 0 1 0 0 ↔ x x x x x x x x x x

2 × 4
decoder

Interface 8000-800F 1 0 0 0 0 0 0 0 0 0 0 0 x x x x

2.8.2 Secondary Memory

Secondary memory, also known as auxiliary memory or

external memory, can store a large amount of data at

lesser cost per byte than the main memory. They are

non-volatile in nature, that is, data is not lost when the

device is powered off. The most common auxiliary stor-

age devices used in consumer systems are flash memory,

optical disks and magnetic disks.

 1. Flash memory: Flash memory is an electronic

non-volatile fastest computer storage device that

can be electrically erased and reprogrammed.

Example: flash drives and solid state drive.

 2. Optical disk: Optical disks are low-cost mass

storage devices from which read and write opera-

tions are performed using laser technology. Optical

disks can store huge amounts of data up to 6 GB

(6 billion bytes). Different types of optical disks

are CD-ROM (compact disk read-only), WORM

(write-once read-many), EO (erasable optical

disks) and DVD.

 3. Magnetic disk: A magnetic disk is composed

of a circular platter made of metal or plastic and

coated with magnetized material on both sides.

Multiple disks are stacked over one another on the

spindle with read/write heads on each surface. Bits

are stored as spots on magnetized surface along

concentric circles called tracks. Tracks are further

divided into wedge-shaped sectors.

 4. Magnetic tapes: It consists of tape made up of

plastic covered with magnetic oxide coating. Tapes

are mounted on reels. Bits are recorded as magnetic

spots on tape along several tracks. R/W heads are

mounted in each track so that data can be recorded

and read as a sequence of characters. Seven or nine

bits are recorded to form a character together with

a parity bit. Data is recorded in contiguous blocks

separated by inter-record gaps.

2.8.3 Cache Memory

It is a special memory that compensates the speed

mismatch between processor and main memory access

time. It temporarily stores frequently used instructions

and data for faster processing by the CPU. Cache hit

ratio is calculated to measure its performance. If a data

Chapter 2.indd 73 4/9/2015 9:50:02 AM

74 CHAPTER 2: COMPUTER ORGANIZATION AND ARCHITECTURE

2.8.4.1 Direct Mapping

In this technique, each block from the main memory has

only one possible location in the cache memory. In this

example, say a block from main memory maps onto a

block (i mod 128) of the cache. If there are 2
n
 words in the

cache memory and 2
m
 words in the main memory, then

m-bit main memory address is divided into two fields: n

bits for index field to access the cache and (m − n) bits
for the tag field. Each word in cache consists of the data

and the associated tag. Whenever a new block is brought

into cache, tag is stored along with data bits. Index field

is further divided into block and word if there are mul-

tiple words (say k) in a block. The lower k bits select one

of the k words in a block known as word field. The block

field is used to distinguish a block from other blocks.

Tag (m − n) bits Index (n bits)

Tag (m − n) bits Block (n − k) bits Word (k bits)

When CPU generates a memory request, the block field

points to a particular block location in the cache. The

high-order tag field is compared with tag bits associated

with that cache location. If they match, then the desired

word is in that block of cache. If there is no match, then

the block containing the required word must be loaded

to cache first (Fig. 2.13).

Main memory address Main memory

Cache memory

Tag

5 7 4

Tag 0

(5 bits)

Block

Block 0

Block 0

Block 1

Block 127

Block 127

Block 128

Block 255

Block 3968

Block 4095

Tag 3 Data

Data

Word

≈ ≈ ≈

≈ ≈

≈≈

≈

Figure 2.13 | Direct mapped cache organization.
The demerit of direct mapping is that hit ratio drops

 considerably if two or more words having same index and

different tags are accessed consecutively one after the other.

2.8.4.2 Fully Associative Mapping

In this technique, a main memory block can be placed

into any cache block location. It is the most flexible cache

organization. The main memory address is divided into

item requested by the CPU is found in cache it is called

hit otherwise it is a miss. Hit ratio is defined as ratio

of number of hits divided by total CPU references to

memory.

Hit ratio ()

Number of hits

Number of hits Number of misses

h =

+

Average access time Hit ratio

Hit ratio

=

+ +

×
−

T

T T

c

c m
()()1

where T
c
 is cache access time and T

m
 is the main memory

access time.

2.8.3.1 Elements of Cache Design

The various elements of cache design are as follows:

 1. Cache size: It should be optimum, small enough

to keep average cost per bit close to the main

memory and large enough to keep overall average

access time close to the cache memory.

 2. Mapping function: It describes the mapping of

main memory block to cache block. There are three

different mapping techniques: fully associative, direct

mapped and set associative cache organization.

 3. Replacement algorithm: When a new memory

block is required in cache, one of the existing blocks

must be replaced by a new block. Example: FIFO

(first in, first out), LRU (least recently used).

 4. Write policy: Cache memory follows write-

through and write-back updating policies. In

write-through policy, cache controller copies data

immediately to main memory as data is written in

cache. The data in main memory is always valid,

but this approach reduces system performance. In

write back, update to memory block is delayed until

the updated cache block is replaced by a new block.

2.8.4 Cache Mapping Techniques

The cache memory can store a reasonable number of

blocks, but this number is always small as compared to

blocks in the main memory to keep average cost per bit

low. The correspondence between memory blocks and

cache block is specified by the following mapping tech-

niques. Consider a cache memory consisting of 2K words

with 128 blocks of 16 words each. Number of bits required

to address a cache block is 11 bits. Main memory has 64K

words and bits required to address is 16 (Fig. 2.12).

Main memory

64K × 8 Cache memory

2K × 8

CPU

Figure 2.12 | Cache mapping example.

Chapter 2.indd 74 4/9/2015 9:50:04 AM

2.8 MEMORY HIERARCHY 75

two fields: word and tag. The associative memory stores

both the address (tag) and data of the main memory.

Figure 2.14 shows the mapping of different blocks into

cache. High-order 12 bits of CPU address is placed in the

argument register of the associative memory and com-

pared to tag bits of each block of the cache to see if the

desired block is present. Once the desired block is pres-

ent, 4-bit word is used to extract necessary word from

the cache.

Main memory address

Main memory

Cache memory

Tag

12 4

Date
Tag 0

(12 bits)

Word
Block 0

Block 1

Block i

Block 4095

Figure 2.14 | Associative mapped cache organization.

It is necessary to compare high-order bits of main

memory with all tag bits corresponding to each block to

find whether a given block is present in cache, so it is

the most expensive.

2.8.4.3 Set-Associative Mapping

As fully associative mapping is an expensive solution and

direct mapping does not allow words with same index

but different tag to exist in cache, set associative map-

ping is a combination of both. It is an improvement over

direct mapping where contention problem is solved by

having several choices for block placement. The figure

below shows two-way set associative cache because each

block of main memory has two choices for block place-

ment in cache. A block i in the main memory can be

in any block belonging to set i mod S of cache, where

S is the number of sets. The block 0, 64, 128, … and so

on of main memory can map into any of the two blocks

in set 0.

The main memory address is divided into three fields:

low-order bits for word field, set field to determine the

desired block from all possible sets and high-order bits

for the tag field. Each word in cache consists of data and

the associated tag.

Tag Set Word

When the CPU generates a memory request, the set

field points to a particular set of the cache which might

contain the desired block. The high-order tag field is

then compared associatively to the tags corresponding

to the matched set. If a match occurs, the corresponding

word is read from cache else main memory is referred

and block containing that word is brought into cache for

future reference (Fig. 2.15).

Tag

Set 0

Set 63

6 6 4

Tag 0

6 bits

WordSet

Tag 2

Tag 3 Tag 61Date Date

Data Data

≈ ≈

Main memory address

Main memory

Cache memory

Block 0

Block 1

Block 63

Block 62

4095

4033

Tag 0

Tag 63

Figure 2.15 | Set-associative mapped cache organization.

Problem 2.17: Consider a memory hierarchy

system containing a cache, a main memory and a

virtual memory. Assuming, cache access time of 5

ns, and 80% hit ratio . The access time of the main

memory is 100 ns, and it has a 99.5% hit rate.

The access time of the virtual memory is 10 ms.

Calculate the average access time of the memory

hierarchy.

Solution: As we know, the hit rate of virtual memory

is 100%, the average access time for requests that

reach the main memory as (l00 ns × 0.995) + (10 ns ×
0.005) = 50,099.5 ns. Given this, the average access

time for requests that reach the cache is (5 ns × 0.80) +
(50,099.5 ns × 0.20) = 10,024 ns.

Problem 2.18: A computer uses RAM chips of 1024 ×
1 capacity.

(a) How many chips are needed to provide a memory

capacity of 16K bytes?

(b) How many of these lines will be common to all

chips?

Solution:

(a) Chips are needed to provide a memory capacity of

16K bytes = 16 × 8 = 128 chips
(b) Using 14 address lines (16K = 2

14
), we have 10

lines specifying the chip address which is common

to all chips.

Chapter 2.indd 75 4/9/2015 9:50:04 AM

