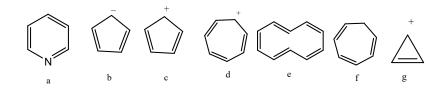


25104 120 MINUTES

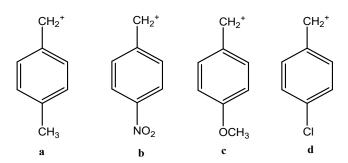
- 1. Identify the correct order of bond dissociation enthalpy of halogens:
 - A) $F_2 > Cl_2 > Br_2 > I_2$
- B) $Cl_2 > Br_2 > F_2 > I_2$
- C) $I_2 > Br_2 > Cl_2 > F_2$
- D) $Br_2 > I_2 > F_2 > Cl_2$
- 2. Which element has atomic number 100?
 - A) Californium B)
- Einsteinium C)
- Fermium
- D) Mendelenium
- 3. Shapes of XeF₂, XeF₄, XeF₆ and XeOF₄ are respectively:
 - A) Linear, tetrahedral, octahedral and trigonal pyramidal
 - B) Linear, tetrahedral, octahedral and square pyramidal
 - C) Bent, t-shape, distorted octahedral and square pyramidal
 - D) Linear, square planar, distorted octahedral and square pyramidal
- 4. Identify the major product of the reaction:

- 5. What is the structure of B_5H_9 ?
 - A) Arachno
- B) Nido
- C) Closo
- D) hypho
- 6. The most stable oxidation states for Th and U are:
 - A) +4 for Th and +6 for U
- B) +6 for Th and +4 for U
- C) +6 for both Th and U
- D) +4 for both Th and U
- 7. The oxidation number of Na and O in Na_2O_2 is:
 - A) +1 for sodium and -1 for oxygen
 - B) -1 for sodium and +1 for oxygen
 - C) +1 for sodium and -2 for oxygen
 - D) +1 for sodium and +1 for oxygen
- 8. The CFSE (Δ) for [CoCl₆]⁻⁴ is 18000 cm⁻¹. Then CFSE (Δ) for [CoCl₄]⁻² is:
 - A) 2000 cm⁻¹
- B) 18000 cm⁻¹ C)
 - C) 8000 cm⁻¹
- D) 9000 cm⁻¹

6


- 9. The number of unpaired electrons in $[Fe(H_2O)_6]^{3+}$:
 - A) 3
- B) -
- C) 5
- D)

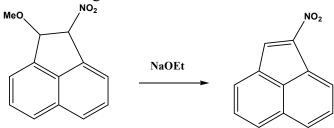
- 10. Identify the statement which is correct about the species CN⁻, Cl⁻, and CO:
 - A) Both cyanide ion and CO are weak field ligands and the chloride is a strong field ligand
 - B) Both cyanide ion and chloride are weak field ligands and CO is a strong field ligand
 - C) All are strong field ligands
 - D) Both cyanide ion and CO are strong field ligands and chlorine is a weak field ligand
- 11. The coordination compound [Ni (PPh₂Et)₂ Br₂] has zero magnetic moment. The geometry and the number of possible isomers are:
 - A) Tetrahedral and zero
- B) Square planar and zero
- C) Square planar and two
- D) Tetrahedral and two
- 12. Which of the following is **not** a chelating ligand?
 - A) Glycinato


B) Ethylene diamine

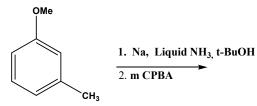
C) Oxalato

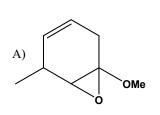
- D) Thiosulphato
- 13. Which of the following compound/s are aromatic?

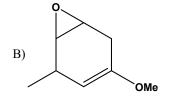
- A) a, b, c, d, e & f only
- B) a, b, d & g only
- C) c, e, f & g only
- D) a, b, c, d, e, f & g
- 14. Arrange the following in increasing order of stability of carbocation:

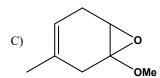


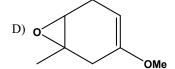
- A) b < d < a < c
- B) b < d < c < a
- C) a < c < d < b
- c < a < b < d
- 15. How many isomers are possible for the molecular formula C_4H_8 ?
 - A) 2
- B) 3
- C) 4
- D)


5

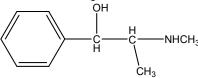

- 16. Which of the following is compound **R**?


 - A) C) D) CH₂OH CH₂OH
- 17. The reaction given below follows the mechanism:



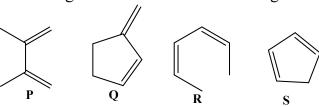

- A) E₁ mechanism
- B) E₂ mechanism
- C) E_1 CB mechanism
- D) Pyrolytic syn
- 18. The major product formed in the following reaction:

19. The configurations of two stereo centres in the compound shown below are:



- A) 1R, 4R
- B) 1S, 4S
- C) 1R, 4S
- D) 1S, 4R

20. In the most stable conformation of Trans-3-ter-butyl cyclohexanol, the substituents at C-1 and C-3 respectively are:


- A) Axial, equatorial
- B) Equatorial, axial
- Axial, axial C)
- Equatorial, equatorial D)

21. Structure of the drug ephedrine is given below. How many optical isomers are possible for the compound?

- A) 2
- 3 B)
- C) 4
- D) 6

22. List the following dienes in order of decreasing reactivity in a Diels–Alder reaction:

- P > S > R > Q
- P > S > O > RC)
- S > P > R > QP > S > R > QD)

23. A chemist determines that a sample of petrified wood has a carbon-14 decay rate of 3.4 counts per minute per gram. What is the age of the piece of wood in years? The decay rate of carbon-14 in fresh wood today is 13.6 counts per minute per gram, and the half life of carbon-14 is 5730 years.

- A) 5730 years
- B) 2865 years
- 11460 years C)
- D) 8595 years

What is the concentration of the reactant in a first-order reaction when the rate of 24. the reaction is 0.6 mol L⁻¹S⁻¹ and the rate constant is 0.030 S⁻¹?

- 20 mol L⁻¹ A)
- $2 \text{ mol } L^{-1}$ B)
- C) $0.05 \text{ mol } L^{-1} D)$ $0.52 \text{mol } L^{-1}$

25. The data provided in the table were obtained from the following reaction, carried out at 273 K.

 $A + B \rightarrow C$

Initial concentration of [A] molL ⁻¹	Initial concentration of $[B]$ $molL^{-1}$	Initial rate of formation of $[C] \mod L^{-1}S^{-1}$
0.2	0.2	0.3
0.4	0.2	0.6
0.4	0.4	2.4

The rate	equation	for the	reaction	is:

	· ^
A \	Rate= $K[A]^2[B]$
A	Kate=KIAIIBI
1 1	

Rate= $K[A][B]^2$ B)

C) Rate=K[A][B] D) Rate= $K[A]^2$

26.	In a	face-center	red cubic	(FCC)	lattice,	what is	the coor	dınatıon num	iber of o	each atom?
	A \	1	D)	_		α	0	D)	10	

A)

B)

D)

27. Which of the following affects the peak positions in an XRD pattern?

X-ray wave length A)

B) Crystallite size

Unit cell parameter C)

All of these D)

28. Which of the following statements about fuel cells is correct?

- They convert chemical energy directly into electrical energy. A)
- They require high temperatures to operate efficiently. B)
- C) They produce carbon dioxide as byproduct.
- D) They are primarily used for short energy storage.

29. The overpotential in an electrochemical reaction is defined as:

- The potential difference between the anode and cathode A)
- The extra voltage required to drive a non-spontaneous reaction B)
- C) The voltage drop due to resistance in the electrolyte
- The equilibrium potential of the cell D)

30.	Which adsorption isotherm is characterized by a monolayer adsorption on a
	homogeneous surface?

Freundlich isotherm A)

B) Langmuir isotherm

C) BET isotherm D) Temkin isotherm

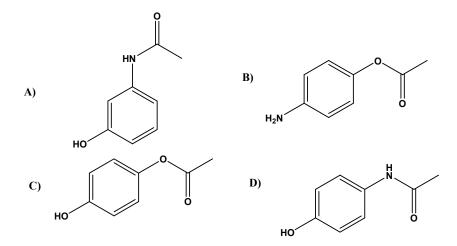
31. The technique used to analyse the chemical composition of a surface:

- Scanning Electron Microscopy (SEM) A)
- X-ray Photoelectron Spectroscopy (XPS) B)
- Scanning Tunnelling Microscopy (STM) C)
- Atomic Force Microscopy (AFM) D)

32.	Which one of the following nuclei has a magnetic moment (so that an NMF
	experiment can be performed)?

 ^{12}C A)

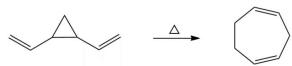
¹⁶O B)


 ^{14}N C)

 32 S D)

33.	The L A)	angmuir-Hins Adsorption o		od mechanism ants on the ca							
	B)	Formation o	f an int	ermediate cor	nplex						
	C) Desorption of products from the catalyst surfaceD) All of the above										
	D)	All of the ab	ove								
34.	For the following four molecules: acetone, benzene, dimethyl ether, ethane (each of which contains only one type of proton), the correct order of chemical shift (in δ units) is:										
	A)	Benzene < e	thane <	acetone < di	iethyl e	ther					
	B)	Benzene < a	cetone	< dimethyleth	ner < et	hane					
	C)			acetone > di							
	D)	Benzene > d	ımethy	l ether > aceto	one > e	thane					
35.	septet		served.			pound, a single ing structures					
	A)	PF_3	B)	PH_3	C)	PF_6	D)	PMe ₃			
36.		_		_	_	molecular orb					
	A)	σ2s	B)	$\sigma 2p_z$	C)	$\pi 2p_x$	D)	$\pi*2p_y$			
37.	(1) C-	-H (alkane), (2 $4 < 3 < 2 < 1$	2) O-H l	(alcohol), (3) B)	C=O(3 < 4)	umber of the s ketone), and (4 < 2 < 1 < 1 < 2		ng vibrations of (alkyne):			
38.		many signals spectra?	does th	e aldehyde (C	CH ₃) ₃ CO	CH ₂ CHO have	in ¹ H]	NMR and ¹³ C			
		Five ¹ H sign	als and	six ¹³ C signa	ls						
	B)	Three ¹ H sig	nals an	d four ¹³ C sig	nals						
	C) D)	Three ¹ H sign	als and	four ¹³ C sign d six ¹³ C sign	als						
	D)	Tillee II sig	ilais ali	iu six C sign	iais						
39.	Whic	h of the follow	ving is	equivalent to	1 ppm?)					
	A)	$1 \mu g/L$	B)	1mg/L	C)	1ng/L	D)	1g/L			
40	Whio	h of the follow	vina ia	usad as Carrio		n agg ahramat	acroph	an			
40.	A)	Helium	_	Nitrogen	_	n gas chromate Argon	ograpnj D)	All of these			
	11)	110110111	D)	111108611	C)	1115011	D)	Tim of these			
41.	the sa	_			_	_		ography maintains atography is called			
	A)	Gradient	B)	Isocratic	C)	Iso osmotic	D)	Adiabatic			
	*		,		,		·				

42.	,						nogram of cal se of water se of CO_2	cium o	xalate
43.		proximately w loss occur in t 150-200°C	he ther	mograr	n of ca	lcium c		ydrate'	?
44.		lease of which	gas?	he theri	mogran B) D)	Carbo	cium oxalate on monoxide (ogen (H ₂)		ydrate is due to
45.	A der	ivative thermo $(\Delta m/\Delta T)$	_			ot of C)	as a function ΔT	on of te D)	emperature. ΔΗ
46.	Chem A) B) C) D)	oical Oxygen I Oxygen requested Oxygen requested Dissolved ox Oxygen proc	ired to ired by tygen i	oxidizo y aquati n water	e organ c organ	nic and inisms	e amount of: inorganic mat	ter in w	vater.
47.	Drugs A) C)	s that bind to r Antagonist Inverse agon	-	rs and b	block th B) D)	Agoni		ral ligaı	nd are called:
48.	A dru A)	g with low IC Less toxic			tent	C)	More toxic	D)	More potent
49.	The th A)	nerapeutic inde LD ₅₀ -EC ₅₀		_			: EC ₅₀ -LD ₅₀	D)	EC ₅₀ /LD ₅₀
50.	 What is the molecular basis of action of Pt(II) chemotherapy agents? A) A stable complex is formed between the DNA and Pt(II); the DNA is oxidized by the Pt(II) complex. B) A stable complex is formed between the DNA and Pt(II); the DNA is reduced by the Pt(II) complex. C) Pt(II) compounds have no chemotherapy action D) A stable complex is formed between the DNA and Pt(II); the DNA helix bends and unwinds partially 								
51.	dioxid	le?	•						oduct is carbon
	A)	100%	B)	22.5%	0	C)	80%	D)	55%


52. Which of the following is paracetamol?

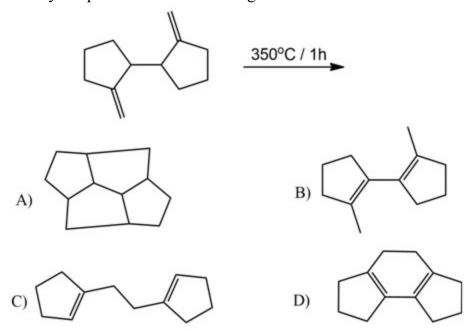
- 53. A "hit" in drug discovery is defined as a compound that has been :
 - A) Identified as having a desired biological activity, but it may require further optimization or modification
 - B) Optimized for potency and selectivity

B)

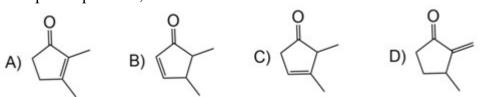
- C) Approved for clinical trials
- D) Marketed as a drug
- 54. The chemicals which belong to the category of persistent organic pollutants (POPs):
 - A) Teflon
- TNT
- C) Aldrin
- D) Paracetamol
- 55. The soil-related process which contribute to removal of carbon dioxide from the atmosphere:
 - A) Microbial oxidation of soil organic matter
 - B) Respiration by plants growing in a field
 - C) A forest fire
 - D) Rapid growth in a temperate rain forest
- 56. The following reaction is an example for:

- A) [3,3] Sigmatropic rearrangement
- B) Diels-Alder reaction
- C) [2,4] Sigmatropic rearrangement
- D) 2+2 cycloaddition reaction

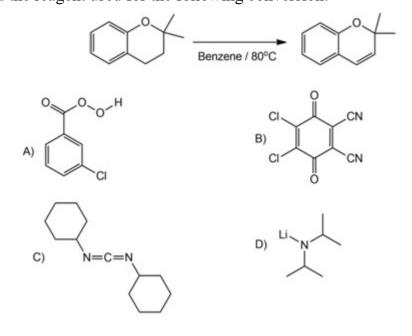
57. Identify the major product of the following reaction:


A)
$$O_2$$
 O_2N
 O_2N

58. Identify X in the reaction given below:

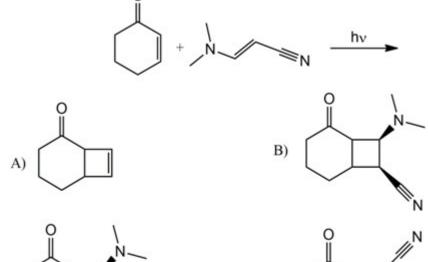

A)
$$O + X$$
 NaOEt $O + X$ NaOE

- 59. The reagent used for converting prop-1-ene to prop-2-en-1-ol is:
 - A) OsO₄
- B) KMnO₄
- C) SeO₂
- D) MCPBA
- 60. Identify the correct order in terms of energy for cyclohexane confirmations:
 - A) Chair < Twist boat < Boat < Half chair
 - B) Chair < Boat < Twist boat < Half chair
 - C) Half chair < Boat < Twist boat < Chair
 - D) Half chair < Twist boat < Boat < Chair


61. Identify the product of the following thermal reaction:

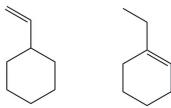
62. One among the following ketones in ethanol had $\lambda_{max} = 224$ nm in its UV-Visible absorption spectrum, which was it?

63. Find the reagent used for the following conversion:



64. Find the major product of the following reaction:

- Identify the statement which is TRUE for Br₂: 65.
 - IR active, microwave inactive A)
 - Microwave active, IR inactive B)
 - Neither IR nor microwave active C)
 - Both IR and microwave active D)
- 66. Predict the δ values for the alkene protons:


- A) Ha(5.8), Hb(6.0), Hc(6.0) B) Ha(6.0), Hb(5.8), Hc(5.8)
- C) Ha(5.8), Hb(6.0), Hc(6.2) D) Ha(5.8), Hb(6.2), Hc(6.0)
- 67. Calculate the m/z value for the parent ion whose normal daughter ion $(m_2) = 100$ and metastable daughter ion $(m^*) = 90$
 - A) 117
- 105 B)
- C) 111
- D) 81
- The transmittance of 10⁻³molar aqueous solution of KMnO₄ at 525 nm is 0.01 in a 68. 1cm cell. What is the molar absorption coefficient of KMnO₄?
 - $2 \times 10^{3} \text{ 1 mol}^{-1} \text{ m}^{-1}$ $1 \times 10^{3} \text{ 1 mol}^{-1} \text{ m}^{-1}$ $2 \times 10^5 \text{ l mol}^{-1} \text{ m}^{-1} \\ 1 \times 10^5 \text{ l mol}^{-1} \text{ m}^{-1}$ B) A)
 - D) C)

69. Identify the product of the following reaction:

C) O N-

- D) N
- 70. How many normal modes of vibrations are possible for OCS?
 - A) 1
- B) 2
- C) 3
- D) 4
- 71. ---- technique can be used to measure the vibrational frequency of Re—Re stretch in (CO)₅Re—Re(CO)₅.
 - A) Raman spectroscopy
- B) IR spectroscopy
- C) Mossbauer spectroscopy
- D) Microwave spectroscopy
- 72. The following isomers can be differentiated by looking at ---- in their mass spectra.

- A) Prominent peak at $M C_2H_5$
- B) Isotopic peak
- C) Metastable peak
- D) Peak due to Retro-Diels-Alder products
- 73. $C_2B_4H_8$ is an example for ---- carborane.
 - A) closo
- B) nido
- C) arachno
- D) conjucto
- 74. Number of B—B—B bonds present in a borane having styx code 4012 is:
 - A) 0
- B) 1
- C) 2
- D) 4

75.	Find (A)	the product of N ₄ S ₄ Cl ₄	the real	ction between S ₄ N ₄ •Cl ₂	n S ₄ N ₄ a		D)	$N_3S_3Cl_3$
76.	$[W_{12}C$	$O_{36}(OH)_{10}]^{10}$	on acid	dification give	es:			
	A)	$[H_2W_{12}O_{40}]^{6}$	_	B)	$[H_3W]$	$_{6}O_{21}]^{3-}$		
	C)	WO ₃ •2H ₂ O		D)	$[W_{12}C$	$[0.1]^{10-}$		
77.	Which A) B) C) D)	It transport N of the cell to The carrier p	s an ex la+ from inside rotein i	ample for acti	ive tran e cell to a ⁺ /K ⁺ po	sport o outside and lump has 5 rec	K ⁺ from	n outside
78.	During A)	g Nitrogen fix Cu	ation, l B)	N_2 molecule is Mo	bonde C)	d toin the Fe	catalyt D)	ic center. Zn
79.	Numb A)	per of S^{2-} units $0,2$	s preser B)	nt in Rubredox 2,2	xin and C)		re —,— D)	
80.	The nA)	nagnetic mom 0	ent obt B)	ained for a hig	gh spin C)	octahedral co	mplex D)	of Fe ³⁺ is —BM. 4.89
81.	—, —	– and —.	_					nd Fe ₃ (CO) ₁₂ are
	A)	0, 2, 3	B)	1, 2, 3	C)	0, 3, 2	D)	1, 3, 2
82.	Identi	fy the correct	express	sion for most j	probabl	le velocity:		
	A)	$\left(\frac{2kT}{m}\right)^{1/2}$	B)	$\left(\frac{8k}{\pi m}\right)^{1/2}$	C)	$\left(\frac{3kT}{m}\right)^{1/2}$	D)	$\left(\frac{3RT}{m}\right)^{1/2}$
83.	Which	n of the follow	ing exp	pression does	not exp	oress mean fre	e path	(<i>l</i>)?

A)
$$l = \left(\frac{2\eta}{\frac{Mmp}{RT}\left(\frac{3RT}{M}\right)^{\frac{1}{2}}}\right)$$
 B)
$$l = \left(\frac{2\eta}{\rho \overline{c}}\right)$$

A)
$$l = \left(\frac{2\eta}{\frac{Mmp}{RT}\left(\frac{3RT}{M}\right)^{\frac{1}{2}}}\right)$$
 B)
$$l = \left(\frac{2\eta}{\rho \overline{c}}\right)$$
 C)
$$l = \left(\frac{2\eta}{\frac{Mmp}{RT}\left(\frac{8RT}{\pi M}\right)^{\frac{1}{2}}}\right)$$
 D)
$$l = \left(\frac{2\eta}{mn\overline{c}}\right)$$

84. Find the relation between coefficient of viscosity (k) and specific heat capacity (C_v):

A)
$$k = \frac{1}{3\pi\sigma^2} \left(\frac{mkT}{\pi m}\right)^{\frac{1}{2}} C_v$$
 B) $k = \frac{1}{2\pi\sigma^2} \left(\frac{mkT}{\pi m}\right)^{\frac{1}{2}} C_v$

B)
$$k = \frac{1}{2\pi\sigma^2} \left(\frac{mkT}{\pi m}\right)^{\frac{1}{2}} C_1$$

C)
$$k = \frac{3}{2\pi\sigma^2} \left(\frac{mkT}{\pi m}\right)^{\frac{1}{2}} C_v$$
 D) $k = \frac{2}{3\pi\sigma^2} \left(\frac{mkT}{\pi m}\right)^{\frac{1}{2}} C_v$

D)
$$k = \frac{2}{3\pi\sigma^2} \left(\frac{mkT}{\pi m}\right)^{\frac{1}{2}} C_v$$

- 85. Schottky defect is an example for:
 - Line defect B) A)
 - Point defect C)
- Plane defect D)

None of these

- 86. Which one of the following suggestions of swarm theory is **not** TRUE?
 - The ordered structure of liquid crystals does not extend over long distances A)
 - The structure exists in small agglomerates of a few molecules known as swarms, B) randomly arranged in space
 - The interactions between swarms are stronger than the interactions between C) molecules in each swarm.
 - Liquid crystals are a polycrystalline structure, with each swarm acting as an D) independent micro-crystal
- 87. It has been found that CH₃—CHO decomposes obeying 3.5 order kinetics, if its initiation step is CH_3 —CHO $\xrightarrow{k_1}$ CH_3 + CHO, its chain length can be expressed as:

A)
$$k_2 \left(\frac{1}{k_1 k_4}\right) [CH_3 - CHO]^{\frac{1}{2}}$$
 B) $k_2 \left(\frac{1}{k_1 k_4}\right) [CH_3 - CHO]^{\frac{3}{2}}$

C)
$$k_2 \left(\frac{1}{k_1 k_4}\right) \left[CH_3 - CHO\right]$$
 D) $k_2 \left(\frac{1}{k_1 k_4}\right) \left[CH_3 - CHO\right]^2$

- 88. Shock tube method and flash photolysis are examples for:
 - A) Periodic perturbation method
 - Small perturbation method B)
 - Large perturbation method C)
 - None of the above D)
- 89. Isomerization of alkylammonium yanate to the corresponding substituted urea in aqueous solution is an example for ---- equilibrium reaction.
 - A)
 - B)
 - 1st order opposed by 1st order 2nd order opposed by 1st order 1st order opposed by 2nd order 2nd order opposed by 2nd order C)
 - D)

90. According to Lindeman's mechanism of unimolecular reactions, the rate of unimolecular reaction A→ Product, can be expressed as:

$$-\frac{d[A]}{dt} = \frac{k_1 k_2 [A]^2}{\{k_{-1}[A] + k_2\}}$$

where, [A] is the concentration of A, k_1, k_{-1} and k_2 represents the rate constants for activation, deactivation and decomposition steps respectively. Which of the following statements is TRUE?

- A) At high pressure, the chances of collisions between A* and A are less, and hence $-\frac{d[A]}{dt} = \frac{k_1 k_2 [A]}{k_{-1}}$
- B) At high pressure, the chances of collisions between A* and A are greater, and hence $-\frac{d[A]}{dt} = \frac{k_1 k_2 [A]}{k_{-1}}$
- C) At high pressure, the chances of collisions between A* and A are less, and hence $-\frac{d[A]}{dt} = \frac{k_1 k_2 [A]^2}{k_{-1}}$
- D) At high pressure, the chances of collisions between A* and A are greater, and hence $-\frac{d[A]}{dt} = \frac{k_1 k_2 [A]^2}{k_{-1}}$
- 91. Identify the expression which does **not** represent Sackur-Tetrode equation for translational entropy of a monoatomic gas:

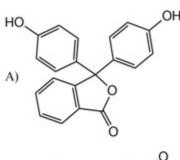
A)
$$S_t = \frac{5}{2} R + R \ln \left(\frac{M^{3/2} T^{5/2}}{P} \right) + R \ln \left(\frac{2\pi}{N} \right)^{3/2} \left(\frac{k_B}{h^3} \right)^{5/2}$$

B)
$$S_t = R \ln \left(\frac{M^{3/2} T^{5/2}}{P} \right) + R \ln \left(\frac{2\pi}{N} \right)^{3/2} \left(\frac{k_B}{h^3} \right)^{5/2}$$

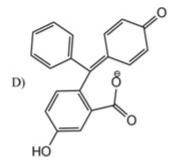
C)
$$S_t = R \ln \left(\frac{M^{3/2}T^{5/2}}{P} \right) + 25.166$$

D)
$$S_t = R \ln \left(\frac{M^{3/2} T^{5/2}}{P} \right) - 2.316$$

- 92. Identify the **wrong** statement:
 - A) Maxwell-Boltzmann statistics apply to distinguishable particles, while Bose-Einstein and Fermi-Dirac statistics apply to indistinguishable particles
 - B) Fermi-Dirac statistics apply to particles that obey the Pauli exclusion principle
 - C) Bose-Einstein statistics apply to particles that can occupy the same quantum state, while Fermi-Dirac statistics apply to particles that cannot.
 - D) At low temperatures and high chemical potentials, Bose-Einstein and Fermi-Dirac statistics approach Maxwell-Boltzmann statistics.

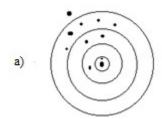

- 93. The zeta potential of a particle can be calculated using
 - A) Electrophoresis
- B) Sedimentation potential
- C) Electro-osmosis
- D) All the above
- 94. Michaelis Menton equation for enzyme catalysis is as follows:

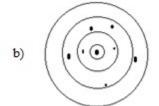
$$V = \left(\frac{V_{max}[S]}{[S] + K}\right)$$

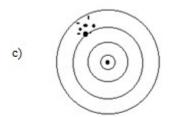

Where; [S] is substrate concentration, K is the rate constant

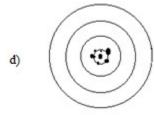
What happens when

- (p) concentration of substrate is low
- (q) concentration of substrate is high
- (r) K = [S]
- A) (p) order = ∞ , (q) order = 0, (r) $V = \frac{1}{2} V_{max}$
- B) (p) order = 2, (q) order = 1, (r) $V = V_{max}$
- C) (p) order = 1, (q) order = 0, (r) $V = \frac{1}{2} V_{max}$
- D) (p) order = 1, (q) order = 2, (r) $V = \frac{1}{2} V_{max}$
- 95. -----calculates the ratio of the distance between an outlier and its nearest neighbour to the range of values.
 - A) Q-Test
- B) T-Test
- C) F-test
- D) All of these
- 96. Which form of Phenolphthalein is pink in colour?




HO B) 8




- 97. The method used to separate broader range of compounds using a series of solvents with increasing polarity is known as:
 - A) Successive extraction
- B) Ion exchange chromatography
- C) Solvent extraction
- D) Gas chromatography

98. Match the following List I (Figures) with List II:

List I (Figures) List II

a - 1. High accuracy, high precession
b - 2. Low accuracy, high precession

c - 3. High accuracy, low precessiond - 4. Low accuracy, low precession

- A) a-4, b-2, c-3, d-1
- B) a-3, b-2, c-4, d-1
- C) a-2, b-4, c-3, d-1
- D) a-4, b-3, c-2, d-1

99. Gel permission chromatography is a kind of:

A) HPLC

- B) Size exclusion chromatography
- C) Gas chromatography
- D) Liquid-liquid chromatography

100. ---- detector is commonly used in the chromatographic analysis of sugars.

- A) Flame ionization
- B) Fluorescence
- C) Refractive index
- D) Photoionization

101. ---- is a voltammetric technique in which chemical species (ions or molecules) undergo oxidation or reduction at the surface of a dropping mercury electrode at an applied potential.

- A) Polarography
- B) Coulometry
- C) Amperometry
- D) Cyclic Voltammetry

102. One of the factors which alter the difference between the sample temperature and furnace temperature and thus will affect the TG curve is:

- A) Heating rate
- B) Furnace atmosphere
- C) Heat of reaction
- D) Crucible geometry

103. Neutron activation analysis (NAA) is a technique that measures the---- emitted from a sample after it has been irradiated with neutrons.

- A) α -particles
- B) β -particles
- C) γ -rays
- D) X-rays

104.	104. The analytical technique used for finding the concentrations of Ca ²⁺ and N separately in a mixture:									ions
	A) C)	Thermometric Complexome	ic titration	,))		metric titrati these	ion		
105.	5. Find the product of the reaction when acetaldehyde in an aqueous micel is kept in a microwave oven and is treated with ultrasonic sound.A) Acetic acid B) But-2-enal C) Ethanol D) 3-hydrox									
106.	Whic	h of the follow	wing is no	ot a phas	se-tı	ransfer	catalyst?			
	A)	Cetyl Bromio	_	_)		/l triethyl an	ımoniu	m chloride	
	C)	Crown ether		D)		-	henanthroli			
107	T 1	0 1	. 1.1			1.		(OT	• \	
107.	Identi A)	fy the stateme QDs have pro								
	A)	semiconduct	-				e between u	1086 01	ouik	
	B)	When illuming	nated by	UV ligh	t, Q	Ds pro	duce fluores	cence,	the color of	the
	C	light depends on the size of the particle.								
	C)	C) Size of the QDs are directly proportional to the band gap and smaller dots emit red light, while larger dots emit blue light.								
	D)	QDs can be u		-			-	track tl	nem in livin	g cells
108.	The o	composite whe	ere matrix	is an al	llov	or pur	e metal and	cerami	cs are used a	as
		orcements are o			J	1				
	A)	Metal matrix	composi	tes						
	B)	Polymer-mat	_							
	C)	Ceramic mat								
	D)	Fiber-reinfor	ced polyi	ner						
109.		nical oxygen d		COD) is	s alv	vays gr	eater than bi	iologica	al oxygen	
		nd (BOD). W	•	damaati						
	A) BOD is calculated in domestic sewageB) COD is calculated for sewage from industries									
	B) COD is calculated for sewage from industriesC) More organic compounds can be oxidised chemically than biologically									
	D) All the above									
110.	Photo	chemical smo	g or sumi	ner smo	g, is	s a type	e of smog th	at is pro	oduced when	n UV
		nteracts with								
	A)	Halogens, hy	drocarbo	ns B))	NO_2 ,	hydrocarbo	ns		
	C)	O_3 , halogens	3	D))	CFCs	$, O_3$			
111.		e the organic r			whe	en 4-nit	rophenol is	treated	with NaBH	4
	A)	Phenobarbita		B))	Diaze	pam			
	C)	Paracetamol		D)			l pencillin			
	•			,		•	-			

	A)B)C)D)									
113.	therm 1. Po	ge the given hal stability: olyphenylene solyetherether I	sulfide	(PPS)			n the increasi			
	A)	2 < 1 < 3	B)	3 < 2 <	< 1	C)	1 < 2 < 3	D)	3 < 1 < 2	
114.	The bA)	, , , , , , , , , , , , , , , , , , ,								
115.	wrong A)	below are few gly matched? Thionyl chlo Sulphurtetra:	ride – (C_s	B)	Carbo	ondioxide – D		ng them is	
116.	Which	h among the for C_3			-		s is not a part $\sigma_{ m d}$		point group? $\sigma_{\rm h}$	
117		fy the false standard c The binary c C _{2v} point group Every cyclic Every abelia	ombina oup is a group	ation of belian is abeli	all pai		•	nmutati	ve	
118.	Which A)	h among the for NH_3	ollowin B)	ng mole CH4	cules h	nas the l	highest numb C_6H_6	er of m D)	irror planes? CHCl ₃	
119.	What A)	group is obtain S_6	ned by B)	adding S ₃	the sy	mmetry C)	y operation 'i C_{3h}	' to C ₃ ?	D_{3h}	
120.	The n A) B) C) D)	umber of irred The number The order of Half the orde Twice the nu	of sym the gro er of the	metry e oup e group	elemen	t classe	es	vill be e	qual to:	