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CHAPTER 1

ENGINEERING MECHANICS

Engineering mechanics is the branch of scientific analysis that describes and predicts the behavior of a stationary
or moving body under the action of forces. In general, the subject is subdivided into three branches: rigid-body
mechanics, deformable-body mechanics, and fluid mechanics. Present context is concerned with the mechanics of
rigid-bodies that forms the foundation of mechanical devices. It is based on the assumption that the bodies are
perfectly rigid. This is studied in two parts:

1. Statics  Statics is concerned with mechanics of stationary systems. It requires the study of equilibrium
stationary structures under forces and torque systems.

2. Dynamics Dynamics is concerned with the systems variant with time, and deals with the motion resulting
from unbalanced force or torque systems. Dynamics is subdivided into two branches:

(a) Kinematics Kinematics describes the motion of bodies without reference to the forces which either cause
the motion or are generated as a result of motion. The subject is also referred to as the ‘geometry of motion’.

(b) Kinetics Kinetics deals with the motion of rigid bodies under the action of forces.

1.1 FORCE The SI unit of force is Newton (N), defined as the force
acting on mass of 1 kg which produces an acceleration
of 1 m/s%

Force is a vector quantity which tends to change the state
of a body. It means force is capable to bring a static 1.1.1 Characteristics of a Force
body into motion or a moving body into static position. o
The study of mechanics encounters various types of force
systems. The forces meeting at one point constitute a
concurrent force system. The forces lying in one plane
constitute a coplanar force system.

Let a force F acts on a rigid body placed on a rougp
horizontal plane. Depending upon the magnitude of F',
the body can start moving in a straight line, if the line
of action of F passes through the center of gravity of the
body. This motion is called translation. If line of action
does not pass through the center of gravity of the body,
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the force will also result into rotation of the body. Thus,
a force is characterized by its magnitude, line of action,
direction and point of application.

1.1.2 Resolutions of a Force

Force is a vector quantity, therefore, has its resolved
components in given directions, which are called resolu-
tions. Engineering problems frequently need resolution
of a force in orthogonal directions. Consider a force F'
in a x—y plane at an angle 6 with the x-axis [Fig. 1.1].

y 1
|
A |
— 1 I
1
1 0 !
1z N S
F, z
Figure 1.1 | Resolution of a force.

Magnitudes of the resolved parts of force F' along x
and y directions are the given by

F, = Fcosf
T
F, = F cos (579)

Thus, the resolved part of a given force in a given di-
rection is equal to the magnitude of the force multiplied
with the cosine of the angle between the line of action
of the force and the direction.

Using the resolved parts, a force can be presented in
vector form: N R A
F =Fpi+Fyj

where i and j are the unit vectors | in z and y directions,
respectively. Magnitude of force F' can be found as

F=\/F2+F?

The concept of resolved components is used to
add two or more forces by summing their z and y
components:

RI:ZFw
Ry=ZFy

where R, and R, are the resolved components of the
resultant force expressed as

R = R,i+R,j

1.2 MOMENT OF A FORCE

1.2.1 Definition

Moment of a force about a point or axis is the measure
of the tendency of the force to cause a body to rotate
about the point or axis. It is quantified by the product
of the force and the perpendicular distance of its line
of action from the point. This perpendicular distance is
called arm of the moment.

Consider a force I acting on a rigid point. Moment
of this force can be determined about a point O situated
at distance 7 from line of action [Fig. 1.2].
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Moment of a force.

Figure 1.2

The moment M o of the force about point O is defined
as the cross product of force vector and distance vector:

-

Mo=7xF (1.1)

The direction of M. o is determined by the right hand
rule. Magnitude of the moment is given by

Mo =rFsinf (1.2)

where 6 is the angle between 7 and .

The curl or sense of rotation can always be deter-
mined by observing in which direction the force would
“orbit” about the fulcrum point O. The point is referred
only for a two dimensional case, however, the moment
always acts_)about an axis perpendicular to the plane
containing F' and 7, and this axis intersects the plane
at the point O.

Eq. (1.2) indicates that a force will not contribute a
moment about a specified axis if line of action of the
force is parallel to the axis (0 = 0).

1.2.2 Resultant Moment of a System of Forces

Let a system of forces acts upon a rigid body. Resultant
moment of the forces about a point is determined by
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the vector addition of the moments of individual forces
about that point:

]\—jR = Z(? X F))
1.2.3 Varignon’s Theorem

According to Varignon’s theorem!, the algebraic sum of
moments of several concurrent forces about any point is
equal to the moments of their resultant about the same
point.

Varignon’s theorem can be stated alternatively as the
moment of a force about any point equal to the sum of
moments of its components about that point.

For the system of coplanar concurrent forces shown
in Fig. 1.3, the Varignon’s theorem is written as

Fr=Fx+Fyy

Figure 1.3 | Varignon’s theorem.

1.2.4 Principle of Moments

The principle of moments is a corollary derived from
the Varignon’s theorem, which states that if a system of
coplanar forces is in equilibrium, then the algebraic sum
of their moments about any point in their plane is zero.

1.2.5 Moment of a Couple

Two equal but opposite parallel forces having different
lines of action form a couple?. The resultant force of the

1Pierre Varignon (1654-1722) was a French mathematician. He
was a friend of Newton, Leibniz, and the Bernoulli family. His
principal contributions were to graphic statics and mechanics.
Varignon’s theorem is a statement in Euclidean geometry by him
that was first published in 1731.

2Moment is created by single force, while a couple is created by
equal and opposite forces. Interestingly, a single force acting on a
body creates a reaction in opposite direction from the body, thus
constitutes a couple.
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two forces in any direction is zero. However, the only
effect is to produce a tendency to rotate a body upon
which the couple act because sum of the moments of the
two forces about a given point is not zero.

Let two forces F and _F be situated at distances 71
and 7’5 from a point O [Fig. 1.4].

Figure 1.4

Moment of a couple.

The moment of the couple M is given by
MZFHXF)—F?QX(—F))
= (?1 — ?2) X F)

=7xF (1.3)

—>

where 7 (= 71— 732) is the distance vector between
the lines of action of the parallel forces This vector
is called arm of the couple. Dlrectlon of M is a vector
perpendicular to 7 and force .

Equation (1.3) shows that moment of the couple is
equal to the vector product of either force of the couple
with the arm of the couple. The moment of a couple is
independent of 1 or r5 vectors, therefore, point O can be
chosen arbitrarily. It means that moment of a couple is a
free vector, unlike the moment of a force which requires
a definite axis.

1.3 EQUIVALENT SYSTEM OF A
FORCE

A force tends to cause translation and rotation of a body.
This depends upon the magnitude, direction, and line of
action of the force with respect to the center of gravity of
the body. A body can be subjected to a system of forces.
The problem is generally simplified by determining an
equivalent system of resultant force and moment that
can produce the same effect of translation and rotation
with respect to any point on the body.

Consider a body subjected to a force F at point P.
The force is to be moved to another point O without
changing the effect on the body [Fig. 1.5].

Thls can be done by applying equal and 0pp051te
forces ' and —F at point O. Thus, the original force F
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F

Figure 1.5

at point A and force ~Fat point O form a couple whose
moment depends upon the distance vector 7 between
point O and P, 111_{9 a free vector. Thus, an equivalent
system of a force F' acting at point A is found at point

0.

1.4 SINGLE RESULTANT FORCE

Consider a situation when a rigid body is subjected
to a system of forces and couple moments [Fig. 1.6].
The system of forges and moments can be reduced to
a 1resultanE+ force F'p acting at point O, and resultant
moment Mp by the vector sum of the respective
quantities:

A=Y F

F
Te=0

As a special case, if M r and I r are perpendicular
to each otlg}er7 the si‘guation can be further simpliﬁed‘k»)y
replacing F'r and M at point O by a single force F'r
acting at a distance d from point O. The distance d is
given by following expression:

M
d==-2

Fr
This effect is the reverse of determining an equivalent
force of a system. This observation can be applied in
the following special cases:

1. Concurrent Force Systems The forces meeting at
one point constitute a concurrent force system.
Thus, there is no resultant couple moment, and
the resultant force acts at a specific point O only.

2. Coplanar Force Systems The forces lying in one
plane constitute a coplanar force system. Such a
system can be replaced by the resultant coplanar
force F' acting at a point O, and the resultant

F
F: M

-

=
7 xF

Equivalent system of a force.

moment Mp along an axis passing through point
O and normal to the plane of forces. This can be
further simplified by a resultant force Fr acting at
a distance d = Mg /Fg from point O.

1.5 EQUILIBRIUM OF RIGID BODIES

The concept of equilibrium of rigid bodies is derived
from the Newton’s first law of motion, which states that
if the resultant force acting on a particle is zero, the
particle will remain at rest (if originally at rest) or will
move with constant speed in a straight line (if originally
in motion). Thus, a body is considered in equilibrium
when its condition (motion or rest) is unaffected by the
forces acting on it. For example, a body moving with a
constant acceleration caused by applied force is said to
be in equilibrium.

1.5.1 General Condition

The necessary and sufficient conditions for complete
equilibrium of a rigid body under a force system are
as follows:

1. For any system of forces keeping a body in
equilibrium, the algebraic sum of forces, in any

direction is zero: N
Y F=0 (1.4)

2. For any system of forces keeping a body in
equilibrium, the algebraic sum of the moments of
all the forces about any point in their plane is zero:

S M=o (1.5)

These are the fundamental equations of statics, which
are essentially used in determining the unknown forces
and reactions acting on a body under equilibrium. In
this reference, a problem is called statically determinate
if the number of unknown reactions is equal to the



1.5 EQUILIBRIUM OF RIGID BODIES 7

Figure 1.6 | Single resultant force.

number of equations of equilibrium. The problem is
statically indeterminate if the number of unknown
reactions is less than the number of equations of
equilibrium.

1.5.2 Free Body Diagrams

Two bodies in contact exert forces on the other. One
of these force is called action, and the other is called
reaction. The concept of free body is derived from the
Newton’s third law of motion which states that action
and reaction are always equal and opposite, and when
bodies are smooth, they are normal to the surfaces in
contact.

Equilibrium of a body can be examined using Eqgs.
(1.4)—(1.5). This requires knowledge of all the forces
acting on a body. This is achieved by drawing the body’s
free body diagram. A diagram showing the forces acting
on a body, together with reactions at the supports but
not showing the supports is called a free body diagram.
A body so isolated from its supports or surrounding is
called a free body. Thus, a free body diagram shows all
active and reactive forces acting on the body.

For example, consider a body resting on a surface
[Fig. 1.7]. Its weight W acts downward which creates a
normal reaction ﬁn at the surface. If a force F is applied
to move the body in the‘> horizontal direction, the surface
exerts a fric‘g)on forcg) F’ that acts opposite to it. The
resultant of R,, and F’ is R.

In the free body diagram, the weight W and force_f:
are to be included along with the resultant reaction R.

Internal forces of a body always occur in equal but
opposite collinear pairs, therefore, their net effect on the
body is zero. Thus, internal forces are not drawn in free
body diagrams.

Weight of a body is the resultant of the gravity forces
acting on the particles that constitute the body. The
point of application of this resultant force is known as
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Figure 1.7 | Free body diagram.

the center of gravity. Weight is an external force, thus,
it is included in free body diagrams.

1.5.3 Support Reactions

Knowledge of support reactions is necessary for drawing
free body diagram of a body to examine its equilibrium
using Egs. (1.4)—(1.5). As a general rule, a support can
prevent translation of a body in the given direction by
exerting a reaction force on the body in the opposite
direction. Likewise, a support can prevent the rotation
of a body in a given direction by exerting a couple
moment on the body in the opposite reaction. The
force and couple moment are the reactions exerted by
a support on a supported body.

The following are the three kinds of supports that
offer different types of reactions [Fig. 1.8]:

1. Roller Support A roller support prevents the body
from translation in the vertical direction because
the roller can exert a reaction force along the
common normal at tangent point.

2. Hinged Support A hinged or pin support does
not offer resistance against rotation. Thus, it offers
both horizontal and vertical reactions, but does
not exert a couple moment on the supported body.
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3. Fixed Support The most restrictive way to support
a body is using a fixed support because it prevents
both translation and rotation of a supported body.
Thus, a fixed support offers all the three elements
of reactions; horizontal and vertical reactions and
moment.

(a) Roller support é i_

(b) Hinged support

(¢) Fixed support

Figure 1.8 | Support reactions.

1.5.4 Equilibrium of Three Coplanar Forces

Using the general condition of equilibrium, the condition
of equilibrium of three coplanar forces can be stated as
follows:

1. If three coplanar forces acting upon a rigid body
under equilibrium, they must either meet in a
point or be all parallel.

2. If three forces are in equilibrium, they must be
coplanar.

1.5.5 Triangle Law of Forces

The problem of equilibrium of three coplanar forces can
be represented in triangular fashion. This is known as
the law of triangle of forces which states that if three
forces acting upon a particle can be presented in the
magnitude and direction by the sides of a triangle taken
in order, the forces will be in equilibrium.

In converse way, if three forces acting upon a particle
in equilibrium, they can be represented in magnitude
and direction by the sides of any triangle which is
drawn so as to have its sides respectively parallel to the
directions of the forces.

Consider three forces Fl, F)g, 1?3 acting on a particle
or rigid body in equilibrium. The law of triangle of
force is represented in Fig. 1.9 where these forces form
a triangle.

7, ~_

Rigid body

Figure 1.9 | Law of triangle of forces.

The law of triangle of forces is equivalent to the vector
sum of the forces; the net force and moments acting on
a particle is zero, therefore, particle is in equilibrium.

1.6.6 Lami’s Theorem
In statics, Lami’s theorem® is an equation that relates
the magnitudes of three coplanar, concurrent and non-
collinear forces, that keep a body in static equilibrium.
The theorem states that if three forces acting at a point
are in equilibrium, each force is proportional to the sine
of the angle between the other two forces.

Consider three forces Fy, F5, F3 acting on a particle
or rigid body making angles a, 8, v with each other [Fig.
1.10].

Figure 1.10

Lami’s theorem.

According to Lami’s theorem, the particle shall be in
equilibrium if
Fy Fy F3

(1.6)

sina  sinf  sinvy

The angle between the force vectors is taken when all
the three vectors are emerging from the particle.

3Bernard Lamy (1640-1715) was a French Oratorian mathemati-
cian and theologian. His best known work is the parallelogram of
forces (1679).
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1.6  STRUCTURAL ANALYSIS

1.6.1 Trusses and Frames
A structure can consists two types of members:

1. Trusses A truss is an articulated structure com-
posed of straight members arranged and connected
in a such a way that they transmit primarily axial
forces. For this, a truss is made up of several
slender bars, called members, joined together at
their ends by hinges or rivets. The bar members,
therefore, act as two-force members which can
either be in tension or in compression; there can
be no transverse force in a member of a truss [Fig.
1.11].

For the purpose of calculations, the joints
(nodes) are supposed to be hinged or pin-jointed.
A truss is designed to carry loads at the nodes,
otherwise, truss members can be subjected to
lateral loads.

A perfect truss is composed of least number of
members to prevent distortion of its shape when
loaded. If the number of nodes in a perfect truss is
n, then the minimum number of members is 2n — 3.

2. Frame A frame consists of members which can be
subjected to a transverse load in addition to the
axial load. Thus, members carry loads at points
other than nodes. If load is applied at a point other
than a joint, the member is subjected to bending
also; and in such a case, the force in the member is
not purely axial. To find the forces in the members
subjected to bending, the equilibrium of each
member is considered separately by constructing
its free body diagram.

1.6.2 Assumptions

To determine the axial forces developed in the truss
members, following assumptions are made:

1. Each truss is composed of rigid members, all lying
in one plane.

2. Forces are transmitted from one member to an-
other through smooth pins fitted in the members.

3. All the loads are applied at the joints.

4. Weight of the members are neglected because they
are small in comparison with the loads.

The effect of axial forces acting at the joints of a member
is shown by marking arrows over the member, according
to the direction of the forces [Fig. 1.11].
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Figure 1.11 | Sign of forces in members.

A member can be subjected to two types of axial
forces: tension (arrow directed away from joint) or
compression (arrow directed toward joint).

1.6.3 Method of Joints

A plane truss or frame can be subjected only to a copla-
nar force system. Therefore, any point on a member
of the plane truss can be subjected to coplanar and
concurrent systems only. This condition of concurrency
of force system follows from the equilibrium of forces at
a given point on a truss. The method of joints is based
on these observations. This method takes one point at
a time and analyzes it for equilibrium. At every node,
the forces must be along the members at that joint and
must satisfy the necessary conditions of equilibrium:

S F=0
S M=o

The sum of moments can be examined only at the points
of application of the support reactions.

1.6.4 Zero-Force Members

Truss analysis using the method of joints is greatly
simplified with the knowledge of zero-force members in
the truss. Special situations of forces in truss members
are explained as follows [Fig. 1.12]:

(a) If two members not in the same straight line meet
at a point which does not carry any load, the force
in each member is zero.

(b) If two members in the same straight line meet at
a point, they carry equal and opposite forces.

(c¢) If three members meet at a joint which does not
carry any load, and two members are in same line,
then the force in third member will be zero.

(d) If four members meet at a point at which there is
no load with two of the members in straight lines,
then forces in members aligned in the same lines
will be equal.
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2 3
F1=F2,F3=O F1:F27F3:F4
() (d)
Figure 1.12| Forces in truss members.

These points are useful in predicting the forces in truss
members without the actual calculations.

1.6.5 Method of Sections

Method of joints is used in determining the unknown
forces on each member of a truss while method of
sections is preferred in determining axial forces in only
few members. In this method, the truss is cut at a
section such that most of the members of unknown
forces are covered. The equations of equilibrium are then
applied to determine the unknown forces.

1.7 RECTILINEAR KINEMATICS

Rectilinear kinematics deals with the motion of a particle
in rectilinear or straight line path. It is characterized
by particle’s position, velocity, and acceleration, at any
given instant of time. Curvilinear motion occurs when
motion of a particle follows a curved path. Speed is the
rate of change of distance irrespective of the direction
of motion of the body; Velocity is a vector quantity of
magnitude equal to speed. Acceleration is the rate of
change of velocity with respect to time.

Consider a particle, moving in a straight line, changes
its position from Z to Z+467 in time 6t [Fig. 1.13].
Velocity and acceleration of the particle at any instant
of time are defined as follows:

P —
0T
BN Q
x
T+0T
O
Figure 1.13 | Linear displacement of a particle.

1. Velocity Instantaneous velocity of the particle is
defined as
o .. 07
v = lim —
5t—0 Ot
a7

-= (1.7)

2. Acceleration  Instantaneous acceleration of the
particle is defined as

=v— (1.8)

Velocity and acceleration are vector quantities. If two
velocities (say @ and U at angle «) are represented
in magnitude and direction by two adjacent sides of a
parallelogram, their resultant (@) will be represented
in magnitude and direction by the diagonal of the
parallelogram. This is called the law of parallelogram
[Fig. 1.14].

Figure 1.14 | Law of parallelogram.

The magnitude of resultant velocity of w and v at
angle « is given by

w = /u2+ v+ 2uw cos o (1.9)

The law of parallelogram is based on the algebra of
vectors. Therefore, it is equally valid for the forces also.
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Let a particle moves at initial velocity u. In the time
interval of ¢, it traces a distance s reaching its final
velocity v. Using Eq. (1.8), the differential equation for
acceleration a as

Integrating w.r.t. time (),

s _ s
— =at+c
dt !

where ¢ is a constant. When ¢ = 0, ds/dt = u, so,

(1.10)

Cil =1u

Therefore, Eq. (1.10) becomes

v=u-+at (1.11)
Integration of Eq. (1.10) gives
L o
s= iat +ut+co (1.12)

where ¢y is constant. When t = 0, s = 0 so ¢ = 0,
therefore,

1
s=ut+ §at2 (1.13)

Using Egs. (1.11) and (1.13),
v? = u?+2as (1.14)

Equations (1.11)—(1.14) are called equations of linear
motion.

1.8 ANGULAR MOTION

Let a particle moving in a circle travels angle 60 in time
ot. Angular velocity of the particle is defined as

. 50
w = lim
5t—0 Ot
a6
=— 1.15
o (1.15)
Angular acceleration of the particle is defined as
L d_, &6
=—W=—7 1.1
ST @ T A (1.16)

Let a particle follow a circular path of radius r with
constant linear speed v at angular velocity w. So in a
unit time, it runs an arc of rw, which is of the same
length equal to v. Therefore,

— -, -
V=wWXTr

Differentiating w.r.t. time,

av _ 4z
dt —  dt

a=axT
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1.9 MOTION UNDER GRAVITY

Motion under gravity is described in the following
subsections.

1.9.1 Universal Gravitation

Newton’s law of universal gravitation states that any two
particles or point masses attract each other along the line
connecting them with a mutual force whose magnitude
is directly proportional to the product of the masses
and inversely proportional to the square of the distance
between the particles.

G

Figure 1.15 | Gravitational force.

=
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For the configuration shown in Fig. 1.15, the grav-
itational force F' between two masses m; and mso at
distance r is given by

F:melm2

3 (1.17)

where G is the universal constant of gravitation, equal
to 6.67 x 10** Nm? /kg?.

1.9.2 Earth’s Gravity

Assuming earth to be stationary and spherical body of
radius R, the gravitational force of the earth (due to its
mass M) acting on a body of mass m, placed at a height
h above the surface of the earth, is given by

Mm
(R+h)?

This force is the weight of the body equal to mg.
Therefore, acceleration due to gravity g is derived as

GM

R (1.18)

g:

The value of g is approximately 9.81 m/s?. In en-
gineering applications, ¢ is usually considered as a
constant and the weight force is assumed to be directly
perpendicular to the earth’s surface.

When a particle is projected vertically upward, there
is a retardation upon it due to earth’s attraction. This
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retardation is denoted by —g. When a particles falls
down under gravity, it possesses an acceleration equal
to g.

1.9.3 Projectile

The particle projected under gravity other than vertical
is called a projectile. The angle of projection is the
angle of initial velocity with horizontal plane. The
path described by the particle is called trajectory. The
range of projectile is the distance between the point of
projection and the point where trajectory meets any
horizontal plane through the projection.

Let a particle is projected upward at an angle « from
horizontal at initial velocity of w [Fig. 1.16].

/ Y
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| R |

Figure 1.16 | Projectile.

The following are the features of a projectile:

Flight time ¢t = 2 x ysma

u? sin 2«

29
u? sin 2«

Maximum height H =
Range R =

The range is maximum if o = 7/4.

1.9.4 Vertical Projection

Consider a particle of is projected vertically upward
(o = m/2) at initial velocity u, and let it reaches
upto height h where velocity v becomes zero. Using Eq.
(1.14),

0?2 =u?+2(—g)H
e
29

Using Eq. (1.11), the time ¢ taken in the reaching to
the height & is determined as

0=u—gti/o

t=—
g

1.10 DEPENDENT MOTION OF
PARTICLES

In some types of engineering applications, motion of
particles is dependent upon others. Two blocks inter-
connected with an inextensible spring over a pulley
represent the most simple situation of dependent motion
[Fig. 1.17].

Figure 1.17| Dependent motion of two particles.

The relationship between dependent velocities can be
found using constant length of the inextensible string.

1.11 NEWTON'’S LAWS OF MOTION

The problems of mechanics can be solved by applying
Newton’s laws of motion*, described as follows:

1. First Law of Motion Newton’s first law of motion
states that every object will remain at rest or in
uniform motion in a straight line unless compelled
to change its state by the action of an external
force.

The first law of motion is normally taken as the
definition of inertia. If there is no net force acting
on an object (if all the external forces cancel each
other out) then the object will maintain a constant
velocity. If that velocity is zero, then the object
remains at rest. If an external force is applied, the
velocity will change because of the force.

2. Second Law of Motion  Newton’s second law of
motion states that if the resultant force acting
on a particle is not zero, the particle will have
an acceleration proportional to the magnitude of
the resultant and in the direction of this resultant
force. The law explains how the velocity of an

4Gir Isaac Newton was one of the greatest scientists and
mathematicians that ever lived. He was born in England on
December 25, 1643. He was born the same year that Galileo died.
He was the first to formalize these laws and published them in
1986.



object changes when it is subjected to an external
force. The law defines a force to be equal to change
in momentum (mass times velocity) per unit time.

For an object with a constant mass m, N_c;wton’s
second law of motion states that the force F' is the
product of an object’s mass and its acceleration @:

—

F=mxa

For an externally applied force, the change in
velocity depends on the mass of the object. A force
will cause a change in velocity; and likewise, a
change in velocity will generate a force. The above
equation works in both ways.

3. Third Law of Motion Newton’s third law of motion
states that for every action (force) in nature there
is an equal and opposite reaction. In other words,
if object A exerts a force on object B, then object
B also exerts an equal force on object A.

The third law of motion can be used to explain
the generation of lift by a wing and the production
of thrust by a jet engine.

1.12 WORK AND ENERGY

1.12.1 Energy

The energy of a body is its capacity of doing work.
Energy is possessed by a body, while the work is done
by force on a body when it has a displacement in the
direction of the force. If position vector is denoted by
7, then work dW, a jcalar quantity, is defined as the
dot product of force F' and displacement vector d7:

AW = F-d7

1.12.2 Modes of Mechanical Energy

Energy can be in several forms like mechanical energy,
electrical energy, heat, light, sound, pressure. The
present context is of mechanical energy, the energy
possessed by a body due to its position or motion.
Hence, mechanical energy can be of two types: potential
energy and kinetic energy, described as follows:

1. Potential Energy The energy which a body
possesses by virtue of its position or configuration
is called potential energy. Few examples to clarify
the concept of potential energy are following:

(a) If a body of mass m is raised through a height
h above a datum?® level, then the work done on

5A surface to which elevations, heights, or depths on a map or
chart are related.
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it by the gravitational force is written as
W = mgh

This energy is stored in the body as potential
energy. In coming down to the original posi-
tion, the body is capable of doing work equal
to mgh.

(b) If a spring is twisted through an angle 6 by
application of a torque varying from zero in
the beginning to 7" in the end, the work done
by the average torque 7'/2 is written as

0+T
— X
2

1
==T6
2

This is the potential energy of the spring due
to its configuration.

W = 0

(c) If a spring of stiffness k is stretched, the force
F acting on it does not remain constant, but
increases with displacement = undergone by the
spring. At any time,

F=kx
Therefore, average force acting on the spring is

F:kxOJrJ
2

—rr
2

Hence, the work done by the average force F'
for displacement = of the spring is written as

2
X
W=k—
2

This is the potential energy of the spring due
to its configuration.

Gravity force, elastic spring, and torsional
spring are examples of conservative forces.
Thus, potential energy is the measure of the
amount of work done by a conservative force in
moving a body from one position to another.

2. Kinetic Energy The energy which a body possesses

by virtue of its motion is called kinetic energy. It is
measured by the amount of work required to bring
the body to rest.

Let a body of mass m moving with velocity v
be bro_t)lght to rest by the application of a constant
force I which causes a retardation —a. If s is the
distance through which the body moves in this
period, the ki_r)letic energy is given by the work
done by force F' on the body. Using third equation
of linear motion,

0% —v? = 2(—a)s
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Therefore, kinetic energy is determined as

U=maxs

1
= —mov?

2

A system of particles or body can have both forms
of mechanical energy. During motion or change in the
amount or direction forces, one form of energy gets
converted into another form.

1.12.3 Principle of Work and Energy

The principle of work and energy states that the work
done by all of the external forces and couples as a rigid
body moves from position 1 to position 2 is equal to the
change in the potential energy of the body:

1 1
Z Ui_g = §mv§ - §mvf

1.12.4 Principle of Conservation of Energy

The principle of conservation of energy states that the
total amount of energy in the universe is constant;
energy can neither be created nor destroyed although
it can be converted into various forms.

The principle of conservation of energy can be
appropriately stated as when a particle moves under
the action of conservative forces, the sum of the kinetic
energy and potential energy of the particle remains
constant. If potential energy and kinetic energy are
denoted by U and T, respectively, the principle can be
stated for a system between two instances 1 and 2 as

Th+U; =T+ Us

The principle of conservation of energy is generally
applied to solve the problems involving forces, displace-
ments and velocities. The principle can be applied to
each element of a structure or body separately. The
problems involving energy dissipation through friction
and damping can be solved by considering suitable sign
of the energy component of the system.

1.13 D’ALEMBERT’S PRINCIPLE

According to the d’Alembert’s principle®, the external
forces acting on a body and the resultant inertia
forces on it are in equilibrium. D’Alembert’s principle is,
indeed, a restatement of Newton’s second law of motion

6D’Alembert’s principle is named after its discoverer, the French
physicist and mathematician Jean le Rond d’Alembert.

but it suggests that the term (—ma) can be considered
as a fictitious force, often called d’Alembert’s force or
the inertia force. Accordingly, the net external force F
actually acting on the body and the inertia force F:
together keep the body in a state of fictitious equilibrium:

F+F =0

The d’Alembert’s principle tends to give the solution
procedure of a dynamic problem, an appearance like that
of a static problem, and the above equation becomes
equation of dynamic equilibrium.

1.14 IMPULSE AND MOMENTUM

1.14.1 Linear Momentum

Momentum (7) is a measure of the tendency of an object
to keep moving once it is set in motion. Let a particle
of mass m move with a velocity ¥ and acceleration @.
Using Newton’s law of motion, the force acting on the
body is given by

-

F=md
The rate of change of momentum is

B d
E = @’I’)’L’U
dv
S
=ma

-

=F

This equation states that the rate of change of mo-
mentum is equal to the applied force. This statement
is known as the principle of linear momentum. The law
is also known as Fuler’s first law. If there are no forces
applied to a system, the total momentum of the system
remains constant; the law in this case is known as the
law of conservation of momentum.

1.14.2 Angular Momentum

Angular momentum (l—{) is the moment of momentum
about an axis; it is the product of the linear momentum
of the particle and the perpendicular distance from the
axis of its line of action. Consider a particle of mass m
moving with a velocity ¥ and acceleration @ [Fig. 1.18].

The angular momentum about an axis passing through
point O at distance 7 is given by
}_7,) —

—
xXmov

=



O -
U
-
7
0
m
Figure 1.18 | Angular momentum.

The rate of change of angular momentum can be
determined as

ah  d .,
Eza(rxmv)
:?xm@
dt
=7xF

This equation is known as the principle of angular
momentum. It states that the resultant moment of the
external forces (F') acting on the system of a particle
equals the rate of change of the total angular momentum
of the particles. The law is also known as Fuler’s second
law.

1.14.3 Impulse-Momentum Principle

If a constant force F acts for time ¢ on a body, the
product F' xt is callei the impulse of the given force.
Similarly, if a torque T»acts on a body for time ¢, then
the angular impulse is 7" x ¢.

Let a constant force F' acts on a body of mass m
for time ¢ and changes its Velo_cjty from u to v under
acceleration a. Then, impulse (J) is given by

T =Fxt

=ma xt
- -
DT
t
=m (7 —-71)

Xt

=mX

—> —>
=muv—-mu

Therefore, impulse-momentum principle states that
the component of resultant linear impulse along any
direction is equal to change in the component of
momentum in that direction.

1.15 LAW OF RESTITUTION

Impact is the collision of two particles for a very short
period of time that results into relatively large impulsive
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forces exerted between the particles. An impact is called
central or line impact when direction of motion of the
mass centers of the two colliding particles is in a single
line, otherwise, it is called oblique tmpact.

The law of restitution states that the velocity of
separation of two moving bodies which collide with
each other bears a constant ratio with their velocity of
approach. The constant of proportionality is called the
coefficient of restitution, denoted by e. This property,
first discovered by Newton, is known as the Newtons
law of restitution.

Consider two particles moving with initial velocities
u1 and wus towards each other. These particles collide
on center-line (center impact), and after impact, their
respective velocities become v, and vy [Fig. 1.19].

Before impact

Ul U2
— A —
@ @

N\
A — —-

U1 V2

After impact

Figure 1.19 | Coefficient of restitution.

The coefficient of restitution (e) is expressed as the
ratio of relative velocities of the particles’ separation
just after impact (ve —w1) to the relative velocity of the
particles’” approach just before impact (u; —us):

V2 — U1
B U2 — Uy
Experiments show that e varies appreciably with impact
velocity as well as with the size and shape of the
colliding particles, ranging from 0 to 1. The value of
the coefficient of restitution has got physical meaning.
Based on the limiting values of e, the collision can be
classified into two types:

1. Elastic Collision A perfectly elastic collision occurs
without loss of kinetic energy of the particles.
Thus, for elastic collisions, e = 1.

2. Inelastic Collision A inelastic collision or plastic
collision is one in which part of the kinetic energy
is changed to some other form of energy in the
collision.

Momentum is conserved in inelastic collisions,
however, the kinetic energy in the the collision is
converted into other forms of energy. For inelastic
collisions, e = 0.

The principle of work and energy cannot be used for the
analysis of impact problems because it is impossible to
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know the variation in the internal forces of deformation
and restitution during the collision. The energy loss can
be calculated as the change in kinetic energy of the
particles.

1.16 PRINCIPLE OF VIRTUAL WORK

When the point of application of a force is imagined to be
displaced through a differential distance in the direction
of the force, the imaginary work done by the force is
called virtual work.

The principle of virtual work states that the work
done on a rigid body or a system of rigid bodies in equi-
librium is zero for any virtual displacement compatible
with the constraints on the system. Conversely, if the
virtual work for all such displacements is zero, then the
body is in equilibrium.

Virtual displacement is an imaginary infinitesimal
displacement. A differential virtual displacement is de-
noted by ¢ to distinguish it from a differential displace-
ment generally denoted by d.

The method of virtual work is explained by two
examples:

1. Consider a rod AB which can rotate about a
fulcrum O [Fig. 1.20]. A vertical load F} is applied
at end A. It is required to calculate the a vertical
force Fy to be applied at end B to keep the rod in
current position. In virtual work method, the body

Fl F)g
w b
___4B
/.1\0,——::%”’P
W NN B
A/ :
R

Figure 1.20 | Virtual displacement.

is assumed to be virtually displaced. For present
case, let the rod undergo a virtual rotation through
angle 00 about the fulcrum O to assume the new
position A’B’. The total virtual work during this
rotation is given by

oW = F1 X l169—F2 X l2(59

According to the principle of virtual work, total

virtual work must be zero, therefore,
F1 ><1159—F2 Xlg59 =0

l

Fy=F 2
la

2. Consider a lazy tong mechanism [Fig. 1.21]. The
joint A has a pin which is free to slide inside the
vertical groove provided in the frame. The joint E
has a torsional spring to keep the mgchanism in
equilibrium under the external force F' applied at
the hinge joint E.

Figure 1.21 | Lazy tong mechanism.

The magnitude of the moment M required
to keep the mechanism in equilibrium can be
determined using the method of virtual work. The
horizontal distance x of joint E from the AB is

x = 3acosl

The virtual rotation of link BC for virtual displace-
ment of dx of the joint E is given by

dx = —3asinf x j0
The reactions at the joints A and B will not cause

any work, the total virtual work done by moment
M and external force F' must be zero:

M6+ Féx =0
M0 —F x3asinf x 60 =0
M = 3Fasin@

In applying the method of virtual work, it is necessary
to only calculate the displacements of the points of
application of the forces, and hence a problem of
equilibrium is converted into one of geometry, which
is usually easier to solve. Also, forces whose points of
application are not displaced, or the displacement is
perpendicular to the force, need not be considered. The
superiority of the method of virtual work is that the
method eliminates all unknown reactions.

There is no added advantage of applying the principle
of virtual work in equilibrium problems. Each applica-
tion of the virtual work equation, leaves an equation that
could have been directly obtained by simply applying the
equation of equilibrium.



