General Aspects

Hydrology is the science of occurrence, circulation and distribution of water of the earth and its atmosphere.

Interception: Short term retention of rainfall by vegetation.

Infiltration: Movement of water into the soil of the earth's surface.

Percolation: Movement of water from one soil zone to lower soil zone.

Hydrological Budget Equation

E) ENTRI

Inflow – Outflow = storage

 $\mathbf{P}-\mathbf{R}-\mathbf{G}-\mathbf{E}-\mathbf{T}=\Delta\mathbf{S}$

P = Precipitation

R = Runoff

G = Net Groundwater flow

 $\mathbf{E} = \mathbf{Evaporation}$

T = Transpiration

 ΔS = Net increase in storage

Volume of water in a phase Residence time = Average slow rate in the phase

Instruments used in measurement				
1. Relative humidity	Psychrometer			
2. Humidity	Hygrometer			
3. Temp and Humidity	Thermohygrometer			
4. Intensity of Radiation	Pyrheliometer			
5. Wind speed	Anemometer			
6. Rainfall depth	Ombrometer/Pluviometer			
7. Transpiration	Phytometer			

10.4 Civil Engineering

8.	Evapotranspiration	Lysimeter
9.	Evaporation	Atmometer
10.	Hydraulic conductivity	Permeameter
11.	Infiltration capacity	Rainfall simulator

Isopleth: A line drawn on map along which the value of a particular phenomenon is uniform.

	Name	Isopleth
1.	Isobar	Pressure
2.	Isobath	Depth in sea
3.	Isobront	Thunderstorm
4.	Isohaline	Salinity
5.	Isohels	Sunshine
6.	Isohyets	Rainfall
7.	Isonif	Snowfall
8.	Isoryme	Frost
9.	Isotherm	Temperature
10.	Isopleths	Evapotranspiration

Fall of water in **various forms** on the earth from the clouds.

Rain guage Network density = Area covered per guage

As per I.S : 4987 – 1968	One station per
In Plains	520 km ²
Moderately Elevated Area	$260 - 390 \text{ km}^2$
Hilly Area's	130 km ²

10.6 Civil Engineering

Note:

E) ENTRI

As per WMO, 10% of the rain guage stations should be self recording type.

Adequacy of Rain Guage Stations

1. Mean Rainfall $P_m = \frac{P_1 + P_2 + \dots + P_n}{n}$

 P_1 , P_2 = rainfall recorded at stations 1 and 2 etc.

2. Standard deviation

$$\sigma_{n-1} = \sqrt{\frac{(\mathbf{P}_1 - \mathbf{P}_m) + (\mathbf{P}_2 - \mathbf{P}_m)^2 + \dots + (\mathbf{P}_n - \mathbf{P}_m)^2}{(n-1)}} \quad \text{if } n < 30 \text{ then } \sigma_{n-1} \\ \text{otherwise} \quad \sigma_n$$

3. Coefficient of variation

$$C_v = \frac{\sigma_{n-1}}{P_m}$$

tions
$$N = \left(\frac{C_u}{\varepsilon}\right)^2$$

4. Optimum number of stations N =

 ε = Allowable degree of error

Generally $\epsilon \lt 0.1$

Normal Precipitation: Average Value of rainfall **30 yrs** data of particular date or month.

Average Annual Precipitation: Average Value of annual rainfall values for last **35 yrs**.

Estimation of Missing Data

1. Arithmetic mean method: If normal precipitation of the selected stations is **within** 10% of that of station with missing data

$$P_x = \frac{P_1 + P_2 + ... + P_n}{n}$$

 Normal ratio method: If normal precipitation of the selected station is **beyond** 10% of that of station with missing data.

$$\frac{\mathbf{P}_x}{\mathbf{N}_x} = \frac{1}{n} \left(\frac{\mathbf{P}_1}{\mathbf{N}_1} + \frac{\mathbf{P}_2}{\mathbf{N}_2} + \dots + \frac{\mathbf{P}_n}{\mathbf{N}_n} \right)$$

P = Precipitation N = Normal precipitation PRECIPITATION AND ITS MEASUREMENT 10.7

Inconsistency of Records: Corrected by double mass curve in which **previous records** are made consistent with present day environmental and land use conditions.

Depth Area Duration Curve

$$\overline{\mathbf{P}} = \mathbf{P}_o \ e^{-\mathbf{K}\mathbf{A}^n}$$

$$\overline{\mathbf{P}} = \text{Average depth}$$

$$\mathbf{P}_o = \text{Highest storm at storm centre}$$

$$\mathbf{A} = \text{Area}$$

E ENTRI

10.8 Civil Engineering

Abstractions are Evaporation (E), Transpiration (T), Interception (I), Depression storage (DS) and Infilteration (IL).

Evaporation:

$E_{L} = 0$	C (e _w -	$-e_a$)	Dalton's	law
-------------	---------------------	----------	----------	-----

 $E_{L} = Rate of Evaporation (mm/day)$

 e_w = Saturation vapour pressure

 e_a = Actual vapour pressure

Note:

E) ENTRI

1. Evaporation increases with decrease in atmospheric pressure.

2. Evaporation from sea water is less than fresh water due to salinity

3. Highest rate of evaporation from deep water bodies in winters

Measurement of Evaporation

▼		
Evaporimeter	Empirical Formulae	Analytical Methods
Concept of pan coefficient C_p Lake evaporation = $C_p \times pan$ evaporation $C_p = 0.7$ class A Land pan = 0.8 ISI/US as floating pan	$ \begin{split} & \mathbf{E}_{\mathrm{L}} & \\ & = \mathrm{km} \; (e_w - c_a) \bigg(\frac{1 + u_9}{16} \bigg) \\ & u_9 = \mathrm{monthly} \; \mathrm{mean} \\ & \mathrm{wind} \; \mathrm{velocity} \; \mathrm{at} \; 9\mathrm{m} \\ & \mathrm{above \; the \; ground} \\ & \mathrm{km} = 0.36 \; \mathrm{Large} \; \mathrm{deep} \\ & \mathrm{water} \\ & \mathrm{km} = 0.5 \; \mathrm{Shallow, small} \\ & \mathrm{water} \\ & u_\mu = \mathrm{ch}^{1/7} \end{split} $	Water Budget Equations (Hydrological continuity) Energy Balance (law of conservation of energy) Mass transfer (Theories of turbulent mass transfer)

Note:

Lake evaporation can be reduced by reducing the surface area, by providing mechanical cover or by chemical films of **cetyl Alcohol** (Hexa decanon) or **stearyl Alcohol** (octadecanol)

Evapotranspiration

10.10 CIVIL ENGINEERING

- Estimation of **PET** is done by Penman's Equation and Blaney Criddle formula
- Penman's Equation is based on energy balance and mass transfer
- Blaney-criddle formula

$$PET = 2.54 \text{ k} \Sigma \frac{P_h T_f}{100}$$

K = Empirical coefficient

- \mathbf{P}_{h} = Monthly % of annual day time hrs
- $T_{\mbox{\tiny f}}$ = Mean monthly temp in $^\circ F$

Horton's Infiltration Curve

Infiltration Indices

ABSTRACTIONS FROM PRECIPITATION	U .'		
---------------------------------	-------------	--	--

φ Index	W-Index
Average rainfall above which the	It excludes DS and Interception
rain fall volume is equal to run	loss
off volume	$W = \frac{IL}{t} = \frac{P - Q - S}{t}$

(a) Rainfall Intensity – ϕ Index = Effective Rainfall Intensity

(b) Rain fall Intensity – W-index = Effective Rain fall Intensity

+ Depression Storage + Interception

Hydrograph: Discharge in a stream plotted against time chronologically

Note:

E) ENTRI

Long term hydrograph's are used in calculating surface water potential of stream, Reservoir studies and drought studies.

Note:

Influent Streams are those which raise the "Ground water table" and become ephemeral while **Effluent streams** are those in which water comes from nearby high "Ground water table".

Rainfall Runoff Relationship

$$R = aP + b$$

$$a = \frac{N \Sigma PR - (\Sigma P) (\Sigma R)}{N \Sigma P^{2} - (\Sigma P)^{2}}$$

$$b = \frac{\Sigma R - a \Sigma P}{N}$$

$$b = \frac{\Delta R - a \Sigma P}{N}$$

Rainfall (P)


```
RUNOFF 10.13
```

Coefficient of correlation

$$r = \frac{\mathbf{N} \Sigma \mathbf{P} \mathbf{R} - (\Sigma \mathbf{P}) (\Sigma \mathbf{R})}{((\mathbf{N} \Sigma \mathbf{P}^2 - (\Sigma \mathbf{P})^2) (\mathbf{N} \Sigma \mathbf{R}^2 - (\Sigma \mathbf{R})^2)}$$

Khosla's formula for **Monthly** Runoff: Runoff = Rainfall – losses Losses = 0.48 (mean monthly Temp (T_m)) It is indirectly based on **Water -budget equation**

Drought

Index of wetness = $\frac{\text{Rainfall in a year}}{\text{Average Annual rainfall}} \times 100$					
% Rain deficiency = 100% – Index of wetness					
Droughts (Deficiency in precipitation)					
¥	¥		¥		
Meterological	Hydrological	Agric	ulture		
As per IMD N	larked depletion of urface water and	Extreme crop stress and wilting conditions			
ground water		Aridity Index = $\frac{PET - AET}{PET}$			
		PET = Potentia	ıl		
		Evapotr	anspiration		
		AET = Actual			
\checkmark		Evapotr	anspiration		
Decrease from normal		AI Anomaly	Classification		
		0–25	Mild		
precipitation		26-50	Moderate		
< 25%	No drought	>50	Severe		
26 - 50%	Moderate				
> 50%	Severe				

Note:

Drought prone area is an area in which probability of drought is between 0.2 to 0.4. If probability is greater than 0.4 then its chronically drought prone area.

🗈 ENTRI

Stage : Height of the water surface in the river above some arbitrary datum

Current meter: Mechanical device to measure velocity of stream. It is caliberated in Towing Tank.

- $V = a N_s + b$
- $N_s = Number of revolutions per sec$

a, b =Current meter constants.

Velocity distribution in the vertical section across stream is **logarithmic**

 A_i , $P_i \Rightarrow$ Area perimeter of intermediate Sections

R = A/P

 $DE \rightarrow Recession Falling limb \rightarrow depends on catchment characteristics$

Shape of the flood hydrograph generally depends on (a) catchment shape (b) Size of catchment (c) Slope (d) drainage density (e) Rainfall intensity (f) Rainfall duration (g) Distribution of rainfall (h) Direction of storm movement

Е

Time

Discharge

Unit Hydrograph: A hydrograph of direct runoff resulting from 1 cm of effective rain fall applied uniformly over a basin area at a uniform rate during a specified period of time (D-hr)

Assumptions of Unit hydrograph: Time Invariance and Linear Response

Limitations : Area between 2 km^2 to 5000 km^2 , No large storage, precipitation in the form of rainfall only.

S-Curve hydrograph: Hydrograph of direct runoff resulting from a continuous effective rainfall of uniform intensity $\frac{1}{D}$ cm/hr. S-curve hydrograph attains an equilibrium discharge (Q_e) approximately at the end of base period of the unit hydrograph

 $Q_e = A \frac{1}{D} Km^2 - cm/hr = 2.778 \frac{A}{D} m^3/sec$ $A = Area (km^2)$ D = Duration (hr)

Hydrology 10.17

Synthetic unit hydrograph (SUH) : It is made for ungauged basin area's Basin parameters and unit hydrograph parameters of the ungauged, **hydrometeorologically homogenous** area are selected to basin parameter and unit hydrograph of gauged stations.

Three parameters for development of SUH;

 $W_{75},\,W_{50}=width\,of\,SUH\,at\,75\%\,and\,50\%\,of\,peak\,discharge$ Instantaneous Unit hydrograph: Unit hydrograph of Infinitesimal duration

• Independent of rainfall characteristics and depends only on catchment characteristics

$$u(t) = \frac{1}{i} \frac{d\mathbf{S}}{dt}$$

u(t) =Ordinate of instantaneous hydrograph

i =Intensity of rainfall

S = Ordinate of S-curve

• Ordinate of IUH is the slope of S-curve of intensity 1cm/hr

Note:

ED ENTRI

 $\begin{array}{l} \mbox{Unit hydrogarph} \rightarrow \mbox{Sherman} \\ \mbox{Synthetic unit hydrograph} \rightarrow \mbox{synder} \\ \mbox{Instantaneous unit hydrograh} \rightarrow \mbox{Clark model based on Time Area} \\ & \mbox{Histogram} \end{array}$

Standard Project flood (SPF): Flood from most severe combination of the meteorological and hydrological conditions excluding extremely rare combination.

Maximum Project flood (MPF): It includes extremely rare and catastrophic floods.

Probable maximum precipitation (PMP): Greatest or extreme rainfall of a given duration that is physically possible over a station.

Selecting Design Flood: Central Water Commission

Spillway for projects with Storage > 60 M m ³	РМР
Permanent barrage and minor dams with storage $< 60 \text{ M} \text{ m}^3$	SPF
Pick up wier's	Return period of 100 or 50 year's
Aqueducts \longrightarrow Waterways \rightarrow Foundation free board	T = 50 years T = 100 years

Emperical Formula's for flood peak

 $(a)\;\; {\rm Dicken}\; {\rm Formula}\; {\rm used}\; {\rm in}\; {\rm Central}\; {\rm and}\; {\rm Northern}\; {\rm parts}\; {\rm of}\; {\rm the}\; {\rm country}.$

 $Q_{\rm p} = C_{\rm D} \, A^{3/4} \quad Q_{\rm p} \rightarrow m^3 / sec \quad C_{\rm D} \rightarrow 6 \ to \ 30 \quad A \rightarrow km^2$

(b) Ryves Formula used in Tamil Nadu, Parts of Andhra Pradesh and Karnataka

 $Q_{_{\rm P}} = C_{_{\rm R}} \, A^{_{2/3}} \quad C_{_{\rm R}} \to Ryves \ coefficient$

(c) Inglis Formula used in western ghats of Maharastra

$$Q_{\rm P} = \frac{124 \text{ A}}{\sqrt{A + 10.4}}$$

Time of Concentration, by Kirpich Equation

$$t_c = 0.01947 \left(\frac{\mathrm{L}}{\sqrt{\mathrm{S}}}\right)^{0.77}$$

L = Maximum length of travel by water S = Slope of Catchment

Note:

Rational formula is found to be suitable for peak flow prediction in small catchment up to 50 km^2 in area.

Estimation of Design Flood for a particular return period: Gumble's method

• It is based on **extrapolation** for large return period

$$X_{T} = X + K \sigma_{n-1}$$

$$X_{T} = \text{Value of variate of return period T}$$

$$\overline{X} = \frac{\Sigma x}{n}$$

$$n = \text{Number of years of record}$$

$$\overline{(\Sigma (x - \overline{x})^{2})^{2}}$$

$$\sigma_{n-1} = \sqrt{\frac{\sum (x-x)^2}{n-1}}$$

K = Frequency factor

$$\mathbf{K} = \frac{\mathbf{y}_{\mathrm{T}} - \overline{\mathbf{y}}_{n}}{\mathbf{S}_{n}}$$

10.20 CIVIL ENGINEERING

- $y_{\rm T}$ = Reduced variate
- $y_{\rm T} = -\ln\ln\left(\frac{{\rm T}}{{\rm T}-1}\right)$ \overline{y}_n = Mean of reduced variate
- $S_n = Std.$ deviation of reduced variate

 $y_n = 0.577$ $S_n = 1.2825$ For n > 50

Confidence Limit

$\begin{aligned} \mathbf{X}_{1/2} &= \mathbf{X}_{\mathrm{T}} + f(\alpha) \mathbf{S}_{e} \\ f(\alpha) &= \text{function of confidence probability '}\alpha' \end{aligned}$						
α in percentage 50 68 80 90 95 99						
f (α)	0.674	1.0	1.282	1.645	1.96	2.58

\mathbf{S}_{e} = Probable error =	$\frac{b\sigma_{n-1}}{\sqrt{n}}$
$b = \sqrt{1 + 1.3 \ k + 1.1 \ k}$	2

where

k =frequency factor

Risk-Reliability

Probability of exceedence is p

Return period T = $\frac{1}{p}$

Probability of Non occurrence q = 1 - p

Risk \rightarrow Probability of exceedence at least once = $1 - q^n$.

Reliability \rightarrow Probability of Non-occurrence = q^n .

Probability of exceedence of *m* times in *n* years = ${}^{n}c_{m}p^{m}q^{n-m}$

Probability of exceedence of exactly 1 time in *n* years = ${}^{n}c_{1}pq^{n-1}$

Flood Routing

ED ENTRI

It is the technique to determine the flood hydrograph at a section of a river by utilizing the data of flood flow at one or more upstream sections.

10.22 CIVIL ENGINEERING

ED ENTRI

Reservoir Routing: It is done by

- 1. Standard 4th order Runge-kutta method (Numerical method)
- 2. Good rich method
- 3. Modified Pul's method

$$\left(\frac{\mathbf{I}_1 + \mathbf{I}_2}{2}\right) \Delta t - \left(\frac{\mathbf{Q}_1 + \mathbf{Q}_2}{2}\right) \Delta t = \mathbf{S}_2 - \mathbf{S}_1$$

In an uncontrolled outlet of a level pool routing following inflow and outflow hydrographs will be achieved

Attenuation: Reduction in peak Lag: Time difference in two peaks

Note:

- → The peak of outflow hydrographs will occur at the point of intersection of inflow and outflow hydrograph.
- → Storage is max. at point of intersection.

Channel Routing: Storage is function of both inflow and outflow

- $S = K [x I^m + (1 x)Q^m]$ Muskingum equation
- x = weighing factor, depends on shape of wedge
- k = Storage time constant, has dimensions of time, and approximately equal to the time of travel of flood wave through channel reach.
- $I = Inflow \quad Q = Outflow$
- m = 0.6, for artificial channel

m = 1 for natural channel.

$$S_2 - S_1 = k[x (I_2 - I_1) + (1 - x)] \qquad \dots (1)$$

$$\mathbf{S}_{2} - \mathbf{S}_{1} = \left(\frac{\mathbf{I}_{2} + \mathbf{I}_{1}}{2}\right) \Delta t - \left(\frac{\mathbf{Q}_{2} + \mathbf{Q}_{1}}{2}\right) \Delta t \qquad \dots (2)$$

$$\begin{array}{l} \mbox{From 1 and 2,} \\ Q_2 = C_0 \ {\rm I}_2 + C_1 {\rm I}_1 + C_2 {\rm Q}_1 \\ \\ C_0 = \frac{-kx + 0.5 \Delta t}{{\rm K} - {\rm K} x + 0.5 \Delta t} \\ C_1 = \frac{{\rm K} x + 0.5 \Delta t}{{\rm K} - {\rm K} x + 0.5 \Delta t} \\ C_2 = \frac{{\rm K} - {\rm K} x - 0.5 \Delta t}{{\rm K} - {\rm K} x + 0.5 \Delta t} \\ \end{array}$$

Trap efficiency of Reservoir: Ability of reservoir to trap and retain incoming sediments.

Trap efficiency =
$$f\left(\frac{\text{Capacity}}{\text{Inflow}}\right)$$

