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CHAPTER 4

VIBRATIONS

Vibrations are the oscillations of a structural system about the equilibrium position. In general sense, these are
periodic motions, repeating in a certain interval of time. All the structural system possessing mass and elasticity
are capable of vibrations to some extent. If uncontrolled, vibrations can lead catastrophic situations and unusual
consequences. Vibrations are induced by unbalanced forces and can also be induced for benefits. Therefore, the
design of engineering systems requires consideration of the vibrational factors. Vibration isolators are used to protect
structures from excessive forces developed in the operation of rotating machine. The theory of vibrations is concerned
with the study of oscillatory motions of bodies and the forces associated with them.

4.1 FUNDAMENTALS

This section describes the basic concepts and analysis of
mechanical vibrations.

4.1.1 Basic Phenomenon

All bodies having mass and elasticity are capable of
vibrations. Mass is an inherent property of the body.
Elasticity of the material permits relative motion among
its parts. When body particles are displaced from the
equilibrium position by the application of external force,
the internal forces of the body, in the form of stresses and
inertia, try to bring the body to its original equilibrium
position. The swinging of pendulum and the motion of
plucked spring are typical examples.

Vibration of a system involves transfer of potential
energy to kinetic energy, and kinetic energy to potential
energy. In a damped system, some energy is dissipated

in each cycle of vibration which must be replaced by
an external source, if state of steady vibration is to be
maintained.

4.1.2 Harmonic Motion

Harmonic motion is the simplest form of vibrations
which is represented in terms of amplitude x0, time t and
frequency ω, and phase angle φ in trigonometric function
[Fig. 4.1]:

x = x0 sin (ωt+φ) (4.1)

A harmonic motion having amplitude x0 and rotating
at constant angular velocity ω can be represented in
exponential form or as a complex quantity

z = x0e
jωt

= x0 cosωt+jx0 sinωt (4.2)

where z is referred as complex sinusoid.
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238 CHAPTER 4: VIBRATIONS

The associated terms of sinusoidal representation are
defined as follows:

1. Amplitude Amplitude (x0) is the maximum
displacement of a particle under the harmonic
motion from equilibrium position. This peak value
indicates the maximum strain that the vibrating
part is undergoing. The average value of displace-
ment can be found as

x̄ = lim
T→∞

1

T

∫ T

0
x (t) dt

The square of the displacement is associated with
the energy of the vibration for which the mean
square value is a measure:

x̄2 = lim
T→∞

1

T

∫ T

0
x2 (t) dt

2. Period Period is the time required to execute one
cycle of the harmonic motion.

3. Frequency Frequency (f) of a harmonic motion is
the number of cycles executed in unit time. It is
the inverse of time period (T ):

f =
1

T

x

t

T

x0

Figure 4.1 Harmonic motion.

The unit of frequency, cycle per second, is
designated as one hertz (Hz).

As the system executes one cycle, the argument
of the trigonometric function runs through 2π
radians. Thus,

1 cycle = 2π radians

Therefore, the periodicity of motion is also ex-
pressed in terms of circular frequency, measured

in rad/s:

f =
ω

2π
cycles/s

= ω rad/s

Frequency is also expressed in terms of revolu-
tion per minute (rpm):

f =
60ω

2π
rpm

4. Phase Angle Phase angle (φ) represents the lead
or lag between the response and a purely sinusoidal
response. If φ > 0, the response is said to lag a
pure sinusoid, and if φ < 0, the response is said to
lead the sinusoid.

4.1.3 Work Done per Cycle

Let a vibrating force F = F0 sinωt act on a particle and
causes displacement x = x0 sin (ωt−φ). In one cycle of
the harmonic motion, the system executes 2π radian.
Therefore, work done per cycle is determined1 as

W =

∫ 2π/ω

0
F
dx

dt
dt

=

∫ 2π/ω

0
F0 sinωt×

d

dt
{xo sin (ωt−φ)} dt

=

∫ 2π/ω

0
F0 sinωt×x0ω cos (ωt−φ) dt

= F0x0ω

∫ 2π/ω

0
sinωt cos (ωt−φ) dt

=
F0x0ω

2

∫ 2π/ω

0
(sin 2ωt+sinφ) dt

=
F0x0ω

2

[

−
cos 2ωt

2ω
+sinφ× t

]2π/ω

0

=
F0x0ω

2

[

− (0−0)+

(

sinφ×
2π

ω
−0

)]

This finally results

W = πF0x0 sinφ (4.3)

This indicates that the work done per cycle in by
a harmonic force depends upon the phase difference
between the force and displacement. Eq. (4.3) can be
examined for two extreme conditions:

1Using

2 sinA cosB = sin(A+B)+sin(A−B)
∫

sin θdθ = − cos θ
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1. When force and displacement functions are in
same phase (φ = 0):

W = 0

2. When force and displacement functions are orthog-
onal (φ = π/2):

W = πFoxo

4.1.4 Superposing Waves

Figure 4.2 depicts two sinusoidal waves in a polar or
vector diagram:

x1 = x01 sinω1t

x2 = x02 sinω2t

The relative phase angle (ω1−ω2) t is the angle between
these vectors.

xx2

x1

(ω1−ω2) t

Figure 4.2 Superposing waves.

If these waves coincide on a common medium in the
same direction, the resulting wave of superposition is
given by their vector sum:

x = x1+x2

= x01 sinω1t+x02 sinω2t

= x0 sin (ω2−ω1) t

where

x0 =
√

x01
2+x02

2+2x01x02 cos (ω2−ω1) t

4.1.5 Classification of Vibrations

Some of the important attributes of classifications are as
follows.

4.1.5.1 Degrees of Freedom The number of degrees
of freedom of a mechanical system is the number
of kinematically independent coordinates necessary to
completely describe the motion of each element of the
system. Based on this, the vibration systems can be
classified into the following:

1. Discrete Systems A vibration system having
a finite number of degrees of freedom is called
discrete system.

2. Single Degree of Freedom A system having only
one degree of freedom is called a single degree of
freedom (SDOF) system.

3. Multiple Degree of Freedom A system with two or
more degree of freedom is called a multiple degree
of freedom (MDOF) system.

4. Continuous System A system with an infinite
number of degrees of freedom is called a continuous
system.

The number of degrees of freedom indicates the number
of differential equations or variables required to define a
system. Therefore, complexity in predicting the behav-
ior of a system increases with increase in the number of
degrees of freedom.

4.1.5.2 Characteristics Linearity and non-linearity
of a mechanical system directly affect the difficulty in
predicting the behavior of system, discussed as follows:

1. Linear System If all the basic components of a
vibratory system: the spring, the mass, and the
damper, behave linearly, the resulting vibration
is governed by linear differential equations. There-
fore, such a vibration is known as linear vibration.
The principle of superposition is valid for linear
systems only.

2. Non-linear System A system is non-linear if
its motion is governed by non-linear differential
equations. This can be caused by the non-linear
behavior of one or more components of the system.
The principle of superposition is invalid for non-
linear vibrations.

Mathematical techniques and methods are well devel-
oped for analysis of linear systems while those for non-
linear systems are still under development.

4.1.5.3 External Inputs The vibrations can be free
or forced, described as follows.

1. Free Vibrations In a free vibration, the system
oscillates under the action of inherent inertia
and elastic forces of the system, initiated by a
small disturbance; vibrations occur in the absence
of external forces. The oscillation of a simple
pendulum is a typical example of free vibrations.

If a system is left after an initial disturbance
to vibrate on its own, the frequency with which
it oscillates naturally, without external forces, is
known as the natural frequency of the system. A
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vibratory system having n degrees of freedom will
have n distinct natural frequencies of vibration.

2. Forced Vibrations In contrast to free vibrations,
forced vibrations take place under the excitation of
external forces. The oscillations in machines, such
as engines, are forced vibrations.

If the frequency of the external force coincides
with the natural frequencies of the system, a
condition known as resonance occurs; the system
undergoes dangerously large oscillations. Failure
of structures, such as building, bridges, turbines,
and airplane wings, is generally associated with
the occurrence of resonance.

If the external force is periodic, the vibrations
are harmonic. If the external input is aperiodic,
vibrations are said to be transient. If the excitation
force is known at all times, the excitation is
said to be deterministic. If the excitation force is
stochastic (unknown, unpredictable) the excitation
is said to be random or non-deterministic. Exam-
ples of random excitations are wind velocity, road
roughness, and ground motion during earthquakes.
In these cases, a large collection of records of the
excitation can exhibit some statistical regularity.
It is possible to estimate averages, such as the
mean and mean square values of the excitation.

4.1.5.4 Energy Dissipation A vibration system can
have elements that dissipate energy. In this respect, the
systems are classified as follows:

1. Undamped Vibrations Vibrations without energy
dissipation are called undamped vibrations.

2. Damped Vibrations If an energy dissipating ele-
ment is present in the system, the vibrations are
called damped vibrations.

In many physical systems, the amount of damping
is so small that it can be disregarded for most of
the engineering purposes. However, consideration of
damping becomes extremely importance in analyzing
systems near resonance.

4.1.6 Elements of Vibration Systems

Amechanical system consists of three basic elements: in-
ertia, stiffness, and damping. Inertia components store
kinetic energy, stiffness components store potential
energy, and damping components dissipate the energy of
the system. In addition to these, external forces provide
energy to the system. These elements are described
under the following subsections.

4.1.6.1 Spring Elements Springs act as reservoir of
potential energy, the energy by virtue of displacement

or deflection, but they don’t require motion (velocity)
to do so. A helical-coil spring serves as the model
for all linear structural components, such as bars
undergoing longitudinal motion, shafts under rotational
motion, and beams under transverse vibrations; all store
potential energy and can be modeled as springs. The
characteristics of a stiffness component are described as
follows:

1. Stiffness A spring is a flexible mechanical link
between two particles in a mechanical system.
In reality, a spring itself is a continuous system.
However, the inertia of the spring is usually small
compared to other elements in the mechanical
systems, and is neglected. Under this assumption,
the force applied to each end of the spring is the
same.

The length of the spring when it is not subjected
to external force is called unstretched length. Since
the spring is made of a flexible material, the force
F that must be applied to the spring to change
its length by x should be continuous function of x.
A linear spring obeys a force-displacement law in
following format:

F = kx

where k is called the spring stiffness or spring
constant which has dimensions of force per unit
length.

Using the constitutive equation, the stiffness of
a structural member can be appropriately defined
in the following form:

k =

(
dF

dx

)

x=0

For example, consider a cantilever beam of length
l with an end mass m. For simplicity, mass of the
beam is assumed negligible. From the subject of
strength of material, the static deflection of the
beam at the free end is given by

δ =
Wl3

3EI

where, W (= mg) is the weight of the mass, E is
Young’s modulus of beam material, and I is the
moment of inertia of the cross-section of the beam.
Therefore, the spring constant for the system is

k =
W

δ

=
3EI

l3

The modeling of stiffness components in the
form of combination of springs (in series or paral-
lel) is convenient by such components by a single
spring of an equivalent stiffness ke such that the
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k1

k2

ke = k1+k2

k1 k2

Parallel
combination

ke = k1k2/(k1+k2)

Series
combination

Figure 4.3 Combination of springs elements.

system undergoes same displacement for a given
force [Fig. 4.3].

2. Potential Energy The work done by a force is
calculated as force multiplied by distance. Figure
4.4 shows the work done by the spring force as its
point of application moves from a position x1 to
x2. This work is stored as potential energy (U) in
the spring, given by

U1→2 =

∫ x2

x1

(−kx) dx

= k
x1

2

2
−k

x2
2

2

x

F
=

k
x

x1 x2

U1→2

Figure 4.4 Potential energy in springs.

Since the work depends upon the initial and
final positions of the point of application of the
spring force and not on the path of the system, the
spring force is conservative in nature. Therefore,
the potential energy function2 can be defined for

2Similarly, a torsional spring is a link in a mechanical system
where application of torque leads to an angular displacement
between the ends of the torsional spring. A linear torsional spring
has a relationship between an applied moment (M) and the

spring as

U (x) =
1

2
kx2

where x is the change in the length of the spring
from its original length.

4.1.6.2 Inertia Elements The inertia element of a
mechanical is assumed to be a rigid body which acts
as a reservoir of kinetic energy, the energy by virtue of
the velocity of the body. Using the Newton’s second law
of motion, the product of the mass and its acceleration
is equal to the force applied to the mass. The work is
equal to the force multiplied by the displacement in the
direction of the force. The work done on a mass is stored
in the form of the kinetic energy (T ).

The mass of a body acts as inertia force against the
linear motion. For angular motions, distribution of mass
in the body affects the inertia against the rotation. For
this, moment of inertia (I) is used as measure of inertia
in angular motions, defined as

I =

∫ r

0
r2dm

where r is the distance of center of infinitesimal mass
dm from the axis of rotation of the body [Fig. 4.5].

According to d’Alembert’s principle, while dealing
with dynamics, inertia force or torques (mẍ and I θ̈)
should be taken into account.

4.1.6.3 Damping Elements In many practical sys-
tems, the vibrational energy is gradually converted to
heat or sound, which results into a gradual reduction
in the energy and the amplitude of the vibrations.
The mechanism of gradual conversion of the vibrational
energy is known as damping. A damper is assumed to
have neither mass nor elasticity. Damping forces exist
only if there is a relative velocity between two ends of
the damper.

There are mainly four types of damping mechanisms
used in mechanical systems: viscous damping, Coulomb
damping, structural damping, and slip damping. These
are explained as follows:

1. Viscous Damping Viscosity is the property of
a fluid by virtue of which it offers resistance to
the motion of one layer over the adjacent one.
Some amount of energy is dissipated in overcoming

angular displacement (θ) as

M = ktθ

where kt is the torsional stiffness which has dimensions of force
times length. Therefore, the potential energy function for a
torsional spring is

U (θ) =
1

2
ktθ

2

which is similar to that of linear spring.
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r

r

mr2

mr2/2

ml2/12 ml2/3

3mr2/10

3mr2/20

Ring

Disc

Bar

Cone

l

Figure 4.5 Moment of inertia.

this viscous resistance. Therefore, when a system
is allowed to vibrate in a viscous medium, the
resulting damping is called as viscous damping3.

Consider two plates of equal area A separated
by a fluid film of coefficient of viscosity µ and
thickness t. The upper plate is allowed to move
parallel to the fixed plate with a velocity ẋ [Fig.
4.6].

t

F ẋ

Viscous fluid

Figure 4.6 Viscous damping.

Using Newton’s law of viscosity, the net viscous
force F required to maintain this motion is ex-

3If a non-ferrous conducting object is moved in a direction
perpendicular to the lines of magnetic flux which is produced by
a permanent magnet, then as the object moves, eddy current,
proportional to the velocity, is induced in the object. This eddy
current sets up a magnetic field so as to oppose the original
magnetic field that has induced it. This provides a resistance
to the motion of the object in the magnetic field. For analysis
purposes, this is also considered mechanical damping of viscous
type.

pressed as

F =
µA

t
ẋ

= cẋ

where c is called the viscous damping coefficient,
used as the measure of viscous damping.

The equivalent damping coefficient for a combi-
nation of viscous dampers can be determined as in
case of springs [Fig. 4.7].

c1

c2

ce = c1+c2

c1

Parallel

ce = c1c2/(c1+c2)

c2

combination
Series

combination

Figure 4.7 Combination of viscous dampers.

The rate of energy dissipated per cycle is
determined as

E =

∮

F ·dx

=

∮

cẋdx

=

∫ 2π/ω

0
cẋ2dt (4.4)

The primary objective of damping in oscillatory
systems is to limit the amplitude of the vibration
at resonance. For a simple harmonic motion:

x = x0 sinωt

ẋ = ωx0 cosωt

Therefore, the amplitude at resonance can be
represented as

F = cẋ

F = cx0ω

x0 =
F

cω

Using Eq. (4.4), the energy dissipated per cycle is

E =

∫ 2π/ω

0
cω2x2

0

(
1+cos 2ωt

2

)

dt

= πcωx2
0
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Thus, energy dissipation per cycle under viscous
damping is proportional to the square of the am-
plitude of motion, therefore, the hysteresis curve is
an ellipse [Fig. 4.8]. For non-linear damping, the
energy is not a quadratic function of amplitude,
therefore, the curve is no longer an ellipse.

ϵ

F

A

Linear damping

Non-linearσ
damping

Figure 4.8 Hysteresis in viscous damping.

The damping properties of a material can also
be presented in alternatives forms:

(a) Specific Damping Capacity - Specific damping
capacity is defined as the energy loss per cycle
divided by the peak potential energy:

β =
E

U

(b) Loss Coefficient - Loss coefficient is defined
as the ratio of damping energy loss per radian
divided by the peak potential or strain energy:

η =
E

2πU

For non-viscous damping, no such simple ex-
pression exists. However, an equivalent damping
coefficient ce can be determined by equating
the energy dissipated by the viscous damping to
that of non-viscous damping, assuming harmonic
motion.

2. Coulomb Damping When a body is allowed to
slide over the other, the surfaces offer frictional
resistance to the relative motion. Some amount
of energy is always dissipated in overcoming the
friction. The damping induced by friction is called
Coulomb damping or dry friction damping.

The general expression for coulomb damping is

F = µRn

where µ is the coefficient of friction, and Rn is the
normal reaction.

xkx

mẍ

F

(a)

xkx

mẍ

F

(b)

Figure 4.9 Coulomb damping.

Consider a spring-mass system subjected to
Coulomb damping [Fig. 4.9].

The reduction in the amplitude of the vibration
is examined in two directions separately:

(a) Rightward Movement For the rightward move-
ment of mass m connected with spring of
stiffness k, the equilibrium equation is

mẍ+kx+F = 0

By applying the boundary conditions: at t = 0,
x = x0 and ẋ = 0,

x =

(

x0−
F

k

)

cos

√

k

m
t+

F

k

The equation holds good for half cycle. When
t = π/ω (cosπ = −1), the half cycle gets
completed during which the displacement is
obtained from above equation as

x1/2 = −
(

x0−
2F

k

)

Thus, the initial amplitude x0 is reduced by
2F/k in half cycle. The natural frequency of
oscillation of the system is ωn =

√

k/m.

(b) Leftward Movement The dynamic equation for
leftward movement of the mass, for reversed
sign convention of x′ (= −x), is

mẍ+kx+F = 0

Therefore, the amplitude again reduces by
2F/k in the half cycle. The natural frequency
of oscillation of the system remains constant at
ωn =

√

k/m.

The decay in amplitude per cycle in Coulomb
damping is found as

∆ =
4F

k
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This is a constant quantity for constant friction
force F and stiffness k. The motion will cease,
however, when the amplitude becomes less than
the elongation of spring at which the spring force
is insufficient to overcome the static friction force.

3. Structural Damping Structural damping is offered
by the elastic properties of the structure itself.
This type of damping is due to the internal
friction of the molecules of elastic materials. When
a material is subjected to cyclic reversal of loading,
a hysteresis loop appears on the stress–strain
diagram, indicating that more work is required
for straining the material than what is recovered
during the return of the cycle [Fig. 4.10]. The

ϵ

σ

Figure 4.10 Hysteresis loop in cyclic loading.

difference of the work is measured by the area
of the hysteresis loop as the energy dissipated
per unit volume per cycle. Therefore, structural
damping is also called hysteresis damping. The
magnitude of this type of damping is very small
as compared to that of other modes of damping.

Experiments indicate that the energy dissipated
per cycle is proportional to the stiffness of the
material (k) and square of the amplitude (x0), but
independent of frequency of the vibration:

E = αx2
0

where k is a constant (having units of force per unit
displacement) representing the influence of shape,
size, and stiffness of the structure. The equivalent
damping coefficient can be determined as

πceωx
2
0 = αx2

0

ce =
α

πω

The structural damping loss coefficient is

η =
E

2πU

=
αx2

0

2π (kx2
0/2)

=
α

πk

where k is the stiffness of the structure.

4. Slip Damping Damping is also caused by the
friction between the internal planes of a struc-
ture, that slip or slide as the deformation takes
place. Microscopic slip occurs on the interfaces
of machine elements which causes dissipation of
vibration energy. This results into damping of
vibrations which is called slip damping.

4.2 UNDAMPED FREE VIBRATION

Resonance is the situation when natural frequency of
vibration coincides with that of excitation in a given
machine. Therefore, determination of natural frequency
and amplitude of vibrations of a machine element is
essential in designing process.

The following are the three basic methods employed
for vibrational analysis:

1. Equilibrium method

2. Energy method

3. Rayleigh’s energy method

These are described in the following sections along with
the examples of undamped free vibrations of single
degree of freedom.

4.2.1 Equilibrium Method

The equilibrium method considers the equilibrium of
external and internal forces in the system. It is also
known as Newton’s method because it employs the
Newton’s second law of motion. The law states that the
rate of change of momentum of a mass is equal to the
force acting on it.

Fi = mẍ

This force F is the the inertia force, as explained by
the d’Alembert’s principle. The principle states that a
body, which is not in static equilibrium by virtue of
some displacement, can be brought to static equilibrium
by introducing on it an inertia force which is equal
to the mass times the acceleration of the body and
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acts through the center of gravity of the body but
in opposite direction to the acceleration. Therefore, in
static equilibrium, the vector sum of the resultant
external force (F ) acting on a body and the inertia force
(Fi) is equal to zero:

F +Fi = 0

Equivalent or extended form of Newton’s method is
the principle of virtual work. For example, when mass
of a spring-mass system is given a virtual displacement
δx, the total virtual work done by all the forces is set
equal to zero to obtain

−kẍδx−kxδx = 0

mẍ+kx = 0

The following two examples explain the general
procedure of the equilibrium method:

1. Spring-Mass System Consider a spring mass
system constrained to move in a rectilinear manner
along the axis of the spring. Spring of constant
stiffness k is fixed at one end and carries a mass m
at its free end [Fig. 4.11].

mx

k

m

mẍ

kx

Figure 4.11 Spring-mass system.

The body is displaced x distance from its
equilibrium position vertically downwards. This
equilibrium position is called static equilibrium.
The spring force kx and the inertia force mẍ both
act in upward direction. For equilibrium,

mẍ+kx = 0 (4.5)

This is the differential equation of motion of the
spring-mass system, which can be solved for x.
Therefore, the natural frequency of the system is

ωn =

√

k

m
(4.6)

2. Simple Pendulum Consider a pendulum system
consisting of a hanging body of mass m attached
to a massless string of length l [Fig. 4.12].

mg

l
θ

mlθ̈

m

Figure 4.12 Pendulum.

If mass is displaced at an small angle θ, then
the equation of equilibrium of forces acting on the
mass is found as

mlθ̈+mgθ = 0

This equation can be solved for θ. The natural
frequency of the pendulum is found as

ω =

√

g

l

4.2.2 Energy Method

Kinetic energy and potential energy are the two forms
of microscopic energy of a system, which can be related
to motion and the influence of some external effects:

1. Kinetic Energy The energy that a system possesses
by virtue of its motion relative to some reference
frame is called kinetic energy (T ). When all the
parts of a system, having mass m, move with
the same velocity ẋ with respect to some fixed
reference frame, the kinetic energy is expressed as

T = m
ẋ2

2

2. Potential Energy The energy that a system pos-
sesses by virtue of its elevation in a gravitational
field is called potential energy (U). The gravita-
tional field can be gravity, magnetism, electricity,
or surface tension. When all parts of a system,
having massm, are at elevation x relative to center
of a potential field, say gravity g, the potential
energy of the system is expressed as

U = mgx
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In a vibratory system, the energy is partly potential
and partly kinetic. Energy method considers the system
as conservative; no energy is lost due to friction or energy
dissipating non-elastic members. Thus, the sum of the
kinetic energy and potential energy is constant:

T +U = constant

d

dt
(T +U) = 0 (4.7)

Differentiation of the above equation w.r.t. time (t) gives
the differential equation of the equilibrium of the system.
Following two examples explain the general procedure of
energy method:

1. Spring-Mass System Consider a spring–mass sys-
tem constrained to move in a rectilinear manner
along the axis of the spring. Spring of constant
stiffness k is fixed at one end and carries a mass
m at its free end [Fig. 4.11]. The potential energy
and kinetic energy at any instant of time will be
given by

U =
1

2
kx2

T =
1

2
mẋ2

Using Eq. (4.7),

d

dt

{
1

2
mẋ2+

1

2
kx2

}

= 0

mẍ+kx = 0 (4.8)

This equation of motion for the spring-mass sys-
tem is the same as Eq. (4.5).

2. Cylinder Rolling on Cylindrical Surface Consider a
solid cylinder of radius r rolling without slipping
on a cylindrical surface of radius R [Fig. 4.13].

θ

m
r

φ

Cylinder

Cylinderical surface

R

Figure 4.13 Cylinder on cylindrical surface.

Let the cylinder roll (without slipping) by angle
φ during which it traces an angle θ at the center
of cylindrical surface. Therefore,

rφ = Rθ

rφ̇ = Rθ̇

During rolling, both the translation and rotation of
the cylinder take place by the following velocities:

(a) Translational velocity

ẋ = (R−r) θ̇

(b) Rotational velocity

ω = φ̇− θ̇

=

(
R

r
−1

)

θ̇

If m is the mass of cylinder, kinetic energy (T ) and
potential energy (U) of the system at any angle θ
are written as

T =
1

2
mẋ2+

1

2

(

mr2
)

ω2

=
3

4
(R−r)2 θ̇2

U = mg (R−r) (1−cos θ)

For small values of θ: sin θ ≈ θ, therefore, using
Eq. (4.7),

θ̈+
2g

3 (R−r)
θ = 0

Natural frequency of the oscillations is found as

ωn =

√

2g

3 (R−r)

4.2.3 Rayleigh’s Energy Method

The principle of conservation of energy for an undamped
system [Eq. (4.7)] is restated as

T +U = constant

This can have an alternative form that the maximum
kinetic energy at the mean position will be equal to the
maximum potential energy at the extreme position:

Tmax = Umax (4.9)

The application of this equation is known as Rayleigh’s
energy method, which directly gives the natural fre-
quency of the system.

The method has an alternative form. If motion of
various masses of a system can be expressed in terms
of a single displacement x of some specific point; the
system is simply one of a single degree of freedom, the
kinetic energy of the system can be written as

T =
1

2
meẋ

2
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where me is the effective or equivalent lumped mass at
the specified point. For the equivalent stiffness ke of the
system at the specified point, the natural frequency can
be written as

ωn =

√

ke
me

(4.10)

This is evident in the following examples:

1. Spring–Mass System For the spring-mass system
[Fig. 4.11], the displacement is represented as

x = x0 sinωnt

Differential of above equation w.r.t. time (t) gives
expression of velocity as

ẋ = ωnx0 cosωnt

Maximum velocity at mean position is ωna, there-
fore, maximum kinetic energy at mean position
is m (ωnx0)

2 /2. Similarly, the maximum potential
energy at the extreme position is kx2

0/2. Thus,

1

2
m (ωnx0)

2 =
1

2
kx2

0

Therefore, the natural frequency of the system is

ωn =

√

k

m

This is the same as obtained in Eq. (4.6).

2. Effect of Mass of Spring Consider the above ex-
ample when mass of the spring (ms) is not
ignorable. Length of spring is l. The velocity of
any spring element at distance y from the base
can be assumed in a linear fashion as

ẏ =
y

l
ẋ

Therefore, the kinetic energy of the spring–mass
system can be written as

Ts =
1

2
mẋ2+

1

2

∫ l

0

(

ẋ
y

l

)2 ms

l
dy

=
1

2

(

m+
ms

3

)

ẋ2

The equivalent mass of the system is found as

me = m+
ms

3

Taking ke = k, natural frequency of the vibrations
is found using Eq. (4.10),

ωn =

√

k

m+ms/3

4.3 FREE DAMPED VIBRATION

In the absence of energy dissipation, a free vibration can
persist forever. Evidently, this never occurs in nature.
All the free vibrations die down after a time due to
damping.

Consider a mass m attached with a spring of stiffness
k and a viscous damper of damping coefficient (c) [Fig.
4.14].

mx

k

mẍ

c

m

kx cẋ

Figure 4.14 Free damped system.

The body is displaced by distance x vertically down-
ward from its equilibrium position. Using Newton’s
method, the equilibrium equation for the system is
written as

mẍ+cẋ+kx = 0 (4.11)

The solution of this equation can be in the following
form:

x = eut

where u is a constant. Velocity and acceleration func-
tions are written as

ẋ = ueut, ẍ = u2eut

Putting these values in Eq. (4.11) gives the following
values of the constant:

u1,2 = −
c

2m
±
√
( c

2m

)2
−

k

m

Therefore, solution of Eq. (4.11) is written as

x = A1e
u1t+A2e

u2t (4.12)

The critical damping coefficient cc is the value of
damping coefficient c for which

( cc
2m

)2
−

k

m
= 0

cc = 2
√
km

The ratio of c and cc is termed as damping ratio, denoted
by ξ:

ξ =
c

cc
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Therefore, Eq. (4.12) can be written in terms of ξ as

x = A1e

(

−ξ+
√
ξ2−1

)

ωnt+A2e

(

−ξ−
√
ξ2−1

)

ωnt

(4.13)

where

ωn =

√

k

m

is the natural frequency of undamped free vibrations in
the same system. This can be written in terms of cc as

ωn =
cc
2m

In Eq. (4.13), the displacement (x) consists of two
exponential functions of damping ratio ξ, which can be
positive, negative or zero. Depending upon the value of ξ
w.r.t. unity, free-damped vibration systems are classified
into following:

1. Over-damped system (ξ > 1)

2. Critically damped system (ξ = 1)

3. Under-damped system (ξ < 1)

These are discussed in the following subsections.

4.3.1 Over-Damped System

When ξ > 1, the system is called over-damped. Using
Eq. (4.13), the displacement function is re-written as

x = A1e

(

−ξ+
√
ξ2−1

)

ωnt

︸ ︷︷ ︸

x1

+A2e

(

−ξ−
√
ξ2−1

)

ωnt

︸ ︷︷ ︸

x2

This expression contains two exponential functions, x1

and x2, with negative power of e; both the elements
decrease exponentially with time. Therefore, the motion
is aperiodic or non-oscillatory [Fig. 4.15].

The value of arbitrary constants A1 and A2 can be
found for initial condition (t = 0) when the displacement
and velocity are equal to x(0) and ẋ (0). Once the system
is disturbed, it will take infinite time to come back to
equilibrium position.

4.3.2 Critically Damped System

When ξ = 1, the system is called to be critically damped.
Using Eq. (4.13), the displacement function for this case
is written as

x = (A1+A2t) e
−ωnt

where A1 and A2 are the arbitrary constants which
can be determined from the initial conditions. This
is an exponential function with negative power of e;
the displacement decreases exponentially with time.

x

t

x1

x2

Figure 4.15 Aperiodic motion (ξ > 1).

Therefore, the motion is aperiodic or non-oscillatory.
Figure 4.16 shows three different patterns of the function
which depend upon the direction and value of initial
velocity ẋ(0), evident through the arbitrary constants
A1 and A2.

x

t

ẋ(0) > 0

ẋ(0) < 0

ẋ(0) = 0

Figure 4.16 Aperiodic motion (ξ = 1).

The situation of critical damping measures the rela-
tive amount of damping in a particular system. Critical
damping means that the amount of damping which will
make the system stop vibrating within the least possible
time.

4.3.3 Under-Damped System

When ξ < 1, the system is called to be under-damped.
Using Eq. (4.13), the displacement function for this case
is written as

x = e−ξωnt
[

A1e
j
√

1−ξ2ωnt+A2e
−j
√

1−ξ2ωnt
]

Using ejx = cosx+j sinx,

x = Ae−ξωnt sin (ωdt+φ) (4.14)
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where
ωd =

√

1−ξ2ωn

is the frequency of damped vibrations, φ is the phase
difference, and A is the amplitude.

The displacement function is a multiplication of
exponentially decreasing amplitude and a sinusoidal
component; the motion is periodic with frequency wd

but the amplitude decreases exponentially in every cycle
[Fig. 4.17].

2π/ωd

t2t1

t

x

x1

x2

2π/ωd

Figure 4.17 Aperiodic motion (ξ < 1).

To evaluate the cyclic decrement, let t1 and t2 (=
t1+ td) denote the times corresponding to two successive
amplitudes x1 and x2, respectively. Here, td is the time
period given by

td =
2π

ωd

Using Eq. (4.14), the ratio of two successive amplitudes
is

x1

x2
=

Ae−ξωnt1 sin (ωdt1+φ)

Ae−ξωnt2 sin (ωdt2+φ)

= e−ξωn(t1−t2) sin (ωdt1+φ)

sin (ωdt1+2π+φ)

= eξωn(t2−t1)

= eξωntd

x1

x2
= e

2πξ√
1−ξ2 (4.15)

In this context, a term logarithmic decrement (δ) is
defined as the natural logarithm of the ratio of any two
successive amplitudes on the same side of the mean line:

δ = ln

(
x1

x2

)

(4.16)

If the system executes n cycles, the ratio of amplitudes
can be expressed as

δ =
1

n
ln

(
x1

xn

)

Using Eqs. (4.15) and (4.16), the logarithmic decrement
δ is related to ξ as

δ =
2πξ

√

1−ξ2
(4.17)

Using Eq. (4.17), the damping factor can be presented
in terms of δ as

ξ =
δ√

4π2+δ2
(4.18)

The amplitude, frequency (ωd), and logarithmic decre-
ment (δ) in damped vibrations depend upon the damp-
ing factor ξ; The amplitude decreases with increase in
the amount of damping or ξ. Figure 4.18 shows the
variation of ωd/ωn and δ with respect to ξ.

δ

ξ 10

ωd/ωn

Figure 4.18 ωd/ωn and δ with respect to ξ.

4.4 FORCED VIBRATION

Forced vibrations take place under the excitation of
external forces. The oscillations in machines, such as
engines, rotating unbalance, are typical examples of
forced vibrations. Forced vibrations can also be modeled
as a spring–mass damper system with an external
dynamic force. Based on this, the vibrations due to
rotating unbalance and support excitation can also be
studied.

4.4.1 Spring–Mass–Damper System

Consider a mass m, attached with spring of stiffness k
and a viscous damper of coefficient c, is subjected to a
dynamic force F [Fig. 4.19].

The body is displaced x distance from its equilibrium
position vertically downwards. For this system, the
differential equation of equilibrium is written as

mẍ+cẋ+kx = F0 sinωt (4.19)
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mx

k

mẍ

c

m

kx cẋ

F = F0 sinωt F

Figure 4.19 Forced vibration.

The solution of above equation has two components,
complementary function (xc) and particular integral
(xp):

x = xc+xp

1. Complementary Function This component is the
solution of left-hand side of Eq. (4.19) without
force function F0 sinωt; a second order differential
equation:

xc = Ae−ξωnt sin
(√

1−ξ2ωnt+φn
)

2. Particular Integral This is the steady-state com-
ponent of the solution. Because the force function
is sinusoidal, the particular integral should also be
a sinusoidal function in the following form

xp = x0 sin (ωt−φ) (4.20)

where x0 is the amplitude, and φ is the phase
difference by which the displacement lags the
vector force.

A damped vibration dies down rapidly with time,
instantaneously or slowly, depending upon the amount of
damping. Therefore, the solution of Eq. (4.19) consists
of only particular integral, given by Eq. (4.20), as the
steady-state solution:

x = x0 sin (ωt−φ) (4.21)

The velocity and acceleration of this solution are as
follows:

1. Velocity Differentiating Eq. (4.21) w.r.t. time,

ẋ = ωx0 cos (ωt−φ)

= ωx0 sin
(

ωt−φ+
π

2

)

(4.22)

2. Acceleration Differentiating Eq. (4.22) w.r.t.
time,

ẍ = ω2x0 cos
(

ωt−φ+
π

2

)

= −ω2x0 sin (ωt−φ+π) (4.23)

Thus, the functions ẋ and ẍ are ahead of the dis-
placement x by π/2 and π radians, respectively. Using
Eqs. (4.21)–(4.23), the forces acting on the system (i.e.,
damping force, inertia force, spring force, external force)
can be shown on a phase diagram [Fig. 4.20].

ωt

F0

φ
kx0

cωx0
mω2x0

x0
φ

F0

cωx0

kx0−mω2x0

Figure 4.20 Phase diagram in forced vibrations.

The phase diagram provides the expression of steady-
state amplitude (x0) and phase angle (φ) in Eq. (4.21):

1. Amplitude Using Pythagoras’ theorem for the
triangle of forces:

F0
2 = (cωx0)

2+
(

x0k−mω2x0

)2

The amplitude of the forced vibration is found as

x0 =
F0

√

(k−mω2)2+(cω)2

=
xst

√

(1−ω2/ωn
2)2+(2ξω/ωn)

2

(4.24)

where xst = F0/k is the static displacement caused
by a static force F0 in the absence of damper.

2. Phase Angle The phase angle φ between force and
displacement vectors is found as

tanφ =
cω

k−mω2

=
2ξω/ωn

1−ω2/ωn
2

(4.25)

The ratio x0/xst is known as magnitification factor Λ:

Λ =
x0

xst

=
1

√

(1−ω2/ωn
2)2+(2ξω/ωn)

2
(4.26)

Equations (4.24) and (4.25) can be used to plot x/xst

and φ w.r.t. ω/ωn for different values of ξ [Fig. 4.21].
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ω/ωn

π
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0.5

φ

4

ξ

ξ

Figure 4.21 x/xst and φ w.r.t. ω/ωn.

The magnification factor (Λ) and phase angle (φ) are
functions of frequency ratio and damping factor. These
can be examined as follows:

1. Effect of Frequency Ratio The effect of frequency
ratio can be examined in the following three cases:

(a) Small Frequencies (ω ≪ ωn) At small frequen-
cies (ω ≪ ωn), both inertia and damping forces
are small because velocity (ẋ) and acceleration
(ẍ) are very small. The case is equivalent when
the system is subjected to a static load F ,
which is balanced by the spring force. The
amplitude and phase angle are as follows:

Λ ≈ 1

φ ≈ 0

The forces in this case are

cẋ = 0

mẍ = 0

kx = F0

Thus, the magnification factor is unity. It is
independent of ξ; damping coefficient has no
role to play because there is no motion. In
this situation, the external force is balanced by
spring force.

(b) Resonance (ω = ωn) If the frequency of the
external force ω coincides with the natural
frequencies (ωn) of the system, a condition
known as resonance occurs. The corresponding

values are as follows:

Λ =
1

2ξ

φr =
π

2

In this case,

cẋ = F

mẍ = kx

The external force is balanced by the damping
force while the inertia force is balanced by the
spring force.

(c) Large Frequencies (ω ≫ ωn) At large frequen-
cies (ω ≫ ωn),

Λ ≈ 0

φ ≈ π

In this case,

cẋ = 0

mẍ = F

kx = 0

The external force is balanced by the inertia
force. Damping has no effect on the system.

2. Effect of Damping Factor It is interesting to find
the frequency ratio r = ω/ωn for the peak
value of the magnification factor Λ. For this, the
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denominator of Eq. (4.26) should be minimum.
This can be obtained by

d

dr

⎧

⎨

⎩

√
(

1−
ω2

ωn
2

)2

+

(

2ξ
ω

ωn

)2
⎫

⎬

⎭
= 0

This results in

ω

ωn
=
√

1−2ξ2

Thus, the maximum value of Λ occurs for 0 < ξ <
1/
√
2. The value of frequency ratio cannot be more

than 1, therefore, the peak values of Λ for different
values of ξ occurs for ω < ω1. The corresponding
value of Λ is found as

Λmax =
1

√

(1−ω2/ωn
2)2+(2ξω/ωn)

2

=
1

√

(1−1−2ξ2)2+4ξ2 (1−2ξ2)

=
1

√

4ξ4+4ξ2−8ξ4

=
1

2ξ
√

1−2ξ2

This is the peak value of Λ which occurs at
frequency ratio ω/ωn =

√

1−2ξ2.

4.4.2 Rotating Unbalance

Rotating machines are not supposed to have any unbal-
anced mass because it induces vibrations in the system.
Consider a rotating unbalance mass me at eccentric
radius e with constant angular speed ω. The machine is
supported by a spring–mass–damper system of stiffness
k and damping coefficient c [Fig. 4.22]

m

x

k

mẍ

c

m

kx cẋ

F = meω2e sinωt

F

e
me

ω

Figure 4.22 Rotating unbalance.

The unbalanced dynamic force acting on the mass m
shall be written as

F = meω
2e sinωt

The model of forced vibrations in spring-mass-damper
system [Section 4.4.1] can be applied to this system by
taking the equivalent amplitude of force

F0 = meω
2e

Accordingly, the amplitude and phase angle are found
as follows:

1. Amplitude

x0 =
meeω2

√

(k−mω2)2+(cω)2

x0

xst
=

ω2/ωn
2

√

(1−ω2/ωn
2)2+(2ξω/ωn)

2

(4.27)

where xst = me ·e/m.

2. Phase Angle The phase angle φ between the force
and the displacement vectors is found as

tanφ =
cω

k−mω2

=
2ξω/ωn

1− ω2/ωn
2

(4.28)

ω/ωn

x0/xst

1 20 3

1.0

0.5

0.35

0.25
0.15

0.10

4 5

Figure 4.23 x/xst for rotating unbalance.

The effect of ω/ωn and ξ on x/xst can be observed
using Eqs. (4.27) and (4.28) [Fig. 4.23]:
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1. Effect of Frequency Ratio The amplitude of all the
curves is zero at ω = 0, but markedly high near
resonance (ω = ωn). At higher frequencies, the
amplitude ratio is almost unity where the effect
of damping is negligible.

2. Effect of Damping Factor The peak value of
amplitude is found when

ω

ωn
=

1
√

1−2ξ2

Therefore, the peak value occurs for 0 < ξ <
1/
√
2. The denominator of the above frequency

ratio cannot be more than unity, therefore, the
frequency ratio is always greater than 1, therefore,
peak value occurs at spead ratio near and higher
than 1. The corresponding peak value of the
amplitude is found as

(x0)max =
mee/m

2ξ
√

1−ξ2

4.4.3 Support Excitation

Figure 4.24 shows a spring-mass-damper system in
which the support of the system itself vibrates with the
following displacement equation:

y = y0 sin (ωt+α)

The relative displacement on the spring and damper is
x−y. Therefore, the differential equation of equilibrium
can be written as

mẍ+c (ẋ− ẏ)+k (x−y) = 0

mẍ+cẋ+kx = cẏ+ky

This can be written as

mẍ+cẋ+kx = y0

√

k2+(cω)2 sin (ωt+φ)

mx

k

mẍ

c

m

k(x−y) c(ẋ− ẏ)

y

Figure 4.24 Support excitation.

The model of forced vibrations in spring-mass-damper
system [Section 4.4.1] can be applied to this system by
taking the equivalent amplitude of force

F0 = y0

√

k2+(cω)2

The amplitude and phase angle are found as follows:

1. Amplitude

x0 =
y0

√

k2+(cω)2

√

(k−mω2)2+(cω)2

x0

y0
=

√

1+(2ξω/ωn)
2

√

(1−ω2/ωn
2)2+(2ξω/ωn)

2

(4.29)

2. Phase Angle The phase angle φ force and
displacement vectors is found as

tanφ =
cω

k−mω2

=
2ξω/ωn

1−ω2/ωn
2

(4.30)

4.4.4 Transmissibility

Machines are isolated from undesired vibrations by
mounting the machines on springs and providing dash-
pot mechanisms such as shock absorbers in motor cycle
and automobiles.

For a system with unbalance force due to rotating
mass [Fig. 4.22], the force transmitted (Ftr) to the base
or foundation is the sum of spring force and the dashpot
force:

Ftr =
√

(kx)2+(cωx)2

= x
√

k2+c2ω2

The ratio of transmitted force and dynamic force is
known as transmissibility (Tr). For the present case,

Tr =
Ftr

F0

=

√

1+(2ξω/ωn)
2

√

(1−ω2/ωn
2)2+(2ξω/ωn)

2

This expression can be used to investigate the effect of
system characteristics on the transmissibility by plotting
Tr w.r.t. ω/ωn for different values of ξ [Fig. 4.25].

The purpose of providing the spring and dampers to
the machine is to make the force transmitted less than
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ω/ωn

1

2

3

0 1 2 3 4 5

Tr

1.0

1.0

Figure 4.25 Tr versus ω/ωn.

the impressed or periodic force; the body is isolated from
large accelerations of the base when Tr < 1. The value
of Tr depends upon the ratio ω/ωn and ξ. Therefore, the
effects of ω/ωn and ξ on Tr are examined as follows:

1. Effect of Frequency Ratio The transmissibility
curve for different damping factors have the same
value Tr = 1 for ω/ωn =

√
2. The isolation

is achieved (Tr < 1.0) when ω/ωn >
√
2. The

system is dangerous if ω/ωn <
√
2. It follows that

ω/ωn must be as large as possible for the required
stiffness of the spring.

2. Effect of Damping Factor For 0 < ξ < 1 and ω <
ωn, the maximum value of Tr is obtained at

ω

ωn
=

1

2ξ

(√

1+8ξ2−1
)1/2

At this frequency, the peak value of Tr is obtained
as

Trm = 4ξ2

√ √

1+8ξ2

2+16ξ2+(16ξ4−8ξ2−2)
√

1+8ξ2

If ξ = 0, then transmissibility is written as

Tr =
1

1−(ω/ωn)
2

4.4.5 Whirling of Rotating Shafts

When a rotor is mounted on a shaft, its center of mass
does not usually coincide with the center line of the
shaft. Therefore, when the shaft rotates, it is subjected
to a centrifugal force which makes the shaft to bend in
the direction of eccentricity of the center of mass. The
shaft tends to bow out at certain speed and whirl in a
complicated manner. This increases the eccentricity of

the mass, and hence the centrifugal force. In this way,
the effect is cumulative and ultimately the shaft can even
fail.

Critical speed or whirling speed is the speed at
which the shaft tends to vibrate violently in transverse
direction. This is also called whipping speed. In general,
the critical speeds of any circular shaft coincide with
the natural frequencies of vibrations of the non-rotating
shaft on its bearings. Below the critical speeds, the shaft
offers some elastic resistance to a sidewise force, and
this is no longer true at the critical speed. It has been
observed that at critical speed, the shaft again becomes
almost straight. But at some other speed, the same
phenomenon recurs, the only difference being that the
shaft now bends in two bows and so on.

Consider a rotor of mass m assembled on a shaft of
stiffness k with an eccentricity e. The shaft rotates with
angular velocity ω and rotor gets additional deflection
due to centrifugal force [Fig. 4.26].

e

y

Shaft

Disc

ω

ky m(y+e)ω2

Figure 4.26 Critical speed of shaft.

The unbalanced mass is in equilibrium under the
centrifugal force m (y+e)ω2 and force resisting the
deflection ky:

ky = m (y+e)ω2

y =
e

(ω/ωn)
2−1

(4.31)

where ωn (=
√

k/m) is the natural frequency. From
Eq. (4.31), when ω = ωn, the deflection y is infinitely
large (resonance occurs) and the speed ω is the critical
speed. By increasing the frequency ω beyond ωn, y
approaches the value −e or the center of mass of the
rotor approaches the center line of the rotation. This
principle is used in running high-speed turbines by
speeding up the rotor rapidly beyond the critical speed
and the rotor runs steadily.
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IMPORTANT FORMULAS

Fundamentals

1. Harmonic motion

x = x0 sin (ωt+φ)

x̄ = lim
T→∞

1

T

∫ T

0
x (t) dt

x̄2 = lim
T→∞

1

T

∫ T

0
x2 (t) dt

f =
1

T
Hz

f =
ω

2π
cycles/s

= ω rad/s

=
60ω

2π
rpm

2. Work done per cycle

W = πFoxo sinφ

3. Spring

U(x) =
1

2
kx2

ke = k1+k2 Parallel

1

ke
=

1

k1
+

1

k2
Series

4. Damping coefficient

F = cẋ

E =

∮

F ·dx = πcωx2
0

β =
E

U
, η =

E

2πU

5. Coulomb damping

∆ =
4F

k

6. Structural damping

η =
E

2πU

ce =
α

πω
=

α

πk

Undamped Free Vibrations
mẍ+kx = 0

ωn =

√

k

m

1. Energy method

d

dt
(T +U) = 0

2. Rayleighs energy method

Tmax = Umax

3. Cylinder on cylindrical face

ωn =

√

2g

3 (R−r)

4. Pendulum

ω =

√

g

l

Free Damped Vibrations
mẍ+cẋ+kx = 0

cc = 2
√
km, ξ =

c

cc
, ωn =

cc
2m

ωd =
√

1−ξ2ωn

δ = ln

(
x1

x2

)

=
1

n
ln

(
x1

xn

)

=
2πξ

√

1−ξ2

ξ =
δ√

4π2+δ2

Forced Vibrations
mẍ+cẋ+kx = F0 sinωt

x0 =
F0

√

(k−mω2)2+(cω)2

=
xst

√

(1−ω2/ωn
2)2+(2ξω/ωn)

2

tanφ =
cω

k−mω2
=

2ξω/ωn

1−ω2/ωn
2

Λmax =
1

2ξ
√

1−2ξ2

when
ω

ωn
=
√

1−2ξ2

Rotating Unbalance
F = meω

2e sinωt

F0 = meω
2e

x0

xst
=

ω2/ωn
2

√

(1−ω2/ωn
2)2+(2ξω/ωn)

2

tanφ =
cω

k−mω2

=
2ξω/ωn

1− ω2/ωn
2

(x0)max =
mee/m

2ξ
√

1−ξ2

when
ω

ωn
=

1
√

1−2ξ2

Support Excitation
mẍ+c (ẋ− ẏ)+k (x−y) = 0

x0

y0
=

√

1+(2ξω/ωn)
2

√

(1−ω2/ωn
2)2+(2ξω/ωn)

2

tanφ =
cω

k−mω2

=
2ξω/ωn

1−ω2/ωn
2

Transmissibility

Tr =

√

1+(2ξω/ωn)
2

√

(1−ω2/ωn
2)2+(2ξω/ωn)

2

Critical Speed of Shaft

y =
e

(ω/ωn)
2−1

ωn =

√

k

m
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SOLVED EXAMPLES

1. An extensible string of stiffness k in each side of
the massless pulley supports a mass m:

m

kk

Massless
pulley

Determine the natural frequency of the system.

Solution. The system can be modeled as
equivalent spring-mass system having stiffness
(springs in series):

1

ke
=

1

k
+

1

k

ke =
k

2

Therefore, the natural frequency of the system is

ω =

√

k

2m

2. Determine the natural frequency of the system.

m

k

Massless
pulley m

Solution. Let T be the tension in the string. The
system has dependent motion. For movement x of
mass on the plane, the mass over the pulley shall
move by 2x:

m

k

Massless
pulley m

2x

x

The spring is under static extension δst given by

δstk = Tst = 2mg

Therefore, the respective equations of motion can
be written as

mẍ+k (x+δst)−2T = 0

m×2ẍ+T −mg = 0

Eliminating T from above equations, one finds

5mẍ+kx = 0

Therefore, comparing with spring-mass model:

ω =

√

k

5m

3. A simple U tube manometer is filled with liquid of
specific gravity s. The cross-sectional area of tube
is a and length of the liquid column is l. Determine
the natural frequency of oscillations of the liquid
column. If the value of length of the column is
20 cm, what will be the natural frequency of
oscillations?

Solution. For a displacement x, the total energy
of the system is given by

1

2
ρalẋ2+(ρagx)x = 0

Therefore, differentiating w.r.t. t on both sides,

ρalẋẍ+2ρagxẋ = 0

ρalẍ+2ρagx = 0

Hence, the natural frequency of oscillations is

f =
1

2π

√

2g

l

For l = 0.2 m,

ω = 1.57 Hz

4. A light ball of mass m is tightly stretched by two
strings with initial tension T :

m
Massless
string

L/2 L/2

Determine the natural frequency of the ball if it is
plucked vertically to a small distance.
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Solution. Let the ball is given a slight angular
deflection (θ) in vertical position. The ball is
vertically displaced by

θ =
x

L/2

The ball will be under equilibrium of inertia force
and resolved tension on both the strings (taking
sin θ ≈ θ):

mẍ+2Tθ = 0

mẍ+2T ×
x

L/2
= 0

mẍ+
4T

L
×x = 0

Therefore,

ω =

√

4T

mL

5. A 10 kg mass is supported on a spring of stiffness
4 kN/m and has a dash pot which produces
a resistance of 20 N at velocity of 0.25 m/s.
Determine the natural frequency and damping
ratio of the system.

Solution. Given that

m = 10 kg

k = 4×103 N/m

Natural frequency of the system is

ωn =

√

k

m
= 20 rad/s

Damping coefficient is

c =
20

0.25
= 80 Ns/m

The damping ratio is determined as

ξ =
c

cc

=
c

2
√
km

= 0.2

6. A gun-carrying vehicle fires a shell of mass 5 kg at
speed 300 m/s inclined at 30◦ from the horizontal.
The combined mass of the gun and the vehicle is
800 kg. The recoil mechanism is critically damped
and has an equivalent stiffness of 30 kN/m.

30◦

300 m/s

k = 30 kN/m
c = 10 kNs/m

m = 800 kg

ms = 5 kg

Determine the maximum recoil of the gun-vehicle
unit.

Solution. Given that

ms = 5 kg

v = 300 m/s

θ = 20◦

For gun-vehicle system,

m = 800 kg

k = 30×103 N/m

c = 9.8×103 Ns/m

Natural frequency of the system is

ωn =

√

k

m
= 6.12 rad/s

The critically damped displacement can be written
as

x = (A1+A2t) e
−ωnt

The unknown constant A1 and A2 can be
determined using initial conditions. Taking x(0) =
0,

A1 = 0

A2 = ẋ(0)

Initial recoil velocity of the gun-vehicle can be
determined using the principle of conservation of
linear momentum:

800× ẋ(0) = 5×300×cos 30◦

ẋ(0) = 1.62 m/s

Thus, the displacement can be written as

x = 1.62te−6.12t

For maximum value of x,

t =
1

6.17
= 0.162 s

Thus, the maximum displacement will be given by

x = 1.62×0.162×e−1

= 96.5 mm
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7. Center of a sphere of mass m and radius r is
attached to a spring-dashpot system of stiffness k
and damping constant c on the left side. It is also
attached to a spring of stiffness k with a string
passing over pulley on the right side.

c

k

k

Determine the natural frequency and damping
ratio of the system.

Solution. The sphere will oscillate about the
bottom contact point. For slight angular deflection
θ of the sphere, the spring and dashpot shall
extend by x = rθ. The spring attached to the
string over pulley shall extend by 2rθ on left side
and rθ on right side, total extension 3rθ.

Moment of inertia of the sphere about the bottom
contact point will be

I =
mr2

2
+mr2

=
3

2
mr2

Taking moments of forces about the bottom
contact point

3mr2

2

ẍ

r
+r (kx+cẋ)+2r (k×3x) = 0

3m

2
ẍ+cẋ+10kx = 0

Thus, the natural frequency of the system is

ω =

√

10k

3m/2

=

√

20k

3m

Damping ratio is

ξ =
c

2
√

10k×3m/2

=
c

2
√
15km

8. A damped system has stiffness k = 450 kN/m
and time period 2.0 s. The ratio of a consecutive
amplitudes is 4.0. Determine the amplitude and
phase of the steady state motion when a dynamic
force F = 2.5 cos 3t N acts on the system.

Solution. Given that

k = 650 N/m

td = 2.0 s
x0

x1
= 4.2

F0 = 2.5 N

ω = 3 rad/s

Using

δ =
1

n
ln

(
x1

xn

)

=
1

1
ln (4.2)

= 1.38

The damping ratio can be found as

ξ =
δ√

δ2+4π2

= 0.21

Damped frequency of the system is

ωn =
2π

td

=
2π

td
√

1−ζ2

= 3.21 rad/s

Thus, frequency ratio is

ω

ωn
=

3

3.2

= 0.9375

Static displacement is

xst =
F0

k

=
2.5

650
= 3.846 mm

Amplitude of steady state vibrations is

x0 =
xst

√

(1−ω2/ωn
2)2+(2ξω/ωn)

2

=
3.846√

0.01466+0.155

=
3.846

0.4119
= 9.33 mm

Phase lag is

tanφ =
2ξω/ωn

1−(ω2/ωn
2)

=
0.39375

0.121
= 3.251

φ = 72.9◦
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GATE PREVIOUS YEARS’ QUESTIONS

1. Consider the arrangement shown in the figure
below where J is the combined polar mass moment
of inertia of the disc and the shafts; k1, k2, k3 are
the torsional stiffness of the respective shafts.

J

k3k2
k1

Fixed end

Fixed end

The natural frequency of torsional oscillation of
the disc is given by

(a)
√

(k1+k2+k3) /J

(b)
√

(k1k2+k2k3+k3k1) / (J (k1+k2))

(c)
√

(k1k2k3) / (J (k1k2+k2k3+k3k1))

(d)
√

(k1k2+k2k3+k3k1) / (J (k2+k3))

(GATE 2003)

Solution. Equivalent setup is k1 and k2 in
series, which is parallel to k3, therefore, equivalent
stiffness is

ke =
1

1/k1+1/k2
+k3

=
k1k2+k2k3+k3k1

k1+k2

Natural frequency of vibrations is

ωn =

√

ke
J

=

√

k1k2+k2k3+k3k1
J (k1+k2)

Ans. (b)

2. A flexible rotor-shaft system comprises a 10 kg
rotor disc placed in the middle of a massless shaft
of diameter 30 mm and length 500 mm between
bearings (shaft is being taken mass-less as the
equivalent mass of the shaft is included in the
rotor mass) mounted at the ends. The bearings are
assumed to simulate simply supported boundary
conditions. The shaft is made of steel for which
the value of E is 2.1×1011 Pa. What is the critical
speed of rotation of the shaft?

(a) 60 Hz (b) 90 Hz

(c) 135 Hz (d) 180 Hz

(GATE 2003)

Solution. Given that

d = 0.030 m

l = 0.5 m

m = 10 kg

E = 2.1×1011 Pa

Moment of inertia of the shaft is

I =
πd4

64

For simply supported beams, stiffness

k =
W

δ

=
48l3

EI

Therefore, critical speed of the shaft is

fn =
ωn

2π

=
1

2π

√

k

m
= 90.1203 Hz

Ans. (b)
Common Data Questions

A uniform rigid slender bar of mass 10 kg, hinged at the
left end is suspended with the help of spring and damper
arrangement as shown in the figure where k = 2 kN/m,
C = 500 Ns/m and the stiffness of the torsional spring
kθ is 1 kNm/rad. Ignore the hinge dimensions.

500 mm

400 mm

c kkθ

3. The undamped natural frequency of oscillations of
the bar about the hinge point is

(a) 42.43 rad/s (b) 30 rad/s

(c) 17.32 rad/s (d) 14.14 rad/s

(GATE 2003)
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Solution. Given that

m = 10 kg

k = 2×103 N/m

kθ = 1×103 N-m/rad

c = 500 Ns/m

For small angular displacement θ, taking torsional
moments about hinge,

m×0.52

3
θ̈+0.42θ̇c+0.52θk+θkθ = 0

m×0.52

3
θ̈+0.42θ̇c+

(

0.52k+kθ
)

θ = 0

Therefore, the natural frequency of vibrations is

ωn =
0.52k+kθ
m×0.52/3

= 42.4264 rad/s

Ans. (a)

4. The damping coefficient in the vibration equation
is given by

(a) 500 Nms/rad (b) 500 N/(m/s)

(c) 80 Nms/rad (d) 80 N/(m/s)

(GATE 2003)

Solution. Equivalent damping coefficient is

ce = 0.42c

= 80 Ns/m

Ans. (c)

5. A vibrating machine is isolated from the floor
using springs. If the ratio of excitation frequency
of vibration of machine to the natural frequency
of the isolation system is equal to 0.5, the
transmissibility of ratio of isolation is

(a) 1/2 (b) 3/4

(c) 4/3 (d) 2

(GATE 2004)

Solution. Given that

ξ = 0
ω

ωn
= 0.5

Transmissibility is determined as

Tr =

√

1+(2ξω/ωn)
2

√

(1−ω2/ωn
2)2+

(

2ξ ω
ωn

)2

=
1

1−(ω/ωn)
2

=
4

3

Ans. (c)

6. A mass M of 20 kg is attached to the free end of
a steel cantilever beam of length 1000 mm having
a cross-section of 25×25 mm. Assume the mass of
the cantilever to be negligible and Esteel = 200
GPa.

M

If the lateral vibration of this system is critically
damped using a viscous damper, the damping
constant of the damper is

(a) 1250 Ns/m (b) 625 Ns/m

(c) 312.50 Ns/m (d) 156.25 Ns/m

(GATE 2004)

Solution. Given that

M = 20 kg

l = 1 m

A = 0.025×0.025 m2

E = 200×109 Pa

The moment of inertia and stiffness of cantilever
is determined as

I =
bd4

12

δ =
Pl3

3EI

k =
W

δ

=
3EI

l3

Critical damping coefficient is

cc = 2
√
k×M

= 1250 Ns/m

Ans. (a)
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7. A simple pendulum of length 5 m, with a bob of
mass 1 kg, is in simple harmonic motion. As it
passes through its mean position, the bob has a
speed of 5 m/s. The net force on the bob at the
mean position is

(a) zero (b) 2.5 N

(c) 5 N (d) 25 N

(GATE 2005)

Solution. At mean position, net force on the bob
will be zero because acceleration is zero.

Ans. (a)

8. There are four samples P, Q, R and S, with
natural frequencies 64, 96, 128 and 256 Hz,
respectively. These are mounted on test setups for
conducting vibration experiments. If a loud pure
note of frequency 144 Hz is produced by some
instrument, which of the samples will show the
most perceptible induced vibration?

(a) P (b) Q

(c) R (d) S

(GATE 2005)

Solution. For most perceptible vibrations, the
induced frequency should be nearer to the natural
frequency.

Ans. (c)

9. In a spring-mass system, the mass is 0.1 kg and the
stiffness of the spring is 1 kN/m. By introducing
a damper, the frequency of oscillation is found to
be 90% of the original value. What is the damping
coefficient of the damper?

(a) 1.2 Ns/m (b) 3.4 Ns/m

(c) 8.7 Ns/m (d) 12.0 Ns/m

(GATE 2005)

Solution. Given that

m = 0.1 kg

k = 1000 N/m

ωd = 0.9ωn

ωd

ωn
= 0.9

Therefore, critical damping coefficient is

cc = 2
√
km

= 20 Ns/m

Using,

ωd =
√

1−ξ2ωn

c

cc
= ξ

=

√

1−
(
ωd

ωn

)2

= 0.43589

c = 8.7178 Ns/m

Ans. (c)

10. The differential equation governing the vibrating
system is:

m

y
x

k
c

(a) mẍ+cẋ+k (x−y) = 0

(b) m (ẍ− ÿ)+c (ẋ− ẏ)+kx = 0

(c) mẍ+c (ẋ− ẏ)+kx = 0

(d) m (ẍ− ÿ)+c (ẋ− ẏ)+k (x−y) = 0

(GATE 2006)

Solution. The relative motion at damper, as
compared to simple spring-mass-damper system,
is (ẋ− ẏ), therefore the equivalent differential
equation for the given system is

mẍ+c (ẋ− ẏ)+kx = 0

Ans. (c)

11. A machine of 250 kg mass is supported on
springs of total stiffness 100 kN/m. Machine has
an unbalanced rotating force of 350 N at the speed
of 3600 rpm. Assuming a damping factor of 0.15,
the value of transmissibility ratio is:

(a) 0.0531 (b) 0.9922

(c) 0.0162 (d) 0.0028

(GATE 2006)

Solution. Given that

m = 250 kg

k = 100×103 N/m

N = 3600 rpm

ω =
2πN

60
= 376.991 rad/s

ξ = 0.15
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Natural frequency of vibrations in the system is

ωn =

√

k

m
= 20 rad/s

Transmissibility ratio is defined as

Tr =
Ftr

F0

=

√

1+(2ξω/ωn)
2

√

(1−ω2/ωn
2)2+(2ξω/ωn)

2

= 0.016206

Ans. (c)
Linked Answer Questions

A vibratory system consists of a mass 12.5 kg, a spring
of stiffness 1000 N/m, and a dashpot with damping
coefficient of 15 Ns/m.

12. The value of critical damping of the system is

(a) 0.223 Ns/m (b) 17.88 Ns/m

(c) 71.4 Ns/m (d) 223.6 Ns/m

(GATE 2006)

Solution. Given that

m = 12.5 kg

k = 1000 N/m

c = 15 Ns/m

Therefore, critical damping coefficient is

cc = 2
√
km

= 2
√
1000×12.5

= 223.607 Ns/m

Ans. (d)

13. The value of logarithmic decrement is

(a) 1.35 (b) 1.32

(c) 0.68 (d) 0.66

(GATE 2006)

Solution. Damping factor is

ξ =
c

cc
= 0.067082

Logarithmic increment is

δ =
2πξ

√

1−ξ2

= 0.42244

Ans. (d)

14. For an under-damped harmonic oscillator, reso-
nance

(a) occurs when excitation frequency is greater
than undamped natural frequency

(b) occurs when excitation frequency is less than
undamped natural frequency

(c) occurs when excitation frequency is equal to
undamped natural frequency

(d) never occurs

(GATE 2007)

Solution. In under-damped vibrations, ξ < 1,
and in such cases, vibrations can not find any
probability of resonance.

Ans. (d)

15. The natural frequency of the system shown below
is

k
m

k/2

k/2

(a)
√

k/ (2m) (b)
√

k/m

(c)
√

2k/m (d)
√

3k/m

(GATE 2007)

Solution. The equivalent spring constant of the
parallel springs is

ke = 2×
k

2
= k

Therefore, it constitutes two springs of stiffness k
in series, therefore, equivalent spring constant is
k/2. Hence, the natural frequency is given by

ωn =

√

k

2m

Ans. (a)

16. The equation of motion of a harmonic oscillator is
given by

d2x

dt2
+2ξωn

dx

dt
+ωn

2x = 0

and the initial condition at t = 0 are x (0) = χ,
dx/dt (0) = 0. The amplitude of x (t) after n
complete cycles is
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(a) χ exp
(

−2nπξ/
√

1−ξ2
)

(b) χ exp
(

2nπξ/
√

1−ξ2
)

(c) χ exp
(

−2nπ
√

1−ξ2/ξ
)

(d) χ

(GATE 2007)

Solution. Comparing with the equilibrium equa-
tion for general spring–mass–damper system,

mẍ+cẋ+kx = 0

Thus,
c

m
= 2ξωn,

k

m
= ωn

For the above equation, the amplitude after n
cycles is written as

δ =
1

n
ln

x1

xn
=

2πξ
√

1−ξ2

Therefore,

xn = x1 exp (nδ)

= χ exp
(

2nπξ/
√

1−ξ2
)

Ans. (b)

17. The natural frequency of the spring–mass system
shown in the figure is closest to

m = 1.4 kg

k1 = 4 kN/m k2 = 1.6 kN/m

(a) 8 Hz (b) 10 Hz

(c) 12 Hz (d) 14 Hz

(GATE 2008)

Solution. The equivalent spring constant of two
springs in parallel is

ke = k1+k2
= 4000+1600

= 5600 N/m

Therefore, the natural frequency of vibrations of
the system is

f =
1

2π

√

k

m
= 10.87 Hz

Ans. (b)

18. A uniform rigid rod of mass m = l kg and length
L = 1 m is hinged at its center and laterally
supported at one end by a spring of spring constant
k = 300 N/m. The natural frequency ωn in rad/s
is

(a) 10 (b) 20

(c) 30 (d) 40

(GATE 2008)

Solution. Given

k = 300 N/m

m = 1 kg

Therefore, the natural frequency of vibrations of
the system is

ωn =

√

k

m/3

=

√

300

1/3

= 30 rad/s

This is because the mass of the spring is not under
the uniform force, but it varies linearly from zero
at corner to maximum at spring support. In such
cases, equivalent mass is found to be one-third of
the original mass.

Ans. (c)

19. The rotor shaft of a large electric motor supported
between short bearings at both the ends shows a
deflection of 1.8 mm in the middle of the rotor.
Assuming the rotor to be perfectly balanced and
supported at knife edges at both the ends, the
likely critical speed (in rpm) of the shaft is

(a) 350 (b) 705

(c) 2810 (d) 4430

(GATE 2009)

Solution. Given that δ = 1.8×10−3 m.Thus, the
critical speed is given by

ωn =
60

2π

√

g

δ

= 704.968 rpm

Ans. (b)

20. An automotive engine weighing 240 kg is sup-
ported on four springs with linear characteristics.
Each of the front two springs have a stiffness of
16 MN/m, while the stiffness of each rear spring
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is 32 MN/m. The engine speed (in rpm), at which
resonance is likely to occur, is

(a) 6040 (b) 3020

(c) 1424 (d) 955

(GATE 2009)

Solution. Given that

m = 240 kg

k1 = 16×106 N/m

k2 = 32×106 N/m

Therefore, the equivalent spring constant

ke = 2k1+2k2

= 96×106 N/m

The natural frequency of vibration

wn =
60

2π

√

ke
m

= 6039.51 rpm

Ans. (a)

21. A vehicle suspension system consists of a spring
and a damper. The stiffness of the spring is 3.6
kN/m and the damping constant of the damper is
400 Ns/m. If the mass is 50 kg, then the damping
factor (ξ) and damped natural frequency (ωn),
respectively, are

(a) 0.471 and 1.19 Hz

(b) 0.471 and 7.48 Hz

(c) 0.666 and 1.35 Hz

(d) 0.666 and 8.50 Hz

(GATE 2009)

Solution. The critical damping constant (Ns/m)

cc = 2
√
km

= 848.528 Ns/m

Critical damping factor

ξ =
c

cc
= 0.471405

Natural frequency (rad/sec)

ωn =

√

k

m
= 8.48528 rad/s

Damped natural frequency

ωd =

√

1−ξ2ωn

2π
= 1.19101 Hz

Ans. (a)

22. The natural frequency of a spring–mass system on
earth is ωn. The natural frequency of this system
on the moon (gmoon = gearth/6) is

(a) ωn (b) 0.408ωn

(c) 0.204ωn (d) 0.167ωn

(GATE 2010)

Solution. Natural frequency of spring mass system
with stiffness k and mass m is

ωn =

√

k

m

which is independent of g.

Ans. (a)

23. A mass m attached to a spring is subjected to a
harmonic force as shown in the figure.

m

k1 = 3 kN/m

F (t) = 100 cos (100t) N

The amplitude of the forced motion is observed to
be 50 mm. The value of m (in kg) is

(a) 0.1 (b) 1.0

(c) 0.3 (d) 0.5

(GATE 2010)

Solution. For equilibrium,

F0 = x0k−mω2x0

m =
1

ω2

(

k−
F0

x0

)

= 0.1 kg

Ans. (a)

24. A mass of 1 kg is attached to two identical springs
each with stiffness k = 20 kN/m as shown in the
figure.

1 kg

x
k

k
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Under frictionless condition, the natural frequency
of the system in Hz is close to

(a) 32 (b) 23

(c) 16 (d) 11

(GATE 2011)

Solution. Given that

k = 20×103 N/m

m = 1 kg

Equivalent stiffness of springs is 2k, therefore, the
natural frequency of vibrations is

f =
1

2π

√

2k

m
= 31.831 Hz

Ans. (a)

25. A disc of mass m is attached to a spring of stiffness
k as shown in the figure.

m
k

The disc rolls without slipping on a horizontal
surface. The natural frequency (in rad/s) of
vibration of the system is

(a)
√

k/m (b)
√

2k/m

(c)
√

2k/ (3m) (d)
√

3k/ (2m)

(GATE 2011)

Solution. Moment of inertia of the disc w.r.t. the
base point at circumference is

I =
1

2
mr2+mr2 =

3

2
mr2

Equilibrium equation is

3

2
mr2θ̈+kr2θ = 0

Therefore, the natural frequency is

ωn =

√

2k

3m
rad/s

Ans. (c)

26. A concentrated mass m is attached at the center
of a rod of length 2L as shown in the figure.

m
k

L L

The rod is kept in a horizontal equilibrium position
by a spring of stiffness k. For a very small
amplitude of vibration, neglecting the weights
of the rod and spring, the undamped natural
frequency of the system is

(a)
√

k/m (b)
√

2k/m

(c)
√

k/ (2m) (d)
√

4k/m

(GATE 2012)

Solution. Equilibrium equation for displacement
x of the mass is

mẍ×L+2L×2x×k = 0

mẍ+4kx = 0

Therefore, the undamped natural frequency of the
system is

ω =

√

4k

m

Ans. (d)

27. If two nodes are observed at a frequency of 1800
rpm during whirling of a simply supported long
slender rotating shaft, the first critical speed of
the shaft in rpm is

(a) 200 (b) 450

(c) 600 (d) 900

(GATE 2013)

Solution. The natural frequency of a simply
supported long slender shaft is proportional to the
number of modes n. For first critical speed, n = 1
for which the frequency is given by

fc =
1

2
×1800 = 900

Ans. (d)

28. A single degree of freedom system having mass
1 kg and stiffness 10 kN/mm initially at rest is
subjected to an impulse force of magnitude 5 kN
for 104 s. The amplitude in mm of the resulting
free vibration is

(a) 0.5 (b) 1.0

(c) 5.0 (d) 10.0

(GATE 2013)

Solution. The amplitude of vibrations is the initial
deflection of the mass, given by

x0 =
F

k
= 0.5 mm

Ans. (a)


