
 

Accenture Angular Interview Questions 

 

Basic 

1. What is Angular? 

Answer: Angular is a front-end framework developed by Google for building 
dynamic, single-page web applications. It allows for the creation of rich user 
interfaces using HTML, CSS, and TypeScript. 

2. What is TypeScript in Angular? 

Answer: TypeScript is a superset of JavaScript that provides optional static 
typing. Angular uses TypeScript to improve code quality and enhance error 
detection during development. 

3. What is a Component in Angular? 

Answer: A component is the basic building block of an Angular application. It 
controls a part of the UI and is composed of HTML, CSS, and TypeScript code. 

Each component is defined by a @Component decorator. 

4. What is a Module in Angular? 

Answer: A module is a container that groups related components, services, 

directives, and pipes. It is represented by the NgModule decorator and helps in 

organizing the code. 

5. Explain the concept of Data Binding in Angular. 

Answer: Data binding is a mechanism in Angular that connects the UI (view) 
and the business logic (model). It enables communication between the 
component class and the template using one-way or two-way data binding. 

6. What are Directives in Angular? 



 
Answer: Directives are instructions in Angular that modify the behavior or 

appearance of HTML elements. They come in three types: structural (*ngIf, 

*ngFor), attribute, and custom directives. 

7. What is the purpose of the ngIf directive? 

Answer: The ngIf directive conditionally renders or removes an element from 

the DOM based on a Boolean expression. If the condition is true, the element 
is added; otherwise, it is removed. 

8. What is a Service in Angular? 

Answer: A service is a class that contains reusable logic and is used for 
sharing data or functionality between different parts of the application. 
Services are often injected into components using Dependency Injection. 

9. What is Dependency Injection in Angular? 

Answer: Dependency Injection (DI) is a design pattern used to manage 
dependencies in Angular. It allows components and services to request 
dependencies from Angular’s injector, improving modularity and testability. 

10. What is Routing in Angular? 

Answer: Routing is a mechanism in Angular that allows navigation between 
different views or components. It is managed by the Angular Router, which 
maps URLs to components. 

11. What is the role of the @NgModule decorator? 

Answer: The @NgModule decorator defines an Angular module. It organizes an 

application into cohesive blocks, such as components, directives, and 
services, and declares their dependencies. 

12. What is a Template in Angular? 



 
Answer: A template in Angular is an HTML view with additional 
Angular-specific syntax, such as interpolation and directives. It defines how 
the component's data should be displayed in the browser. 

13. What are Pipes in Angular? 

Answer: Pipes are used to transform data in Angular templates. For example, 

the date pipe can format a date object, and the uppercase pipe can transform 

text to uppercase. 

14. What is the difference between ngIf and ngSwitch? 

Answer: The ngIf directive is used for simple conditional rendering, while 

ngSwitch is used to switch between multiple views based on a specific 

condition, similar to a switch statement in programming. 

15. What is Angular CLI? 

Answer: Angular CLI (Command Line Interface) is a tool for scaffolding, 
building, and managing Angular projects. It helps in generating components, 
services, and modules, and automates the build process. 

16. What is Lazy Loading in Angular? 

Answer: Lazy loading is a technique in Angular that delays the loading of a 
feature module until it is needed, improving application performance by 
reducing the initial load time. 

17. How do you handle forms in Angular? 

Answer: Angular provides two approaches for handling forms: 
Template-driven forms (simpler, declarative approach using the template) and 

Reactive forms (more flexible, uses model-driven approach with FormGroup 

and FormControl). 

18. What is Interpolation in Angular? 



 
Answer: Interpolation is a way to bind data from the component class to the 

template. It uses the double curly braces syntax ({{ }}) to display dynamic 

content in the HTML. 

19. What is Two-way Data Binding in Angular? 

Answer: Two-way data binding allows automatic synchronization of data 

between the component and the view. It is achieved using the [(ngModel)] 

directive, which binds the model and the view together. 

20. What is an Angular Lifecycle Hook? 

Answer: Lifecycle hooks are methods that allow developers to tap into key 
events in a component’s life cycle, such as creation, updates, and destruction. 

Examples include ngOnInit, ngOnChanges, and ngOnDestroy. 

 

Intermediate 
1. What is Change Detection in Angular? 

Answer: Change detection in Angular is the mechanism by which the 
framework checks the state of the application and updates the DOM when data 
changes. Angular uses zone.js to detect when asynchronous tasks complete, 
and it then triggers change detection automatically. 

2. What is the difference between @Input and @Output in Angular? 

Answer: @Input allows a parent component to pass data to a child 

component, while @Output allows the child component to send data back to 

the parent component by emitting events through an EventEmitter. 

3. Explain the purpose of ngOnChanges in Angular. 



 
Answer: ngOnChanges is a lifecycle hook that is called whenever an 

input-bound property of a component changes. It allows you to react to 

changes to @Input() data in child components. 

4. What is the difference between Observable and Promise in Angular? 

Answer: Observables are lazy and can handle multiple values over time 
(streams), while Promises are eager and resolve to a single value. Observables 
offer more flexibility, such as cancellation and retrying operations, and are part 
of Angular's reactive programming model. 

5. How does Angular handle error handling in HTTP requests? 

Answer: Angular provides a built-in HttpClient module that supports error 

handling using the catchError operator from RxJS. This allows developers to 

gracefully handle HTTP errors like network failures or incorrect API calls. 

6. What is AOT (Ahead-of-Time) Compilation in Angular? 

Answer: AOT compilation pre-compiles the Angular templates and 
components at build time, rather than at runtime. This reduces the size of the 
application, increases the loading speed, and catches template errors early. 

7. What is Dependency Injection (DI) Hierarchical Injector in Angular? 

Answer: Angular uses a hierarchical dependency injection system. The 
injectors form a tree, with the root injector at the top. Components can have 
their injectors, and Angular resolves dependencies by looking for the required 
service in the local injector, moving upward if needed. 

8. What are Guards in Angular Routing? 

Answer: Guards in Angular are used to control navigation to and from routes. 

There are four types: CanActivate, CanActivateChild, CanDeactivate, 

and Resolve. They allow or deny access to routes based on logic, such as 

authentication. 

9. What is a Singleton Service in Angular? 



 
Answer: A singleton service in Angular is a service that is instantiated only 
once and shared across the entire application. By providing a service in the 

root module (@Injectable({ providedIn: 'root' })), it becomes a 

singleton. 

10. Explain ViewEncapsulation in Angular. 

Answer: ViewEncapsulation defines how styles are applied to components. 

Angular provides three encapsulation modes: Emulated (default, styles are 

scoped), None (styles are global), and ShadowDOM (uses the shadow DOM to 

encapsulate styles). 

11. What is a Resolver in Angular? 

Answer: A resolver is used in Angular routing to pre-fetch data before a route 
is activated. It allows data to be retrieved asynchronously and provided to the 
component before rendering, ensuring that the component has the necessary 
data upon loading. 

12. How does Angular handle lazy loading of modules? 

Answer: Angular enables lazy loading by defining routes in the RouterModule 

using the loadChildren property. This allows feature modules to be loaded 

only when the associated route is visited, improving the application’s initial 
load performance. 

13. What is ng-content and how is it used? 

Answer: ng-content is used for content projection, which allows you to insert 

dynamic content from a parent component into the template of a child 
component. It acts as a placeholder in the child component, and the content is 
projected from the parent component. 

14. What are Angular Pipes, and how do you create a custom pipe? 



 
Answer: Angular Pipes transform data in templates. To create a custom pipe, 

use the @Pipe decorator and implement the PipeTransform interface. Custom 

pipes allow for reusable transformation logic for specific data formats. 

15. Explain how you would optimize performance in an Angular application. 

Answer: Performance optimization techniques in Angular include using AOT 
compilation, lazy loading modules, employing OnPush change detection 
strategy, debouncing user input, optimizing bundle sizes using tools like 
Webpack, and using pure pipes for transformation. 

16. What is @ViewChild and @ContentChild in Angular? 

Answer: @ViewChild is used to access a template reference or a child 

component instance in the view, while @ContentChild is used to query and 

get references to projected content passed into the component via 

<ng-content>. 

17. What is the role of FormBuilder in Angular Reactive Forms? 

Answer: FormBuilder is a service in Angular used to create and manage 

forms more efficiently in reactive forms. It simplifies the process of creating 

FormGroup and FormControl instances with less boilerplate code. 

18. Explain the async pipe in Angular. 

Answer: The async pipe in Angular automatically subscribes to an observable 

or promise and returns its latest value. It also handles unsubscription when 
the component is destroyed, avoiding memory leaks. 

19. What is the purpose of RouterModule.forRoot() and RouterModule.forChild()? 

Answer: RouterModule.forRoot() is used to register the main application 

routes and initialize the router at the root level, whereas 

RouterModule.forChild() is used to register routes within a feature module 

in a lazy-loaded module. 



 
20. What is the purpose of ngZone in Angular? 

Answer: ngZone is an Angular service used to control the scope of 

asynchronous operations that can trigger change detection. By using 

ngZone.runOutsideAngular(), you can perform actions that won’t trigger 

change detection, improving performance for heavy operations. 

Advanced 

1. What is the Change Detection Strategy in Angular, and how can you 
optimize it? 

Answer: Angular provides two change detection strategies: Default and 

OnPush. In the default mode, Angular checks every component’s change, but 

OnPush optimizes performance by checking only when the component’s inputs 

change. To optimize, use OnPush for components that don’t need frequent 

updates and immutable data structures. 

2. Explain how Angular’s Dependency Injection works at a multi-level 
hierarchy. 

Answer: Angular’s Dependency Injection (DI) system forms a hierarchy, where 
each component has its injector. Services provided at the module level (root 
injector) are available throughout the app, while services provided at the 
component level are specific to that component and its children. 

3. What is the difference between @HostListener and @HostBinding? 

Answer: @HostListener is used to listen for events on the host element, 

allowing you to react to events like clicks or key presses. @HostBinding is 

used to bind a property (e.g., class, style) of the host element to a component 
property dynamically. 

4. How would you implement state management in Angular without using 
NgRx? 



 
Answer: Without NgRx, you can implement state management using Angular 

services as singletons to store and manage state. Use BehaviorSubject from 

RxJS to store the application state and emit updates. Components can 
subscribe to this state and react accordingly. 

5. What are the key differences between Reactive Forms and Template-Driven 
Forms in Angular? 

Answer: Reactive Forms offer more control and are model-driven, making 

them suitable for complex forms. They use FormControl, FormGroup, and 

FormBuilder classes. Template-Driven Forms are easier for simple forms, rely 

heavily on the template, and use directives like ngModel. 

6. What is Tree Shaking in Angular? 

Answer: Tree shaking is a build optimization technique that removes unused 
code during the build process. Angular, using tools like Webpack, eliminates 
dead code to reduce the size of the final bundle, improving performance. 

7. How does Angular handle memory leaks, and how can you prevent them? 

Answer: Angular's automatic garbage collection helps manage memory, but 
leaks can still occur, especially with subscriptions. To prevent memory leaks, 

always unsubscribe from observables using takeUntil, async pipe, or 

ngOnDestroy() lifecycle hook for manual unsubscription. 

8. What is Dynamic Component Loading in Angular, and how can you achieve 
it? 

Answer: Dynamic component loading allows components to be created and 
inserted into the DOM at runtime. This can be achieved using Angular’s 

ComponentFactoryResolver or more recently, 

ViewContainerRef.createComponent(). 

9. How does Angular handle animations, and what is the role of the 

@angular/animations module? 



 
Answer: Angular’s animation system is built on top of the 

@angular/animations module, which allows the definition of animations 

using triggers and states. Animations are applied by associating triggers with 
elements in templates and controlling transitions between states. 

10. Explain the role of ngZone.runOutsideAngular() and its benefits. 

Answer: ngZone.runOutsideAngular() allows you to execute code that 

doesn’t trigger change detection. It is beneficial when performing operations 
that don't impact the UI, such as heavy computations, to prevent unnecessary 
change detection cycles and improve performance. 

11. What are custom structural directives, and how do you create one in 
Angular? 

Answer: Custom structural directives manipulate the DOM structure (e.g., 

adding or removing elements). To create one, use the @Directive decorator 

and implement TemplateRef and ViewContainerRef. For example, create a 

directive that shows/hides content based on a condition. 

12. What are Zone.js and its significance in Angular? 

Answer: Zone.js is a library that patches asynchronous operations (e.g., 

setTimeout, HTTP requests) and notifies Angular when these operations 

complete. Angular uses Zone.js to manage change detection by triggering 
updates when tasks complete. 

13. How do you optimize bundle size in an Angular application? 

Answer: Bundle size optimization strategies include lazy loading, using AOT 
compilation, enabling Tree Shaking, minimizing external libraries, 
compressing assets, and using Webpack to split bundles. 

14. What is Ivy Renderer, and how does it differ from the older View Engine in 
Angular? 



 
Answer: Ivy is Angular’s latest rendering engine, designed to improve 
compilation speed, reduce bundle size, and provide more efficient change 
detection. It allows better tree-shaking and lazy loading. Ivy also provides new 
APIs for dynamic component rendering. 

15. How does Angular handle i18n (Internationalization) and what are its key 
features? 

Answer: Angular provides built-in support for i18n via the 

@angular/localize package. It allows you to translate content into different 

languages by extracting messages using ng extract-i18n, creating 

translation files, and then building the app for different locales. 

16. What is the difference between Subject, BehaviorSubject, 

ReplaySubject, and AsyncSubject in Angular? 

Answer: 

●​ Subject: Emits data to all subscribers from the moment of 

subscription. 

●​ BehaviorSubject: Emits the latest value to new subscribers and 

subsequent values to all. 

●​ ReplaySubject: Replays a specified number of previous values to new 

subscribers. 

●​ AsyncSubject: Emits only the last value when the observable 

completes. 

17. What is the purpose of the Renderer2 service in Angular? 

Answer: Renderer2 is a service for safely manipulating DOM elements and 

attributes. It provides an abstraction layer that ensures compatibility across 
different rendering environments (e.g., server-side rendering with Angular 
Universal). 



 
18. How do you test Angular components that depend on services using 

TestBed? 

Answer: Angular provides the TestBed utility for configuring and initializing 

the environment for unit testing. Services can be mocked using 

TestBed.configureTestingModule() with spyOn() or MockService to test 

components independently of service implementations. 

19. What is ngx-translate and how do you integrate it into an Angular 

application? 

Answer: ngx-translate is a library that provides internationalization for 

Angular applications. It allows you to load translations asynchronously from 
JSON files and switch languages dynamically using services like 

TranslateService and TranslatePipe. 

20. What is Angular Universal, and what benefits does server-side rendering 
(SSR) provide? 

Answer: Angular Universal enables server-side rendering of Angular 
applications. It improves performance by rendering HTML on the server, 
reducing the time to first contentful paint (FCP), improving SEO, and 
enhancing the user experience for slow networks or devices. 

 


	1. What is Angular? 
	2. What is TypeScript in Angular? 
	3. What is a Component in Angular? 
	4. What is a Module in Angular? 
	5. Explain the concept of Data Binding in Angular. 
	6. What are Directives in Angular? 
	7. What is the purpose of the ngIf directive? 
	8. What is a Service in Angular? 
	9. What is Dependency Injection in Angular? 
	10. What is Routing in Angular? 
	11. What is the role of the @NgModule decorator? 
	12. What is a Template in Angular? 
	13. What are Pipes in Angular? 
	14. What is the difference between ngIf and ngSwitch? 
	15. What is Angular CLI? 
	16. What is Lazy Loading in Angular? 
	17. How do you handle forms in Angular? 
	18. What is Interpolation in Angular? 
	19. What is Two-way Data Binding in Angular? 
	20. What is an Angular Lifecycle Hook? 
	1. What is Change Detection in Angular? 
	2. What is the difference between @Input and @Output in Angular? 
	3. Explain the purpose of ngOnChanges in Angular. 
	4. What is the difference between Observable and Promise in Angular? 
	5. How does Angular handle error handling in HTTP requests? 
	6. What is AOT (Ahead-of-Time) Compilation in Angular? 
	7. What is Dependency Injection (DI) Hierarchical Injector in Angular? 
	8. What are Guards in Angular Routing? 
	9. What is a Singleton Service in Angular? 
	10. Explain ViewEncapsulation in Angular. 
	11. What is a Resolver in Angular? 
	12. How does Angular handle lazy loading of modules? 
	13. What is ng-content and how is it used? 
	14. What are Angular Pipes, and how do you create a custom pipe? 
	15. Explain how you would optimize performance in an Angular application. 
	16. What is @ViewChild and @ContentChild in Angular? 
	17. What is the role of FormBuilder in Angular Reactive Forms? 
	18. Explain the async pipe in Angular. 
	19. What is the purpose of RouterModule.forRoot() and RouterModule.forChild()? 
	20. What is the purpose of ngZone in Angular? 
	1. What is the Change Detection Strategy in Angular, and how can you optimize it? 
	2. Explain how Angular’s Dependency Injection works at a multi-level hierarchy. 
	3. What is the difference between @HostListener and @HostBinding? 
	4. How would you implement state management in Angular without using NgRx? 
	5. What are the key differences between Reactive Forms and Template-Driven Forms in Angular? 
	6. What is Tree Shaking in Angular? 
	7. How does Angular handle memory leaks, and how can you prevent them? 
	8. What is Dynamic Component Loading in Angular, and how can you achieve it? 
	9. How does Angular handle animations, and what is the role of the @angular/animations module? 
	10. Explain the role of ngZone.runOutsideAngular() and its benefits. 
	11. What are custom structural directives, and how do you create one in Angular? 
	12. What are Zone.js and its significance in Angular? 
	13. How do you optimize bundle size in an Angular application? 
	14. What is Ivy Renderer, and how does it differ from the older View Engine in Angular? 
	15. How does Angular handle i18n (Internationalization) and what are its key features? 
	16. What is the difference between Subject, BehaviorSubject, ReplaySubject, and AsyncSubject in Angular? 
	17. What is the purpose of the Renderer2 service in Angular? 
	18. How do you test Angular components that depend on services using TestBed? 
	19. What is ngx-translate and how do you integrate it into an Angular application? 
	20. What is Angular Universal, and what benefits does server-side rendering (SSR) provide? 

