

Page - 1

1

1

1 2

2

n

n

4
3

↓ ↓↓

↓ ↓
<

 Operating System

 Operating System

OS is the interface between user and computer Hardware.
System call is the request made by user program in order to get the service
from an OS.
OS works likes a resource allocator.
OS is responsible for allocating all the resources of the computer program.

 Resource

OS is like as a government which covers everything in the computer system.

Goals of OS
Primary Goal → Convenience (Easy to use)
Secondary Goal → efficiency

Types of OS
1. Batch OS

 → If the job is completed completely then only another job will be
 scheduled
 → So, CPU utilization is very less, hence throughput of the system
 will ↓

User

System call ()

Computer Hardware

Hardware type Software type
→ device → files
→ memory

J
J
J
J

OS

CPU op
 J

Io op
J , J

Page - 2

1 2 3

3

↓

<<<

 Utilization ∝ throughput
Throughput: The number of jobs completed or executed per unit of time is
called throughput.
 Eg:- IBM OS/2

2. Multiprogramming:

 → If one job is waiting for I/O transfer then a another job is ready to
 utilize the CPU
 Ex:- Windows, UNIX
 → CPU utilization is very high, so throughput will be ↑.

3. Multitasking OS:
 → It is the extension of mutiprogramming OS.
 → In this OS, jobs will be executed in the time sharing mode.
 Ex:- Windows 2000, LINUX

Multiprocessing OS

Fault tolerance
In this OS, more than one CPU share the single computer system memory.

1

1 2

2

4
3

J
J
J
J

OS

CPU

IO J , J

1 2J J J
-
-
-

-
-
-

CPU 1 CPU 2 CPU 3
↓ ↓ ↓
P P P

MEMORY

Page - 3

Advantages:
→ Fault tolerance
→ Reliability (end to end)
→ CPU utilization is very high

Real time OS
The system which are strict deadly time bound.
Eg:- Missile system (Hard real time OS)
 Banking system (Banking sector)

 PROCESS MANAGEMENT

→ Process is the program under execution.
→ Program should be reside in main memory to occupy the processor to
 execute the instruction.

 Program

 Attributes States
→ process_id New
→ process state Ready
→ Program counter Running
→ Priority Wait/Block
→ General purpose register Suspended ready
→ List of open devices Suspended wait
→ List of open files Termination or
→ Protection & security completion

→ process_id → It is unique identification number which is assigned
 by the OS at the time of process creation.
→ process state → It contains the current state information of the
 process where it is residing.
→ program counter → It is a register, it contains the address of next
 instruction to be executed.
→ Priority → It is a parameter which is assigned by the OS at the time
 of process creation.

↓
↓

Data

Instruction

Page - 4

All the attributes are called as context and context of the process is stored
in PCB (Process Control Block).

→ Every process will have its own PCB and PCB of the process is stored
 in the main memory.

Process State Diagram:

 New

→ Initially the process will be in new state.
→ The process is in new state, it means process is under creation or
 process is being created.

 New Ready

→ Once the process is created, then it move to ready state.
→ Once the process is in ready state, it means process is really for exe-
 cution.
→ The ready state contain multiple number of processes.
→ From multiple number of processes, one process will be selected and
 it will be scheduled on to the running state.

 New Ready Running

→ In the running state only one process will reside at any point of time.
→ If the running process require any I/O operation then it will move to
 the wait state.

 New Ready Running

<

< <Created
Schedule/
Dispatch

< <

<
<

Created
Schedule/
Dispatch

 Wait/
Blocked

Non Pree
mptive⇒

IO operation

Page - 5

↓

↓ ↓

→ In the wait state, the process will perform I/O operation.
→ Once the I/O operation is completed then process will move to the
 ready state.
→ Wait state contains multiple number of processes (can perform simul-
 taneously operation)
→ In the wait state all the processes perform I/O operation simultaneously.
→ If the process is in ready running or wait state, it means, it is residing
 in main memory.
→ If the running process complete the execution then process move to the
 completion.
 Multiprogramming OS

 New Ready Running Completion

→ If more number of processes are getting created and resources are in-
 sufficient to manage all the processes then some of the processes will
 be suspended and will move to the suspended ready state.

→ Whever the resources are sufficient, then processes will be resume back
 to the ready state.

→ If the processes is in suspended ready state, it means, it is residing in
 the backing store or secondary memory.

Non-Preemptive Preemptive or
 Mutlitasking or
 Time sharing

<
<

<

<

<Created

Wait

Schedule/Dispatch

time quantum
expires/priority

⇒Preemptive

Page - 6

 New Ready Running Termination

→ Each and every time when the process is moving from one state to ano-
 ther state the context of the processes will change.

 P P

→ Saving the context of one process abd loading the context of another
 process is called Context switching.
→ Context switching will also take some time. If the context of the pro-
 cess is more than context switching will also increase, which is un-
 desirable.

Scheduler
1. Long term scheduler (Job scheduler)
2. Short term scheduler (CPU scheduler)
3. Mid term scheduler (Medium term scheduler)

→ LTS is responsible for bringing the new process into the system.

↓<

<

<
<

<

<

<

<

<Created

Wait

Schedule/Dispatch

time quantum
expires/priority

1 2

<

Suspended ready

LTS

MTS

M
TS

STS

Resume

Suspended wait

Suspend

Suspend

Resume

} }
Load Store

Context switching

Page - 7

→ STS is responsible for selecting one of the process from ready state to
 schedule onto the running state.
→ Mid term scheduler is responsible for suspending and resuming the
 process.
→ The job done by mid term scheduler is known as swapping.

Dispatcher:-
It is responsible for solving and loading the context of the process.

→ The context switching will be done by dispatcher.
→ The processes WRT to their execution time are divided into 2 types.

→ CPU Bound Process: The process which require more CPU time.
 This type of processes spend maximum time in running state.

IO Bound:- The process which require more IO time. This type of process
spend maximum time in wait or block state.

Degree of Multiprogramming

→ The number of jobs or processes present in the memory at any point
 of time is called degree of mutliprogramming.

→ LTS should select good combination of CPU bound and IO bound
 process in order to get good throughput for the system.

→ LTS controls the degree of multiprogramming.

Q. Consider a N-CPU processor system then what is the maximum and
 minimum number of processes that may present in the ready, running
 and wait state.

CPU Bound
 Processes

IO Bound
Processes

Page - 8

1
2

<

<<

Ready Running

Wait

Max=All
Min=0

Max=N
Min=0

Gate 2010

Consider the following statement WRT to process state diagram.

1. If a process makes a termination D, it would result in another process
 making transition A immediately.

2. A process P in Blocked state can make transition E while another
 process P is in Running state.

3. The OS uses Preemptive scheduling.

4. The OS uses Non-Preemptive scheduling.

 True ⇒ 2, 3

↓<

<

<

<

<

 New Ready Running Termination

Blocked

B

C
A D

FE

Page - 1

Gate 2008
The P and V operations on counting semaphores, where s is a counting
semaphore, are defined as follows
 P(s) : s = s - 1;
 If (s < 0) then wait;
 V(s) : s = s + 1;
 If s ≥ 0 then wakeup a process waiting on s;
Assume that P and V , the wait and signal operations on Binary sema-
phores are provided.
Two binary semaphores X and Y are used to implement the semaphores
operations P(s) and V(s) as follows:
 P(s) : P (X); V(s) : P (X);
 s = s - 1; s = s + 1;
 If (s < 0) If (s ≥ 0)
 { V (Y);
 V (X); V (X);
 P (Y);
 }
 Else V (X);
The initial values of X and Y are respectively
(a) 0 and 0 (b) 0 and 1 (c) 1 and 0 (d) 1 and 1

s = -2 -2 - 1 = -3 Blocked

Q. Two concurrent processes P and P uses four shared resources R ,
 R , R , R as shown below
 P P
 Compute Compute
 Use R Use R
 Use R Use R
 Use R Use R
 Use R Use R
Both process are started at the same time and each resource can be accessed
by one process at a time.
The following scheduling constraints exist between the access of resources
by the processes:

b b

b b

bb b b

b
b

b
b

b b

2
2

22

21

11

11

3

33

4

44

b b

b
b

b
b

Page - 2

→ P must complete use of R before P gets access to R .
→ P ————————— R —————— P ———— R .
→ P ————————— R —————— P ———— R .
→ P must complete use of R before P gets access to R .

Q. There are no other scheduling constraints between the processes. If
 only binary semaphores are used to enforce the above scheduling con-
 straints, what is the minimum number of binary semaphores needed?
 (a) 1 (b) 2 (c) 3 (d) 4

Solution: P P
 use (R)
 signal (s)
 wait (s)
 use (R)
 use (R)
 signal (s)
 wait (s)
 use R
 use R
 signal (s)
 wait (s)
 use R
 use R
 signal (s)
 wait (s)
 use R

Gate 2013
Three concurrent processes X, Y, Z execute three different code segments
that access and update certain shared variables. Process X execute the P
OP (wait) on semaphores a, b, c process ‘Y’ execute the P OP (wait) on
semaphores b, c, d and process ‘Z’ execute the P OP on semaphore c, d, a
before entering the respective code segments. After completing the execut-
ing of its code segments, each process invokes the V operation (signal) on
its three semaphores. All semaphore are binary semaphore initialized to

2
2

n
n

n

2
2

2
2

2

2

2

2
2 22

1
1

1
1

1
1
1

1

11 1
1

1

3

3

33

4

4

44

Page - 3

one which one of the following represents a deadlock free order of invoking
the P operations by the process?
(a) X Y Z (b) X Y Z
 P(a) P(b) P(c) P(b) P(b)=1 P(a)=1
 P(b) P(c) P(d) P(a) P(c) P(c)
 P(c) P(d) P(a) P(c) P(d) P(d)

(c) X Y Z (d) X Y Z
 P(b) P(c) P(a) P(a) P(b) P(c)
 P(a) P(b) P(c) P(b) P(c) P(d)
 P(c) P(d) P(d) P(c) P(d) P(a)

Gate 2013

A shared variable x, initiated to zero, is operated on by four concurrent
process W, X, Y, Z as follows. Each of the processes W and X reads x from
memory, increments by one, stores it to memory and then terminates.
Each processes Y and Z reads x from memory, decrements by two, stores it
to memory and then terminates.
Each process before reading x invokes the P operation (wait) on a counting
semaphores S and then invokes the V operations (signal) on the semaphores
S after store x to memory.
Semaphore S is initialized to two. What is the maximum possible value of
x afetr oil processes complete execution?
(a) -2 (b) -1 (c) 1 (d) 2

 S = 2 1 s = 1 0 1
 W x = 0 1 x = 1 2
 S =1 0 1 X
 Y x = 0 x = 2
 -2 S = 1 0 1
 Z x = -2 -4
 s = 1 0 1
 W x = -4 1

Page - 1

Dual Mode of Operation

 User mode or Non-privileged mode
 Kernel mode or Privileged mode

Mode bit:- In which mode the present instruction is executed.
 Mode bit
 |

 0 1
 Kernel Mode User Mode

→ OS always runs in the Kernel mode.
→ At boot time, the system always start in the Kerneal mode.

Privileged instruction
1. Setting the time of the clock 2. Changing the memory map
3. Context switching 4. Performing IO operation
5. Disable/enable interrupt
6. More secure instruction are kept in the Kernel Mode.

Non-Privileged
→ Read the time of the clock.

fork () system call implementation
 main ()
 {
 int pid;
 pid = fork (c);
 If (pid < 0)
 {
 Printf (“Fork failed”);
 }
 else if (pid = = 0)
 {
 printf (“Child proces”);
 }

→Important

↓ ↓

Page - 2

 else
 {
 printf (“Parent process”);
 }
 }
→ Fork is a system call used to create the child process.
→ The fork returns the negative value if the child process creation is un-
 successful.
→ The fork returns value ‘0’ to the newly created child process.
→ Fork return a five positive integer “Process id of the child process” to
 the parent process.

 main ()
 {
 fork ();
 printf (“Hello”);
 } printf (“Hello”);
 Hello → 2
 Child → 1
 main ()
 {
 fork ();
 fork ();
 printf (“Hello”); fork ();
 } printf (“Hello”)
 printf (“Hello”); printf(“Hello”);
 Hello → 4
 Child → 3
→ If the program contain ‘n’ fork call then it will create 2 - 1 child process
 and 2 parent process.

Relative address:
→ Same for both child and parent process
Absolute address:
→ It is different for child and parent process.
→ When programmatically trying to print the address of the process will
 always print the relative address.

n

n

Page - 3

Gate 2005
 If (fork () = = 0)
 {
 a = a + s;
 printf(“%d, %d”, a, &a);
 }
 else
 {
 a = a - s;
 printf (“%d, %d, a, &a);
 }
Let u, v be the values printed by the parent process and x, y be the values print-
ed by the child process. Which one is true?
(a) u = x + 10 and v = y (b) u = x + 10 and v ≠ y
(c) u + 10 = x and v = y (d) u + 10 = x and v ≠ y

Gate 2019
Q. int main ()
 {
 int i;
 for (i = 0; i < 10; i++)
 If (i%2 = = 0)
 fork ();
 }
 the total number of child process created is ______?
Solution: n = 5
 child process = 2 - 1 = 31

Thread

5

Code Data

Stock Register

Files Code Data

Stock Stock Stock

Reg. Reg. Reg.

Files

Simple Threaded System Multi Threaded System

Page - 4

Thread is a light weighted process.
Advantage
1. The thread will improve the responsiveness.
 If one thread is completed the execution then the o/p will be responded.
2. Faster Context Switching
 CS < CS
3. Resource Sharing
 Resource like data, code, files and memory will be shared among all the
 threads within the process but every thread will have its own stock and
 register.
4. Effective utilisation of multiprocessor system→
 If process is divided into multiple threads then that different threads can
 be scheduled onto different CPUs then the processor execution will be
 faster.
 T T T
 ↓ ↓ ↓
 CPU 1 CPU 2 CPU 3

 MEMORY

5. Enhanced throughput of the system
 → When the process is divided into multiple threads as one job then
 the number of jobs completed per unit of time will increase.
 Hence throughput of the system will be increased.

6. Economical
 Implementing of the threads doesn’t require any cost. There are various
 API’s which supports implementation of threads.

 User level thread Kernel level thread
 1. Implemented by the user 1. Implemented by OS

 2. Not recognised by the OS, 2. Recognised by the OS
 OS views user level thread
 as a process only

1 2 3

T P

>>>

Page - 5

 3. If one user level thread is 3. If one Kernel level thread is
 performing the blocking performing blocking system
 system call then entire pro- call, another thread will conti-
 cess will be blocked. nue the execution

 4. Dependent 4. Independent

 5. Less context 5. More context

 6. No hardware support is 6. Hardware support is requiired.
 required.

NOTE:-

→ User level thread scheduling is faster than Kernel level scheduling.
 Both the threads require memory management.

→ User level threads are scheduled by thread library user level)

→ Kerneal level threads are schedule by OS (Kernel level).

Page - 1

Dead lock

Two or more (processes) are waiting on some event to happen which never
happens then those processes are said to be involve in a deadlock.
 P P → Processes

 R R → Resources
 R → one instance of resource ‘R ’
 R → two instances of resource ‘R ’

Requesting Edge
 P
 Processes ‘P ’ is requesting for one instance of resource ‘R ’

 R

 P
 Process ‘P ’ is requesting for two instances of resource ‘R ’.

 R

Allocation Edge
 P

 R One instance of resource ‘R ’ is allocated to process ‘P ’

 P

 Two instance of resource ‘R ’ is allocated to process ‘P ’
 R

Resource-request and release life cycle
1. The process will request for the resource.
2. The OS validate the request for the process.
3. OS check for availability of the resources.
4. If the resource is freely available then it will be allocated to process
 otherwise process has to wait.

↑
Event

1

1

11

1

1

1 1

1

1

1 1

2

2
2 2

2 2
2

2

2 2

2

2

..

..

.

.

...

↓

↓↓

↓

↓↓

Page - 2

5. If all the resource required by the process are allocated then the process
 will go for execution.
6. If execution of the process is completed then it will release all the
 resources.

Resource Allocation Graph (RAG)
 RAG = (V, E)
 allocating edge or requesting edge
 processes and resources

Q. Consider a system which has n processes and 6 tape drives. If each pro-
 cess requires 2 tape drives to complete the execution then what is the
 max. value of n which ensure deadlock free operation
 (a) 2 (b) 3 (c) 4 (d) 5
Solution:
 P P P P P
 1 1 1 1 1
 1
 n = 5

Q. Consider a system with 3 processes where each process require 2 unit of
 resource ‘R’. What is the maximum number of resource require to
 ensure deadlock free operation?
Solution:
 P P P
 1 1 1
 1 4

1 2 543

1 2 3

↓ ↓

↓↓
↓ ↓1R

2R

1P 2P

.

↓↓
↓ ↓ ↓1R

2R

1P 2P

3P

Dead lock Not in Dead Lock

Page - 3

1

1

1

2

2

2

3

3

3

.

 Sum of total resources < No. of processes + Min. no. of resources to
 avoid deadlock

Q. Consider a system with 3 process P , P , P the peak demand of each
 process is 5, 9, 13 respectively. What is the minimum no. of resources
 required to ensure deadlock free operation?
Solution:
 P → 5 → 4
 P → 9 → 8
 P → 13 → 12
 24 + 1 = 25
 5 + 9 + 13 < 3 + x x = 25

 → Deadlock characteristic → Deadlock prevention
 → Deadlock avoidence → Deadlock detection
 → Deadlock recovery

Deadlock Characteristic
1. Mutual Exclusion
 → the resources has to be allocated to only one process
 → there should be one-to-one relationship between the resources
 and processes.
 P → Printer →

 P → Hard disk →

 P → Mouse →

2. Hold and Wait
 → The process is holding some resources and waiting on some other
 resources simultaneously.
 →

}One to one
relationship

↓↓
↓ 1R

2R

1P

2P

Hold

Wait

Page - 4

1

1 1

2

22

3. No Preemption:-
 → The resource has to be volunterily (by it own wish) release by
 the process after completion of the execution.
 → It is not allowed to preempt the resources forcefully from the
 process.

4. Circular Wait
 → The processes are circularly waiting on each other for the resour-
 ces

 → If all the four conditions are occuring simultaneously in the sys-
 tem then definitely there exist a deadlock.
 → All the above four conditions are not purely independent because
 circular wait includes Hold and Wait.

Deadlock Prevention
1. Mutual Exclusion
 → It is not possible to dis-satisfy mutual exclusion always because of
 sharable or non-sharable resources.
 File Printer

2. Hold and Wait
 → Allocate all the resources required by the process before the start
 of the execution.

↓↓
↓ ↓1R

2R

1P 2P

R → P → R → P<

→ → →

P P

1 2P P

X
read read

Non-Sharable

{

Sharable

Page - 5

1 11

1 1 1

1

1

1

1 1

1 1

1

1

2

2

2 2

5

85

4

4

6

↓
<

<<

X

X

→ Hard disk Tape drive Print

→ Low device utilization
→ The process should release all the existing resources before making the
 new request.

5. No Preemption
 The process ‘P ’ is requesting for resource ‘R ’
 |
 | |
If the resource ‘R ’ is freely available If the resource ‘R ’ is not freely
then it will be allocated to process ‘P ’ available and it is allocated to
 process ‘P ’
 |
 ↓ ↓
 If the process ‘P ’ is in the execut- If the process ‘P ’ is not in the
 ion then ‘P ’ has to wait execution and waiting for
 another resources
 ↓
 The resource ‘R ’ is preempted
 from the process ‘P ’ and allo-
 cated to ‘P ’.
4. Circular Wait
 → Every resource will be assigned with numerical number.
 → The processes can request for the resources only in the increasing
 number of remuneration
 P → R P → R P → R

 P → R P → R P → R

P

write
read Printer

increasing order

<

decreasing order

Page - 6

1

1
1

1

2

2

2

2
2

2

0

0

0

0
0

0

4

4
4

4

3

3
3

3

X

Deadlock Avoidance
 Banker’s also rithm total available
 A B C
 10 5 7
 MAX NEED Current Allocation Current Available
 A B C A B C A B C
P 7 5 3 0 1 0 3 3 2
P 3 2 2 2 0 0
P 9 0 2 3 0 2
P 2 2 2 2 1 1
P 4 3 3 0 0 2

Safe Sequence: P , P , P , P , P
 P , P , P , P , P
 3 3 2
 0 1 0 ← P denied the access
 3 4 2

 3 3 2
 2 0 0 → P complete its execution and release all the resour-
 5 3 2 ces.

 5 3 2
 3 0 2 ← P denied the access
 8 3 4

 5 3 2
 2 1 1 ← P Complete its execution and release all the
 7 4 3 resources.

 7 4 3 7 4 3
 0 0 2 P 0 0 2
 7 4 5 7 4 5
 0 1 0 P 3 0 2 P
 7 5 5 10 4 7
 3 0 2 P 0 1 0 P
 10 5 7 10 5 7

Page - 7

1

1 1

2

2 2<

→ If we can satisfy the remaining need of all the processes with currently
 available sources then system is said to be in safe state otherwise the
 system in unsafe state.
→ If the system is in unsafe state then it is possible for deadlock.
→ The order in which we satisfy the remaining need of all the processes
 is called safe sequence.
→ The safe sequence cannot be unique we can have multiple safe sequence.
→ The unsafe state purely depends on the behaviour of the process.

Deadlock Detection
→ If all the resources are single instance type then cycle in resource alloca-
 tion graph is necessary and sufficient condition for occuring a deadlock.
→ Necessary :- Deadlock may be possible or may not be possible.
 Sufficient :- There should be deadlock

 R → P → R → P

→ If all the resource are not of single instance type then cycle in the RAG
 is a necessary but not sufficient condition for occuring a deadlock.
→ If the resource are of multiple instance type then the banker’s algorithm
 will be used to identify the remaining need of all the processes are satis-
 fied or not.
→ If the remaining need of all the processes are satisfied with currently
 available resources then deadlock does not exist otherwise deadlock
 exist in the system.

Deadlock Recovery
1. Killing the process
 → Kill all the processes which involve in the deadlock
 → Kill one by one
 (i) low priority process
 (ii) % of process completion

↓↓
↓ ↓1R

2R

1P 2P

=

 P P
5% 95%
 ↑
kill

Page - 8

1

1 2

2

 (iii) Based on Number of resources the process is holding.
 P P
 2R 20R
 ↑
 Kill
2. Resource Preemption
 → The resource will be preempted from the processes which are
 involved in the deadlock.

3. Ostisch Algorithm
 → Ignore the deadlock.

Gate 2007
 P P
 while (true) while (true)
 { {
 wants 1 = true; wants 2 = true;
 while (wants 2 = = true); while (wants 1 = = true);
 CS CS
 wants 1 = false; wants 2 = false;
 } }

Q. wants 1 and wants 2 are shared variables which are initialized to false
which one is correct?
(a) It doesn’t ensure mutual exclusion
(b) It doesn’t ensure bounded waiting
(c) It requires that processes enter into the critical section in strict altera-
 tion
(d) It doesn’t prevent deadlock but ensure mutual exclusion.

Ans. (d)

Gate 2016

 Semaphore n = 0; semaphore S = 1;

=

==

Page - 9

1
2
3

 Void producer () Void consumer ()
 { {
 while (true) while (true)
 { {
 produce (); semwait (s);
 semwait (s); semwait (n);
 add to buffer (); remove from buffer ();
 semsignal (s); semsignal (s);
 semsignal (n); consume ();
 } }
 } }
which one is true?
(a) The producer will be able to add an item to the buffer but the consu-
 mer can never consume it.
(b) The consumer will remove no more than one item from the buffer.
(c) Deadlock occurs if the consumer succeeds in a acquiring semaphore
 when the buffer is empty.
(d) The starting value for the semaphore must be 1 and not 0 for dead-
 lock free operation.

Ans. (c)

Gate 2017

A system shares 9 tape drives
 Process Current Allocation Max requirement
 P 3 7
 P 1 6
 P 3 5
Which of the following describes the current state of the system?
(a) Safe, deadlock (b) Safe, not deadlock
(c) Not safe, deadlock (d) Not safe, not deadlock

Ans. (b)

Page - 1

Semaphore
→ Semaphore is an integer variable which is used by various processes
 in mutually exclusive manner to achieve synchronisation.
→ Improper use of semaphore will also give improper result.
 Semaphore

 Counting (-10 to +10) Binary (‘0’ or ‘1’)

Two types of operation
1. Down () or wait () or P ()
2. Up () or release () or signal () or V ()

1. Counting semaphore
 Down (semaphore s)
 {
 s.value = s.value - 1;
 If (s.value < 0)
 {
 Block the process and place its PCB in the suspended list;
 }
 }
 up (semaphore s)
 {
 s.value = s.value + 1;
 If (s.value ≥ 0)
 {
 select a process from suspended list and wakeup ();
 }
 }

→ After performing the down operation if the process is getting blocked
 then it is called unsuccessful down operation.
→ After performing the down operation if the process is not getting
 blocked them it is called successful down operation.
→ If it is successful down operation then only the process will be conti-
 nued in the execution.
→ The down operation of the counting semaphore is successful only

Page - 2

 when semaphore value greater than 0 or equals to 1
 s ≥ 1
→ If s = +6 , then we can perform successful down operation.

→ If s = -6 , it represent there are 6 suspended process.

→ up operation is always successful.
→ There is no unsuccessful up operation.

Binary Semaphore
 Down (semaphore s)
 {
 If (s.value = = 1)
 s.value = 0
 else
 {
 Block the process and place its PCB in the suspended list ();
 }
 }
 up (semaphore s)
 {
 If (suspended list () is empty)
 s.value = 1;
 else
 {
 select a process from suspended list and wake up ();
 }
 }
→ The down operation of Binary semaphore is successful only if the
 semaphore value is 1.
→ There is no unsuccessful up operation.
→ Up operation is always successful.
Gate 2003
 P to P P
 Repeat Repeat
 P (mutex); V (mutex);
 cs cs
 V (mutex); V (mutex);
 foreover foreover

101 9

Page - 3

The initial value of Binary semaphore mutex is ‘1’. What is the maximum
number of processes hat may present inside critical section at any point of
time.
Solution:
 mutex = 1 0

After mutex value is 0, then execute process ‘P ’ code then v (mutex) in
process ‘P ’ increment the semaphore value 1.
 mutex = 1 0 1

→ At this time mutex = 1, so P can easily go inside the critical section &
 mutex becomes 0
 mutex = 1 0 1 0

→ At this time none of the process can enter inside the critical section
 because mutex = 0
→ To enter any process inside the , P release the cs and mutex = 1
 mutex = 1 0 1 0 1

→ At this time P can easily go inside the & mutex becomes 0.
 mutex = 1 0 1 0 1 0

Again execute process ‘P ’ code and mutex = 1 and so on all the process can
enter inside the cs
 ∴ Maximum number of processes = 10

Q. P to P P
 Repeat Repeat
 p (mutex) v (mutex);
 cs cs
 v (mutex); p (mutex);
 forever forever

1

1

10

10

10

10
10

2

9

3

/

/

/

/ / / /

/ / / / /

/ /

/

P

1P

P 2P

1P
2P

1P
10P

10

1P

P
2P

3

cs

cs

Page - 4

1

10

2

 We interchange process ‘P ’ code in this manner, then what is the max.
 no. of process may present inside the cs at any point of time?
 (a) 2 (b) 3 (c) 4 (d) 10

Gate 2003
Q. Suppose we want to synchronise the 2 concurrent processes P and Q
 using Binary semaphore S and T.
 Process ‘P’ Process ‘Q’
 while (1) while (1)
 { {
 w : y:
 print‘0’; print ‘1’
 print ‘0’; print ‘1’
 X; Z;
 } }
Which of the following will always lead to an output string with 00110011
00.......
(a) W = P(T) X = V(T) Y = P(S) Z = V(S) S = T = 1
(b) W = P(T) X = V(T) Y = P(S) Z = V(S) S = 1, T = 0
(c) W = P(T) X = V(S) Y = P(S) Z = V(T) S = 1 = T
(d) W = P(T) X = V(S) Y = P(S) Z = V(T) T = 1, S = 0

Option - A
 S = 1 = T, so T can be started
 then 110011----------- may be printed, so it is wrong.
Option - C
 So c is also wrong
Option - B
 S = 1, then process ‘Q’ will be executed, so initially 11 will
 be executed, so it is wrong.
Option - D
 Correct

Gate 2004
Consider 2 processes P & P accessing the shared variable x and y protected

Page - 5

by 2 binary semaphore Sx and Sy respectively and both are initialized to ‘1’.
P and V denote the usual semaphore operator where P decrement the
semaphore value and V increment the semaphor value.
 P P
 while (1) while (1)
 { {
 L1; L3;
 L2; L4;
 X = X + 1; Y = Y + 1;
 Y = Y - 1; X = X - 1;
 V (Sx); V (Sy);
 V (Sy); V (Sx);
 } }

In order to avoid deadlock the correct operators at L1, L2, L3, L4 respectively.
(a) P(Sy), P(Sx), P(Sx), P(Sy) (b) P(Sx), P(Sy), P(Sy), P(Sx)
(c) P(Sx), P(Sx), P(Sy), P(Sy) (d) P(Sx), P(Sy), P(Sx), P(Sy)

(a) deadlock Sy = 1 0 Sx = 1 0
(b) deadlock Sx = 1 0 Sy = 1 0
(c) deadlock Sx = 1 0 Sy = 1 0
(d) not in deadlock

 Classical Problem of IPC

Producer and Consumer Problem

1 2

/ /
/ /
/ /

 N = 8
0 x
1 y
2 z
3
4
5
6
7

IN 3

Buffer

out = 0
item c = ‘x’
item p = ‘k’
mutex = 1
empty = 5 4 5
full = 3 4 3
 8 8 8

Page - 6

semaphore mutex = 1; semaphore empty = N; semaphore full = 0;

 void producer (void) void consumer (void)
 { {
 int item p; int item c;
 while (true) while (true)
 { {
 produce_item (item P) down (full);
 down (empty); down (mutex);
 buffer [IN] = item P; Item c = buffer [out];
 IN = (IN + 1) mod N; out = (out + 1) mod N;
 up (mutex); up (mutex);
 up (full); up (empty);
 } process_item (item c);
 } }
 }
→ Mutex is a binary semaphore variable used by the producer and consu-
 mer to access the buffer in a mutually exclusive manner.
→ Empty is a counting semaphore variable which represents the number
 of empty slots in the buffer at any point of time.
→ Full is a counting semaphore variable, it represents number of fill slots
 in the buffer at any point of time.

Q. Which down (empty) and down (mutex) are interchange in producer
 port then what are the effects?
 (a) Solution works fine and there is no problem at all.
 (b) It is possible for both producer and consumer to use the buffer at
 the same time.
 (c) Some times product producer by the producer will be lost.
 (d) It is possible for deadlock.

Ans. (d)
 mutex = 1
 when buffer is full
 E = 0 -1 Both producer and consumer will be
 F = 8 7 suspended

/
/

Page - 7

X
X
X

NOTE:
→ When down operation are interchanged then there is always possibility
 for deadlock.
→ When up operation are interchanged then there is no problem at all.
 Solution works fine

Reader and writer problem
semaphore mutex = 1
semaphore db = 1
 int rc = 0
void reader (void)
 {
 while (true)
 {
 down (mutex);
 rc = rc + 1;
 If (rc = = 1) down (db);
 up (mutex);
 DB void writer (void)
 down (mutex); {
 rc = r - 1; while (true)
 If (rc = = 0) {
 up (db); down (db);
 up (mutex); DB
 } }
 } }
R - W
W - R rc = 0
W - W mutex = 1
R - R db = 1

→ Mutex is a binary semaphore used by the reader in a mutually exclusive
 manner.
→ ‘db’ (database) is also a binary semaphore variable used by the reader
 and writer in a mutually exclusive manner.

database

Page - 8

→ ‘rc’ (reader count) is an integer variable represents the number of read-
 ers present in the database at any point of time.

Gate 2015
Q. The following two functions P & P that share variable ‘B’ with on
 initial value of 2 execute concurrently
 P () P ()
 { {
 (1) C = B - 1; (3) D = 2 × B;
 (2) B = 2 × C; (4) B = D - 1;
 } }
The number of distinct values that ‘B’ can possibly take after the execution
__________?
(1) C = 1 (1) C = 1 (1) C = 1 (1) D = 4 (3) D = 4
(2) B = 2 (3) D = 4 (3) D = 4 (2) B = 3 (1) C = 2
(3) D = 4 (2) B = 2 (4) B = 3 (3) C = 2 (2) B = 4
(4) B = 3 (4) B = 3 (2) B = 2 (4) B = 4 (4) B = 3

 B = 2, 3, 4
 3 values

Gate 2006
Q. Let P[0] - - - P[4] be the processes and m[0] - - - m[4] be mutexes be
 binary semaphore initialized to ‘1’.
 wait (m[i]);
 wait (m[i + 1] mod N);
 cs
 signal (m[i]);
 signal (m [i + 1] mod N);
 (1) mutual exclusion is satisfied.
 (2) ————— not —————
 (3) Deadlock is possible.
Solution:
 P P

1

1

1

2

2

2

2

0

0

↓/
/

{

m[0] = 1 0

m[1] = 1 0
/
/

m[2] = 1 0

m[3] = 1 0

m[1] = 0

m[2] = 1

Blocked

⇓

⇓
P

0P
P

P

Page - 9

 Ans. Statement 2, 3 are true.

NOTE:
There are two possibility for deadlock
(1) When more than 1 process enter into critical section then deadlock
 is possible.
(2) If one process restricted another process to enter into critical section
 or vice-versa then deadlock is possible.

Gate 2016
Q. Consider a non-negative counting semaphore S. The operation P(S)
 ↓ S, V(S) ↑S, during an execution 20 P(S) operation and 12 V(S)
 operation are issued in some order. The largest initial value of S for
 which atleast one P(S) operation will remain block is _______?
Solution
 I = Initial value of semaphore
 P = Number of wait operations
 V = Number of signal operations
 then resultant value of semaphore = I - P + V
 -1 = I - P + V ⇒ -1 = I - 20 + 12 ⇒ -1 + 8 = I
 -1 = I - 8 ⇒ I = 7

Page - 1

2

►

►

1

SYNCHRONIZATION

→ The process wrt to synchronization are two types.
 (1) Co-operative process (2) Independent process

Coperative Process : The execution of one process effects or affected
by other process. Then these processes are said to be co-operative process,
otherwise they are independent process.

NOTE : Interrupt or preemption can occur at any point of time or at any
where
 Ready Running

 P /P Time quontum expires/priority

(1) Problem arises not having proper synchronization between the proce-
 sses.
(2) Conditions to be followed to achieve the synchronization.
(3) Solutions (wrong solutions or right solutions).

 Producer and Consumer

Producer

int couut = 0;
void produce (void)
ξ
 itemp,
while (true)
ξ
Producer, itemc (itemp);
while (cout = = N);
Buffer [IN] = itemp;

N = δ

x0
y1

2 z
3
4
5
6
7

Buffer

couut = 3 2 4

Item P = ‘x’

Item C = ‘n’

IN 3

Void Consumer (void)
ξ
int itemc;
while (true)
ξ
While (Count = = 0);
Item C = Buffer [∞t]

Page - 2

IN = (IN + 1) mod N;
Count = Count t1;
-ξ
-ξ
I Load Rp, M[count]
II Iner Rp
III Store M[count], Rp
 P - I Rp = 3 4
 II
 C - I Rc = 3 2
 II
 III
 P - III

→ ‘IN’ is a variable used by the producer to identify the next empty
 slot in the buffer.
→ ‘OUT’ is a variable used by the consumer from where it has to be
 consumed the item.
→ ‘Count’ is a variable used by the producer and consumer to identify
 the number of fill slots in the buffer at any point of time.
→ Shared resource are (1) Buffer (2) Count

NOTE : If the buffer is full then producer is not allowed to produce
 the item.
 → If the buffer is empty than consumer is not allowed to consume
 the item.

Universal Assumption
→ While execitomg an instruction, if the interrupt comes, the interrupt
 will be serviced only after completion of the current micro instruction.
Due to this, there are 3 problems.
(1) In consistency (2) Loss of daa (3) Deadlock

The producer and consumer are not properly synchronized by sharing a
common variable count. Hence it is leading to inconsistency problem.

out = (out tl)mod N;
Count = Count - l;
Process - item (itemC)
ξ
-ξ
I Load Rc, M[count]
II DEC Rc
III Store m[count] Rc____

► ►

Page - 3

i

i
i

i

►

Printer and spooltr problem x0
y1

2 z
3
4
5
6
7

 Spooltr
directory [SD]

IN 3

1

►
►

1 1

2

out o
 R.Q P P

 abc.doc xyz.doc
P → I R 3 4

____ 22

 II
III

P → I R 3
 II

Enter File
(1) Load R , M[IN]
(2) Store SD[R], “file-name”;
(3) INCR R ;
(4) Store M[IN], R ;
→ ‘IN’ is a variable used by all the process to identify the next empty
 slot in the spooltr directory.
→ ‘OUT’ is used by the printer to identify from where it has to print
 the document.
→ Shared Resources
 ‘IN’ and ‘OUT’ variable
→ The processes are not properly synchronized while sharing the
 common variable ‘IN’, hence it is leading to loss of data problem.
Deadlock : - If the proper synchronization is NOT there between the
 processes then it is also possible for deadlock.
(2) Conditions to be followed to achieve synchronization.

Definitions:
(1) Critical section
 → The portion of program text where the shared variables or shaped
 resources are placed.
(2) Remainder section or Non-critical section :
 → The portion of present text where the independent code of the
 process will be placed.
(3) Race condition :
 → The final value of any variable depends on the executiion sequ-
 ence of the processes.

Respective process
 resistor

Page - 4

Conditions :
(1) Mutual exclusion :-
 → No 2 process may be simultaneously present inside the critical
 section at any point of time.
 → Only one process should be present inside the critical section at
 any point of time.
(2) Progress :-
 → No process running outside the critical section should block the
 other interested process from entering into the critical section
 when critical section is free.
 P

 P
(3) Bounded wait : -
 → No process should have to wait forever tp enter into the critical
 section. There should be a bound in getting chance to enter into
 critical section.
 → If bounded waitings is not satisfied then it is possible.

Solutions :
(1) Software type of solutions :
 → (a) Lock variables
 → (b) Strict alternation and Decker’s algorithm
 → (c) Peterson’s solutions
(2) H/w type of solution
 → Test and set lock instruction set (TSL)
(3) OS type of solutions
 → Counting semophore
 → Binary semophore
(4) Programming language type of solution
 → Monitors

Lock variables
Entry section
(1) Load R , M[lock]
(2) CMP R ,
(3) Jn2 to step (1)
(4) Store m[lock], ≠ 1
(5) CS
(6) Store m[lock], ≠ 0

i
i

►

►

2

1

×

Lock

CS is Free CS is Busy
0 1

Page - 5

0

0

⇒

⇒

2

22
2

2

1

1

1

1

1

1

1

1R.Q P P
Lock = 0
P → I R 0
 II
 III
P → I Lock = 0 1 P
 II R 0 P
 III
 IV
 V
P → IV Lock = 0 1

→ We have prove that both the process P & P are simultaneously
 present inside the critical section at same point of time.
 Hence, mutual exclusion is not satisfied and the solution is bound
 to be incorrect.
(2) Strict alternation and Decker’s algorithm (Process takes turn to enter
 into critical section) Turn

 0 1
 Process ‘0’ Process ‘1’
Process ‘P ’ Process ‘P ’
While (true) turn = 0 While (true)
ξ ξ
 non-(sc); non-(sc);
While (turn 1 = 0); while (turn 1 = 1)
 cs cs
 turn = 1, turn = 0;
-ξ -ξ
For mutual exclusion execute code until process enter into cs .
 turn = 0 1
 exit
 P
 turn = 1 0
 exit
 P

Page - 6

Progress : - Process ‘P ’ enter and exit
 Process ‘P ’ enter and exit
 Now if second process re-entry is successfull.
 Then progress is satisfied.
Det : - Which process will go next in cs is decided by only those process
 who want to go into cs
→ In this decision, the process in remainder section and the process which
 is not interested to go into cs should not participation.

Bounded wait
→ If number of process countable, finite, bounded then between is satified.

Gate 2010
 P P
 while (s = = s) ; while (s ! = s) ;
 cs cs
 s = s ; s = not (s);
s = 1
s = 0
P → comes → Condition false, so, P enter into cs
P → and s assign in s . So s = 0 and P comes out.
After fully code is executed then process (P) comes out from cs .
Now s = 0 s = 0

P → condition false, So P enter
 into cs P s = 0
 s = 1
Progress → Second process executive s = 0
 s = 1
Now second process re-entry is unsuccessfull
b¹Co condition is true for second (P) process.
So progress is not satisfied.
 P →

 P

2

22

2

2
2

2

2 2

2

2

22

22
2

2

►

⇒ 1

1

1
1

111

11

1
11

1
1

1

1

1

1

comes
exit }

×

Page - 7

(3) Bounded wait :
 Process is countable, so between is satisfied.
 Peterson’s solution (2 process solution)
 # define N 2
 # define TRUE 1
 # define FALSE 0
 int turn;
 int interested [N];
 Void enter, region (int process)
 ξ
 1. int other;
 2. other = 1 - process ;
 3. interested [process] = True ;
 4. Turn = process ;
 5. While (turn = process & interested [other] = = True);
 ξ
 cs
 Void icone - resistor (ict process)
 ξ
 interested [process] = false ;
 ξ
 interested [0] = FALSE
 interested [1] = FALSE

(1) Mutual exclusion 3
(2) Progress 3
(3) Bounded wait 3

 TSL (Test and Set Lock) Instruction Set

TSL Register Files
→ Copy the current value of flag into register and store the value of ‘1’
 into the flag in a single arithmic cycle without any preemption.

0 1 P P
other = 1 other = 0 0 1

 Process

 0 1
(P) (P)

Page - 8

i
i

2
2

2

____ ____

1 1

1

1

Entry Section

(1) TSL R , m(flag)
(2) CMP R , # 0
(3) NJ2 to Step (1)
(4) cs
(5) Store M[flag], # 0
 P P
flag = 0 1
P → I R 0
 II
 III P
 IV cs
P → I
 II R 1
 III
 Mutual exclusion
 Progress
 Bounded wait

 Mutual exclusion Progress B.W
Lock
various|cs

Strict alter-
nation &
Decker’s also

Peterson’s
Solution

TSL

 Flag

 0 1
cs is free cs is busy

flag = 0 1 1

Page - 1

916

15

20

⇒

26

7

Q. LA = 32 bits
 PAS = 64 MB → 2 Bytes
 Page size = 4 kB
 Memory is Byte addressable.
 Page tale entry size = 2B
 Approximate page table size in Bytes ?
Ans. Page table size = Number of pages in page table * PTES

 = * PTES = * 2B

 = 2 * 2B = 2 MB.

Q. Consider a system having a page table with 4K entries and LA =
 29 bits PA is > If system has 5/2 frames.

Q. LAS = 256 MB PA = 24 bits
 PAS is divided into 8 KB frames. How many pages ?

 Number of pages = = = 2 = 32 K.

Q. LAS = PAS = 2 Bytes Page Size = 5/2 B = 2
 PTES = 2B
 Page table entry contain besides other information like
 1 bit for valid/Invalid
 1 bit for reference
 1 bit for dirty
 3 bit for protection
 How many bits are still available in page table entry to store the pass-
 ing information ?
 ←2B = 16 bit→
 1 7 + 1 + 1 + 1 + 3
 Number of fames = = 2
 Remaining bit = 16 - 13 = 3 bit
 NOTE : PTES = 2B 16 bits, is not all the frame number of
 bits. If may contain some other informations.

____ LAS
Page size 12

32____2 B
2 B

►

►

►

►

ℓ * B

ℓ

B

►

►

p d
12 17

LA ►

►

f d
9 12

PA

____ LAS
Page size

____28
B

2 B
2 B

____162
29

Page - 2

►

►►

►

►

►

► ►

►

PERFORMANCE OF PASING :
Without TLB
 Main memory Access time = ‘m’
* Page table also stored in mm then EMAT = mtm = 2m

 CPU P P d f d

 Page table PAS

→ If the TLB (translation lookside buffer) is added to improve the perfor-
 mance them TLB contains frequently referred page number and corres-
 ponding frame number.
→ The TLB is associative High speed memory the TLB contains only a
 few of the page table entries.
→ If the page number is found then its frame number is immediately avai-
 lable.
→ If the page number is not found (TLB miss) the a memory reference to
 the page table must be made.
 With TLB

 cpu P p d
 TLB flit

 TLB

TLB flit ratio = x
TLB Access time = c MMAT = m
Then effecitve memory Acess time
 EMAT = x(c + m) (1 - x) (c + m + m)

 =

f d
TLB
Miss

Page Table PAS

____x (c + m) + (1 - x) (c + 2m)
 TLB
 filt TLB miss

{

Page - 3

2

10

10
10 10

20
10

1

20

►

►

►

► ►

►

►

►

►

►

►

Multilevel Paging

 Logical address = 32 bit PTES = 4B
 Page size 4K words
 Page size of page table = 1 KW
 Number of pages = = 2

 1 → 2
 2 → 2 * 2
 2
→ To avoid overhead to maintaining the large page table multilevel passing
 will be implemented.
 Number of pages on pase table = = 2

 P = Number of bits required to represent the
 pages of page table.
 P = Number of bits required to represent the
 page size of page table.

Q. Consider a system with 2-level paging applicable. The page table has
 divided into 2k pages each of size 4k words. If PAS is 64M words which
 is divided into 16k frames & page table entry size is 4B. Then calculate
 (1) Length of logical address
 (2) Length of physical address
 (3) Page table size of first level page table
 (4) Page table size of second level page table.

32____2
2/2

►

►

►

cpu P

f d
21P P

p d
32
h

►

► PA
20

10

10

10

12

0
1
2

0
1
2

2-1 2-1

 (Outer)
First Level
 PT

 (Inner)
Second Level
 PT

 Page
Table of
page table

 Page of
page table

Frames

PAS

____202
210

Page - 4

p d

P P

►

►

► LA
Solution :

 PAS = 64 M words
 = 2 × 2 words
 = 2 words.
(1) LA = 35 bits
(2) PA = 26 bits
(3) Page table size at first level
 = Number of pages at first level × PTES = 2 × 4B = 8KB
(4) Page table size at second level = Number of pages at second level
 × PTES = 2 × 4B = 16 KB

Performance of two-level paging
Without TLB
 MMAT = ‘m’
If page table is also stored in mm then
 EMAT = (m + m + m) = 3 m
With TLB

TLB Access time = c
TLB hit ratio = x
 MMAT = ‘m’
Then EMAT = x(c + m) + (1 - x) (c + 3m)

12

11

2
26

2061

1 2

23 12

11 12

f d
►

► PA

►

► 26
14 12

►

►►

►

►

cpu P f d

P P

p d

m m m

